71
Willy Sansen 10-05 111 Rail-to-rail input and output amplifiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium [email protected]

Rail to Rail Op Amps

Embed Size (px)

DESCRIPTION

Rail-to-Rail Op Amps

Citation preview

Willy Sansen 10-05 111

Rail-to-rail input and output amplifiers

Willy Sansen

KULeuven, ESAT-MICASLeuven, Belgium

[email protected]

Willy Sansen 10-05 112

Table of contents

Why rail-to-rail ?3 x Current mirror rtr amplifiersZener diode rtr amplifiersCurrent regulator rtr amplifier on 1.5 VSupply regulating rtr amplifier on 1.3 VOther rtr amplifiers and comparison

Willy Sansen 10-05 113

For low supply voltages : use full range for maximum dynamic range

Fully differential signal processing

Rail-to-rail output is always required

But not necessarily rail-to-rail-input !

Why rail-to-rail amplifiers ?

Willy Sansen 10-05 114

Symmetrical CMOS OTA

12

345

VDD

VSS

vOUT

CLM1 M2

M3 M4

M8

M6

M7

+-

M5

M9

1 : BB : 1Rail-to-rail output swing !

Symmetrical OTA1 : : 1

Willy Sansen 10-05 115

When rail-to-rail input ?

+- vOUT

R2

R1vIN

+-

vOUT

R2

R1

vIN

+-

vOUTvIN

No !No !

Yes !

+

-

+

-

+

-

Willy Sansen 10-05 116

Rail-to-rail input for CMFB

Avind+

- +- +

-+

CL

voutd

CL

Ad Acvinc

CMFB

For a rail-to-rail output swing in fully-differential amplifiersA CMFB amplifier is requiredWith rail-to-rail input capability !

Willy Sansen 10-05 117

Table of contents

Why rail-to-rail ?3 x Current mirror rtr amplifiersZener diode rtr amplifiersCurrent regulator rtr amplifier on 1.5 VSupply regulating rtr amplifier on 1.3 VOther rail-to-rail amplifiers

Willy Sansen 10-05 118

Problem ?

VDD

VSS = 0

VGSn

VDSsatn

VGSp

VDSsatp

VINCM > 1.1 V VINCM < VDD - 1.1 V

VGS ≈ 0.9 V & VDSsat≈ 0.2 V >>> VGSDS = 1.1 V

+

= VGSDS+

= VGSDS

Willy Sansen 10-05 119

Problem : limited input CM range

VDD

VSS = 0

IB

IB

+ -

iout+iout-

iout+iout-

To be operational :

VINCM > 1.1 V

VINCM < VDD - 1.1 V

gmn gmp

VDDmin = 2.2 V

Willy Sansen 10-05 1110

Problem: unequal gmtot

nMOST on :VINCM > 1.1 V

VINCMVSS = 0 VDD /2 VDD

gm

pMOST on : VINCM < VDD - 1.1 V

nMOSTpMOST

gmtot

1.1 V VDD-1.1 V

gmn gmp

Willy Sansen 10-05 1111

Solution : gm equalization

nMOST on :VINCM > 1.1 V

VINCMVSS = 0 VDD /2 VDD

gm

pMOST on : VINCM < VDD - 1.1 V

nMOSTpMOST

gmtot

1.1 V VDD-1.1 V

Increase gm:gmn+ gmp= ct

gmn gmp

Willy Sansen 10-05 1112

Equalize gmtot in strong inversion

gmn + gmp = ct1

2 K’n IBn + 2 K’p IBp = ct1

K’n IBn + K’p IBp = ct2

Wn

Ln

Wp

Lp

IBn + IBp = ct3

3 x Current mirror : 1 + 1 = 0 + 4 > 4 - 1 = 3

Willy Sansen 10-05 1113

3x Current mirror for nMOSTs

VDD

VSS = 0

IB

IB

+ -

iout+iout-

iout+iout-

gmn gmp

1 : 3

Vrn

IB x 4

Mrn

Willy Sansen 10-05 1114

VDD

VSS = 0

IB

IB

+ -

gmn gmp

1 : 3

Vrn

IB x 43 : 1

Vrp

IB x 4

3x Current mirror for all MOSTs

Mrn

Mrp

Willy Sansen 10-05 1115

3x Current mirror : performance

VINCMVSS = 0 VDD /2 VDD

gm

nMOSTpMOST

gmtot

1.1 V VDD-1.1 V

gmn gmp

∆gm/gm = 15%

gmtot ~ (4 - 3x) IB + x IB ∆gm/gm = 15% (x=1/3)

