19
Radiative effects in decay of metastable vacua: a Green’s function approach Peter Millington University Foundation Fellow, Technische Universität München [email protected] in collaboration with Björn Garbrecht arXiv:1501.07466 [hep-th]; accepted by PRD Kosmologietag 10 ZiF, Bielefeld University 8 May 2015

Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Radiative effects in decay of metastable vacua:a Green’s function approach

Peter MillingtonUniversity Foundation Fellow, Technische Universität München

[email protected]

in collaboration with Björn GarbrechtarXiv:1501.07466 [hep-th]; accepted by PRD

Kosmologietag 10ZiF, Bielefeld University

8 May 2015

Page 2: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Introduction and motivation

Numerous phenomenological examples across high-energy physics,astro-particle physics and cosmology:

I symmetry restoration at finite temperature and phase transitions in theearly Universe

[Kirzhnits, Linde, PLB42 (1972) 471; Dolan, Jackiw, PRD9 (1974) 3320; Weinberg, PRD9 (1974) 3357]

I first-order phase transitions may produce relic gravitational waves[Witten, PRD30 (1984) 272; Kosowsky, Turner, Watkins, PRD45 (1992) 4514; Caprini, Durrer, Konstandin, Servant,

PRD79 (2009) 083519]

I potential role in the generation of the baryon asymmetry of the Universe[Morrissey, Ramsey-Musolf, New J.Phys.14 (2012) 125003; Chung, Long, Wang, PRD87 (2013) 023509]

I dynamics of both topological and non-topological defects, and othernon-perturbative phenomena in non-linear field theories, e.g. domain walls,Q balls, oscillons, etc ...

I vacuum stability of the SM and its extensions . . .

Page 3: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Introduction and motivation

The perturbatively-calculated SM effective potential develops an instability ata scale ∼ 1011 GeV, given a ∼ 125 GeV Higgs boson.

[Cabibbo, Maiani, Parisi, Petronzio, NPB158 (1979) 295; Sher, PR179 (1989) 273 & PLB317 (1993) 159; Isidori, Ridolfi, Strumia,NPB609 (2001) 387; Elias-Moro, Espinosa, Giudice, Isodori, Riotto, Strumia, PLB709 (2012) 222; Degrassi, Di Vita, Elias-Moro,

Espinosa, Giudice, Isidori, Strumia, JHEP1208 (2012) 098; Alekhin, Djouadi, Moch, PLB716 (2012) 214; . . . ]

[Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia, JHEP1312 (2013) 089]

Page 4: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Introduction and motivation

These predictions for the SM are subject to a number of uncertainties . . .

I experimental: determination of the top-quark pole mass[Bezrukov, Kalmykov, Kniehl, Shaposhnikov, JHEP1210 (2012) 140 [1205.2893]; Masina, PRD87 (2013) 053001]

I phenomenological: impact of higher-dimension operators[Branchina, Messina, PRL111 (2013) 241801; Branchina, Messina, Platania, JHEP1409 (2014) 182 [1407.4112]; Lalak, Lewicki,

Olszewski, JHEP1405 (2014) 119; Branchina, Messina, Sher, PRD91 (2015) 013003; Eichhorn, Gies, Jaeckel, Plehn, Scherer,Sondenheimer, 1501.02812]]

I theoretical:I interpretation of the non-convexity of the effective potential

[Weinberg, Wu, PRD36 (1987) 2474; Alexandre, Farakos, JPA41 (2008) 015401; Branchina, Faivre, Pangon, JPG36(2009) 015006; Einhorn, Jones, JHEP0704 (2007) 051]

I implementation of RG improvement[Gies, Sondenheimer, EPJC75 (2015) 68]

I incorporation of the inhomogeneity of the solitonic background[Garbrecht, Millington, 1501.07466, cf. Goldstone, Jackiw, PRD11 (1975) 1486; e.g. of calculations in the homogeneousbackground, see Frampton, PRL37 (1976) 1378; PRD15 (1977) 2922; Camargo-Molina, O’Leary, Porod, Staub, EPJC73

(2013) 2588]

It is necessary to consider methods of finding tunnelling rates that accountfully for radiative corrections within the inhomogeneous soliton background,particular if these radiative effects are dominant.

Page 5: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Semi-classical tunnelling rate

Archetype: Euclidean φ4 theory with tachyonic mass µ2 > 0

L = 12!(∂µφ)2 − 1

2! µ2φ2 + 1

3! gφ3 + 14! λφ

4 + U0

[for self-consistent numerical studies, see Bergner, Bettencourt, PRD69 (2004) 045002; Bergner, Bettencourt, PRD69 (2004) 045012;Baacke, Kevlishvili, PRD71 (2005) 025008; Baacke, Kevlishvili, PRD75 (2007) 045001]

Non-degenerate minima:

ϕ = v± ≈ ± v − 3g2λ , v2 = 6µ2

λ

U(ϕ)

ϕ+ v

− v

Page 6: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Semi-classical tunnelling rate

The classical equation of motion

− ∂2ϕ + U ′(ϕ) = 0

is analogous to a particle moving in a potential −U (ϕ).