Willy Sansen 10-05 1116

Ref.Hogervorst, JSSC Dec.1994, 1505-1512

6.4 MHz/ 10 pF

6.4 V/µs

31 nV/√ Hz

3.3 V0.18 mA3 mApk

1: 3

1: 3

Rail-to-rail opamp

Willy Sansen 10-05 1117

Table of contents

Why rail-to-rail ?3 x Current mirror rtr amplifiersZener diode rtr amplifiersCurrent regulator rtr amplifier on 1.5 VSupply regulating rtr amplifier on 1.3 VOther rail-to-rail amplifiers

Willy Sansen 10-05 1118

Zener diodes

VZ

IDS

VGSVT0 VZ

ID

VDVBEon

≈ 0.7 V

0

VZ

Electronic Zener

Willy Sansen 10-05 1119

VDD

VSS = 0

8IB

8IB

+ -gmn gmp

Rail-to-rail amplifier with Zener diode

1 : 6

1 : 6

6 : 1

6 : 1

VZ

VZ = VGSn +VGSp

IBIB

Willy Sansen 10-05 1120

VDD

VSS = 08IB

+ -gmn

Rail-to-rail amplifier with Zener diode

1 : 6

1 : 6

6 : 1

6 : 1

V<VZ

VZ = VGSn +VGSp

4IB 4IB

Willy Sansen 10-05 1121

VDD

VSS = 0

8IB

8IB

+ -gmn gmp

Rtr amp. with electronic Zener

IB

IB

VZ

Willy Sansen 10-05 1122

Rail-to-rail amp. with Zener : performance

VINCMVSS = 0 VDD /2 VDD

gm

nMOSTpMOST

gmtot

1.1 V VDD-1.1 V

gmn gmp

Zener: ∆gm/gm = 25% Electronic Zener: ∆gm/gm = 6%

High currentHigh SR !

Ref.Hogervorst, JSSC July 1996, 1035-1040

Willy Sansen 10-05 1123

Table of contents

Why rail-to-rail ?3 x Current mirror rtr amplifiersZener diode rtr amplifiersCurrent regulator rtr amplifier on 1.5 VSupply regulating rtr amplifier on 1.3 VOther rail-to-rail amplifiers

Willy Sansen 10-05 1124

Equalize gmtot in weak inversion

gmn + gmp = ct

+ = ctIBn

2 nn kT/qIBp

2 np kT/q

IBn + IBp = ctnp

nn

n = 1 + Cox

CD (VBS)

Willy Sansen 10-05 1125

VDD

VSS = 04IB

+ -

gmngmp

1 :

Vref

Rail-to-rail amplifier with current switch

np

nn

I-switch IBIB IB IB2IB

Mr

Willy Sansen 10-05 1126

Rtr amp. with I-switch : performance

VINCMVSS = 0 VDD /2 VDD

gm

nMOSTpMOST

gmtot

1.1 V VDD-1.1 V

gmn gmp

Current switch : Vref very critical !

Vref = 0.5 V

Vref = 0.3 V

Vref = 0.4 V

Willy Sansen 10-05 1127

Ref. : Wu etal, JSSC Jan.1994, pp.63-66

14 MHz/ 11pF

5.6 MHz/ 100pF

4 V/µs

36 nV/√ Hz

5 V0.4 mA

gm1vin

gm3vin

Willy Sansen 10-05 1128

IDS x 2

gm x 2

Biasing :

Ref. : Wu etal, JSSC Jan.1994, pp.63-66

Willy Sansen 10-05 1129

Input rail-to-rail stage

VDD

2

VDD = 5V

0V

VDD

20

20

5

5

5

5

1010

10

10

20

20

20

0

0

20

5V

1.5V1.5VpMOSTs off !

V+- high :

nMOSTs :IDS1 x 2gm1 x 2

Willy Sansen 10-05 1130

VDD

VSS = 0

2IBp

2IBn

+ -

gmn gmp

Current regulator FB loop

180oCc

IBpIBn

4IB

np

nn

S

Willy Sansen 10-05 1131

2IBp

2IBn

gmn gmp

Current regulator FB loop : replica biasing

2IBp

2IBn

gmn gmp

in+ in- in+ in-

Willy Sansen 10-05 1132

Replica biasing with one transistor

+-

RLRL

RS

vIN vOUT

VREF

Willy Sansen 10-05 1133

Replica biasing with differential pair

gmn

in+ in-

2IBn

gmn

in+ in-

180o

2IBnIREF

Willy Sansen 10-05 1134

4IB

Cc

+ -

VDD

Current regulator rail-to-rail amplifier

+ -

VSS

2IBp

2IBn

np

nn1 :

Replica biasing block Input stage

S

Willy Sansen 10-05 1135

I-regulator rtr amplifier

E.Peeters etal,CICC 1997

Willy Sansen 10-05 1136

Total amplifier schematic

E.Peeters etal, CICC 1997

Willy Sansen 10-05 1137

Output stage

Willy Sansen 10-05 1138

VINCMVSS = 0 VDD /2 VDD ≈ 3 V

gm

nMOSTpMOST

gmtot

VDD- 1.1 V 1.1 V

gmn gmp

n - mismatch : ∆gm/gm ≈ 4%

Current-regulator rtr amp. : performance

Willy Sansen 10-05 1139

VINCMVSS = 0 VDD ≈ 1.5 V

gm

nMOSTpMOSTgmtot

VDD- 1.1 V 1.1 V

gmn gmp

n - mismatch : ∆gm/gm ≈ 4%

Current-regulator rtr amp. : towards 1.5 V

0

Willy Sansen 10-05 1140

GBW error

4 %

Willy Sansen 10-05 1141

Input offset voltage

Willy Sansen 10-05 1142

Rail-to-rail Opamp with Current regulator

VDD = 1.5 V

ITOT = 0.2 mA

∆gm/gm = 4 %

GBW = 4.3 MHz

CL = 15 pF

E.Peeters etal, CICC 1997

Willy Sansen 10-05 1143

Table of contents

Why rail-to-rail ?3 x Current mirror rtr amplifiersZener diode rtr amplifiersCurrent regulator rtr amplifier on 1.5 VSupply regulating rtr amplifier on 1.3 VOther rail-to-rail amplifiers

Willy Sansen 10-05 1144

VINCM

VSS = 0 VDD ≈ 1.3 V

gm

nMOSTpMOSTgmtot

gmn gmp

n - mismatch and gmtot dip : ∆gm/gm≈ 15 %

Internal VDD Regulator

IBn + IBp = ctnp

nn

Weak inversion :

VDD /2

gmtot/2 Minimum VDD ?

Minimum VGS+VDSsat ?

Independent of ∆VT’s !

0

Willy Sansen 10-05 1145

VDD ≈ 1.3 V

VSS = 0

IBp ?

IBn ?

+ -

iout+iout-

iout+iout-

gmn gmp

Regulating VDD : total schematic

VDDext

Cc

VOUT

Willy Sansen 10-05 1146

IB

VDD

Replica biasing block

VSS

IBp

IBn

VDDVDD

VSS

VDDext

VSS

S

Ferri, .. JSSC Oct.97, 1563-1567

Willy Sansen 10-05 1147

VDD

Internal VDD regulator

VSS

IBp

IBn

VDDext2 : 1

2 : 1

VGSn

VGSp

VDSsatn

VDSsatp MR

MP

MA

Willy Sansen 10-05 1148

Total amplifier schematicVext

Ferri, .. JSSC Oct.97, 1563-1567

Willy Sansen 10-05 1149

Internal supply voltage

V

V

Willy Sansen 10-05 1150

GBW error

VIN,CM (V)

GBW(MHz)

Willy Sansen 10-05 1151

Rail-to-rail amp. with VDD regulator : Specs

VDDmin = 1.3 VGBW = 1.3 MHz in CL = 15 pFgm1 = 200 µSIDSn1 = 10 µAW/Lin = 830ITOT = 354 µAVin,eq = 25 nVRMS/√HzVin,offset = 0.8 mV (3σ = 0.2 mV)

Ferri, .. JSSC Oct.97, 1563-1567

Willy Sansen 10-05 1152

Rtr Opamp with VDD-regulator

Willy Sansen 10-05 1153

Rail-to-rail with VDD regulator : min VDD

VDDmin = 2 (VGS + VDSsat)= 2 (VGS - VT + VT + VGS - VT)= 2 [VT + 2(VGS - VT)]= 2 [0.6 + 2(0.15)] = 1.8 V

= 2 [0.3 + 2(0.10)] = 1.0 V !!!!

Willy Sansen 10-05 1154

Table of contents

Why rail-to-rail ?3 x Current mirror rtr amplifiersZener diode rtr amplifiersCurrent regulator rtr amplifier on 1.5 VSupply regulating rtr amplifier on 1.3 VOther rail-to-rail amplifiers

Willy Sansen 10-05 1155

Rail-to-rail opamp with current summation

Redman-White, JSSC May 97, 701-712

3.3 V2.3 mW(2.2 V min.)

Gm ± 10%THD :-55 dB

40 MHz9 mW0.5 µm CMOS

Willy Sansen 10-05 1156

Duisters, .., JSSC July 98,pp.947-955

Opamp with voltage multiplier

Vddx - Vdd ≈ 1 V

= Vdd/2

1.8 - 3.3 V0.75 mA6.5 MHz

On 3 V :

2.8 VptptTHD :-90 dB /10kΩ-81 dB/32 Ω

0.5 µm CMOS

Willy Sansen 10-05 1157

Rail-to-rail opamp with differential signal proc.