There exists a solution — the Coleman bounce — satisfying[Coleman, PRD15 (1977) 2929; Callan, Coleman, PRD16 (1977) 1762; Coleman Subnucl. Ser. 15 (1979) 805; Konoplich,

Theor. Math. Phys. 73 (1987) 1286]

ϕ∣∣x4→±∞

= + v , ϕ̇∣∣x4 = 0

= 0 , ϕ∣∣|x|→∞

= + v

−U(ϕ)

ϕ+ v− v

Page 7: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Semi-classical tunnelling rate

In hyperspherical coordinates, the boundary conditions are

ϕ∣∣r→∞

= + v , dϕ/dr∣∣r = 0

= 0 ,

with the bounce corresponding to the kink[Dashen, Hasslacher & Neveu, PRD 10 (1974) 4114; ibid. 4130; ibid. 4138]

ϕ(r) = v tanh γ(r − R) , γ = µ/√

2 .

ϕ(r)

γ(r −R)

+ v

− v

truevacuum

falsevacuum

The bounce looks like a bubble of radius R = 12λ/g/v.

Page 8: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Semi-classical tunnelling rate

The tunnelling rate Γ is calculated from the path integral

Z [0] =∫

[dφ]e−S[φ]/~ , Γ/V = 2∣∣Im Z [0]

∣∣/V/T

[see Callan, Coleman, PRD16 (1977) 1762]

Expanding around the kink φ = ϕ+ ~1/2φ̂, the spectrum of the operator

G−1(ϕ) ≡ δ2S [φ]δφ2

∣∣∣∣∣φ=ϕ

= −∆(4) + U ′′(ϕ)

contains four zero eigenvalues (translational invariance of the bounce) and onenegative eigenvalue (dilatations of the bounce).

Writing B ≡ S [ϕ]:

Z [0] = − i2 e−B/~

∣∣∣∣∣ λ0 det(5) G−1(ϕ)(VT)2

(B

2π~

)4(4γ2)5 det(5) G−1(v)

∣∣∣∣∣−1/2

Page 9: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Quantum-corrected bounce

Leading quantum corrections to both the bounce and the tunneling rate can becalculated from the 1PI effective action

[Jackiw, PRD9 (1974) 1686]

Γ[φ] = −~ ln Z [J ] +∫

d4x J(x)φ(x)

But in anticipation of the non-positive-definite eigenspectrum of fluctuations,we want to evaluate the functional integral in Z [J ] by expanding around thequantum-corrected bounce ϕ(1), i.e.

δΓ[φ]δφ(x)

∣∣∣∣φ=ϕ(1)

= 0

δS [φ]δφ(x)

∣∣∣∣φ=ϕ(1)

= J(x) 6= 0

Note, in the usual standard evaluation of the 1PI effective action, the physicallimit is J (x) −→ 0.

Page 10: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Quantum-corrected bounceAt order ~, the quantum-corrected bounce ϕ(1)(x) satisfies

− ∂2ϕ(1)(x) + U ′(ϕ(1); x) + ~Π(ϕ; x)ϕ(x) = 0

including the tadpole correction

Π(ϕ; x) = λ

2 G(ϕ; x, x)

It follows that the self-consistent choice of J(x) for this method of evaluation is

J (x) = − ~Π(ϕ; x)ϕ(x)[see Gabrecht, Millington, 1501.07466]

Expanding around ϕ(1) = φ− ~δϕ, δϕ = ϕ(1) − ϕ, we find

Γ[ϕ(1)] = S [ϕ(1)] + iπ~2 + ~2B(2)′[ϕ]

+ ~2 ln

∣∣∣∣∣ λ0 det(5) G−1(ϕ)(VT)2

(B

2π~

)4(4γ2)5 det(5) G−1(v)

∣∣∣∣∣−1/2

Page 11: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Quantum-corrected bounce

The tunnelling rate per unit volume, at order ~2, is

Γ/V =(

B2π~

)2

(2γ)5|λ0|−12 exp

[− 1

~

(B + ~B(1) + ~2B(2) + ~2B(2)′

)]

Expanded in δϕ(x) ≡ ϕ(1)(x)− ϕ(x):I one-loop corrections captured by the functional determinant:

B(1) = 12 tr(5)

(ln G−1(ϕ) − ln G−1(v)

)I two-loop corrections (i) B(2) due to the action of the corrected bounce

and (ii) B(2)′ due to the corrections to the one-loop fluctuationdeterminant:

B(2) = − 12

∫d4x ϕ(x)Π(ϕ; x)δϕ(x) = −2B(2)′

Page 12: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Approximations

1. Thin-wall approximation µR� 1: drop the damping term

1µr

ddr ∼

1µR

ddr .

2. Planar-wall approximation: sum over discrete angular momenta replacedby an integral over linear momenta, i.e.

j(j + 2)~µ2R2 −→ k2

µ2 .