Ref.Lin, AICSP 1999, 153-162

Idsn

Idsp

Willy Sansen 10-05 1158

Maximum-current selecting circuits

Ref.Lin, AICSP 1999, 153-162

Idsn

Idsp

Willy Sansen 10-05 1159

Maximum-current selecting circuit

VDD

+ -

VSS Input stage

Willy Sansen 10-05 1160

Transconductance equalizer circuit

Ref.Lin, AICSP 1999, 153-162

VGS3 + VGS2 = VGS1 + VGS4

K’pIpbias = K’nInbias

gmp = gmn

Willy Sansen 10-05 1161

Rail-to-rail opamp with max.-current selector

Ref.Lin, AICSP 1999, 153-162

1.9 MHz 20 pF 3 V/ 0.26 mA

max.curr.selector max.curr.selectorgm equalizer

Willy Sansen 10-05 1162

Rail-to-rail opamp with max.-current selector

max.curr.selectorgm equalizer

Ref.Lin, AICSP 1999, 153-162

1.9 MHz 20 pF 3 V/ 0.26 mA

Willy Sansen 10-05 1163

Rail-to-rail opamp on 1 Volt Supply

Ref.Duque-Carrillo, JSSC Jan.2000, 33-43

VIN

VDD = 1 V

0 V

VIN

IDS

0 0.5 1 V

IDSp IDSn

Willy Sansen 10-05 1164

Rail-to-rail opamp on 1 Volt

Ref.Duque-Carrillo, JSSC Jan.2000, 33-43

R

R

IB

IB

VINVIN

VDD = 1 V VDD = 1 V

0 V 0 V

Willy Sansen 10-05 1165

Rail-to-Rail opamp on 1 Volt

Ref.Duque-Carrillo, JSSC Jan.2000, 33-43

R

R

IB

IB

VIN

VDD = 1 V

0 V

IB

0 0.5 1 V

VINn

VINp

VIN

0 0.5 1 VVIN

VINn

VINp

IBmax

VINp RIBmax

VINn1 V

0

0.5

Willy Sansen 10-05 1166

Ref.Duque-Carrillo, JSSC Jan.2000, 33-43

2 MHz15 pF

1 V0.4 mA

Ioffset< 1 µA

R Ioffset noise

RtR opamp : full opamp schematic

Willy Sansen 10-05 1167

Ref.Duque-Carrillo, JSSC Jan.2000, 33-43

RtR opamp : current generator

IB

current summer

Willy Sansen 10-05 1168

Comparison rail-to-rail input amplifiers

Type Ref. ∆gm/gm GBW ITOT VDDmin% MHzpF/mW µA V

3x Curr.mirr. JSSC-12-94 15 110 150 3Electr. Zener JSSC-7-96 6 70 215 2.7Curr.switch AICSP-5-94 8 1.1 500 3.3Curr.regulat. CICC 97 4 210 200 1.5Regulat. VDD JSSC-10-97 6 43 350 1.3MOST translin. AICSP-6-94 8 4.2 800 2.5Improv.CMRR JSSC-2-95 9 3 1400 5Max. current AICSP-1-99 10 77 260 3Resistive input JSSC-1-00 x 75 400 1

Willy Sansen 10-05 1169

Table of contents

Why rail-to-rail ?3 x Current mirror rtr amplifiersZener diode rtr amplifiersCurrent regulator rtr amplifier on 1.5 VSupply regulating rtr amplifier on 1.3 VOther rail-to-rail amplifiers

Willy Sansen 10-05 1170

References

T. Duisters, etal, ”A -90 dB THD rail-to-rail input opamp using a new local charge pump in CMOS", IEEE Journal Solid-State Circuits, Vol. SC-33, pp. 947-955, July 1998.

R. Duque-Carillo, etal, "A 1 V rail-to-rail operational amplifier in standard CMOS technology", IEEE Journal Solid-State Circuits, Vol. SC-35, pp. 33-43, Jan. 2000.

G.Ferri, W.Sansen, ”A rail-to-rail constant-gm low-voltage CMOS operational transconductance amplifier", IEEE Journal Solid-State Circuits, Vol. SC-32, pp. 1563-1567, Oct.1997.

R. Hogervorst, etal, "A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries", IEEE Journal Solid-State Circuits, Vol. SC-29, pp. 1504-1512, Dec.1994.

R. Hogervorst, etal, ”Compact CMOS constant-gm rail-to-rail input stage with gm-control by an electronic Zener diode", IEEE Journal Solid-State Circuits, Vol. SC-31, pp. 1035-1040, July 1996.

R. Lin, etal, "A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries", Analog Integrated Circuits and Signal Processing, Kluwer Ac., pp. 153-162, Jan.1999.

Willy Sansen 10-05 1171

References

E. Peeters, etal, "A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries", CICC 1997.

W. Wu, etal, ”Digital-compatible high-performance operational amplifier with rail-to-rail input and output stages", IEEE Journal Solid-State Circuits, Vol. SC-29, pp. 63-66, Jan 1994.