R

z⊥z‖

Page 13: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Green’s function

Green’s function: u(′) ≡ ϕ(r(′))/v and m ≡(1 + k2/4/γ2)1/2

G(u, u′,m) = 12γm

[ϑ(u − u′)

(1− u1 + u

)m2(

1 + u′

1− u′

)m2

×(

1− 3 (1− u)(1 + m + u)(1 + m)(2 + m)

)×(

1− 3 (1− u′)(1−m + u′)(1−m)(2−m)

)+ (u ↔ u′)

]

The renormalization is performed using the effective potential of ahomogeneous false-vacuum configuration.

Renormalized tadpole correction:

ΠR(u) = 3λγ2

16π2

[6 +

(1− u2)(5− π√

3u2)]

Page 14: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Heat-kernel method[Diakonov, Petrov and Yung, PLB130 (1983) 385; Diakonov, Petrov, Yung, Sov.J.Nucl.Phys.39 (1984) 150 [Yad.Fiz.39 (1984) 240];

Konoplich, Theor.Math.Phys.73 (1987) 1286 [Teor.Mat.Fiz.73 (1987) 379; Vassilevich, Phys. Rept. 388 (2003) 279; Carson, McLerran,PRD41 (1990) 647; Carson, Li, McLerran, Wang, PRD42 (1990) 2127; Carson, PRD42 (1990) 2853]

Functional determinant over the positive-definite modes:

tr(5) ln G−1(ϕ; x) = −∫

d4x∫ ∞

0

dττ

K(ϕ; x, x|τ) .

The heat kernel is the solution to the heat-flow equation

∂τK(ϕ; x, x ′|τ) = G−1(ϕ; x)K(ϕ; x, x ′|τ) ,

with K(ϕ; x, x ′|0) = δ(4)(x − x ′) .

But it’s Laplace transform

K(ϕ; x, x ′|s) =∫ ∞

0dτ esτ K(ϕ; x, x ′|τ)

is just the Green’s function with k2 → k2 + s.[cf. direct integration of the Green’s function: Baacke, Junker, MPLA8 (1993) 2869; PRD49 (1994) 2055; 50 (1994) 4227; Baacke,

Daiber, PRD51 (1995) 795; Baacke, PRD78 (2008) 065039; Gel’fand-Yaglom thoerem JMP1 (1960) 48: Baacke, Kiselev PRD48 (1993);Dunne, Kirsten, JPA39 (2006) 11915; Dunne, JPA41 (2008) 304006]

Page 15: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Example

To enhance the radiative effects, while remaining in a perturbative regime, weconsider an N -field model:

[see ’t Hooft, NPB72 (1974) 461]

L ⊃N∑

i = 1

[12!(∂µχi

)2 + 12! m2

χχ2i + λ

4 φ2χ2

i

].

For m2χ � γ2, the χ renormalized tadpole correction is

ΣR(u) = λγ2

8π2γ2

m2χ

[72 +

(1− u2)(40− 3u2)] .

Dominant ~~~ and ~~~2 corrections:

Page 16: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Quantum-corrected bounce

δϕ(u) = − vγ

∫ 1

−1du′

u′G(u, u′,m)∣∣k = 0

1− u′2(

ΠR(u′) + NΣR(u′))

-4 -2 0 2 4-30

-20

-10

0

10

20

30

γ(r-R)

δφ×

16π

2/(3λ

v)

Nγ2/m2χ: 0 (solid), 0.5 (dashed), 1 (dash-dotted) and 1.5 (dotted)

Page 17: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Quantum-corrected bounce

-4 -2 0 2 4

-100

-50

0

50

100

γ(r-R)

(φ+δφ)×

16π

2/(3λ

v)

Nγ2/m2χ: 0 (solid), 0.5 (dashed), 1 (dash-dotted) and 1.5 (dotted)

[Qualitative agreement with Bergner, Bettencourt, PRD69 (2004) 045002]

−→ reduction in bounce action −→ increase in tunneling rate.

Page 18: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Concluding remarks

I Green’s function approach to the calculation of radiative corrections totunnelling rates from false vacua, including the

I functional determinant andI corrections to the bounce itself.

I In the scalar toy model considered, this calculation could be performedanalytically, by employing the

I thin-wall approximation andI planar-wall approximation.

I The method is well-suited to numerical analysis and may be of particularuse for radiatively-generated minima, e.g. for the

I instability of the SM,I massless Coleman-Weinberg model of SSB or

[Coleman & Weinberg, PRD 7 (1973) 1888]

I symmetry restoration at finite temperature.

Page 19: Radiative effects in decay of metastable vacua: a Green's ... · Radiativeeffectsindecayofmetastablevacua: aGreen’sfunctionapproach PeterMillington UniversityFoundationFellow,TechnischeUniversitätMünchen

Back-up slidesTunnelling rate

B = 8π2R3γ3

λ

B(1) = −B(

3λ16π2

)[π

3√

3+ 21 + 2542

15γ2

m2χ

N]

B(2) + B(2)′ = 12

∫d4x ϕ(u)

(ΠR(u) + NΣR(u)

)δϕ(u)

= − B3

(3λ

16π2

)2[2918 − 37

4π√3

+ 556

π2

3

+(

6672 − 2897

42π√3

)γ2

m2χ

N + 582914

γ4

m4χ

N 2]