10
Quantum Theory & Structure of the Periodic Table The orbitals that the electrons in an atom occupy can be illustrated in the form of an electron configuration. This is simply a tool used to help us understand and predict chemical bonding. Rules for filling up orbitals with electrons : 1. Aufbau Principle – fill lowest energy levels first before proceeding to next level. 2. Hund’s Rule – electrons must occupy single orbitals before pairing up with other electrons.

Quantum Theory & Structure of the Periodic Table The orbitals that the electrons in an atom occupy can be illustrated in the form of an electron configuration

Embed Size (px)

Citation preview

Page 1: Quantum Theory & Structure of the Periodic Table The orbitals that the electrons in an atom occupy can be illustrated in the form of an electron configuration

Quantum Theory & Structure of the Periodic Table

The orbitals that the electrons in an atom occupy can be illustrated in the form of an electron configuration.This is simply a tool used to help us understand and predict chemical bonding.

Rules for filling up orbitals with electrons:1. Aufbau Principle – fill lowest energy levels first before

proceeding to next level.2. Hund’s Rule – electrons must occupy single orbitals before pairing up with other electrons.

Page 2: Quantum Theory & Structure of the Periodic Table The orbitals that the electrons in an atom occupy can be illustrated in the form of an electron configuration

• Filling orbitals with electrons according to Aufbau follows the pattern shown due to a

mixing of energy levels shown below

Page 3: Quantum Theory & Structure of the Periodic Table The orbitals that the electrons in an atom occupy can be illustrated in the form of an electron configuration

Electron Configurations

• Electron configuration for potassium:19K = 1s22s22p63s23p64s1

• Electron configuration for platinum:78Pt = 1s22s22p63s23p64s23d104p65s24d105p66s24f145d8

• Abbreviated configuration for platinum:(choose nearest Noble gas in previous row and continue electron configuration)78Pt = [54Xe] 6s24f145d8

Page 4: Quantum Theory & Structure of the Periodic Table The orbitals that the electrons in an atom occupy can be illustrated in the form of an electron configuration

Relationship between orbitals and structure of Periodic Table

• Last electron for K is in 4s1 orbital• Last electron for Pt is in 5d8 orbital

Page 5: Quantum Theory & Structure of the Periodic Table The orbitals that the electrons in an atom occupy can be illustrated in the form of an electron configuration

Energy Level or Orbital Diagrams

These are representations that show the orbital orientations that the valence electrons occupy in an atom. • (use abbreviated electron configurations to show electrons in

orbitals).

Eg. For uranium: abbrev. elec. conf. is 92U = [86Rn]7s25f4

orbital diagram is: [86Rn] __ __ __ __ __ __ __ __7s 5f

• fill orbitals following Hund’s Rule

Page 6: Quantum Theory & Structure of the Periodic Table The orbitals that the electrons in an atom occupy can be illustrated in the form of an electron configuration

Eg. For lead: abbrev. elec. conf. is 82Pb = [54Xe]6s24f145d106p2

orbital diagram is:

[54Xe] __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __6s 4f 5d 6p

• Orbital diagrams are useful in predicting magnetism in elements

paramagnetic – unpaired electrons present in orbitals that are attracted to a magnetic field

diamagnetic – no unpaired electrons present in orbitals and are not attracted to a magnetic field

Page 7: Quantum Theory & Structure of the Periodic Table The orbitals that the electrons in an atom occupy can be illustrated in the form of an electron configuration

Relating Quantum Numbers to Electron Configurations

The last electron(s) in the valence orbitals of an atom are responsible for chemical reactivity.The set of 4 numbers can identify the energy associated with these electrons.

Eg. 19K ends in 4s1, quantum #’s are: (4,0,0,+1/2)78Pt ends in 5d8, quantum #’s are: (5,2,0,-1/2)

__ __ __ __ __-2 -1 0 +1 +2

5d

Page 8: Quantum Theory & Structure of the Periodic Table The orbitals that the electrons in an atom occupy can be illustrated in the form of an electron configuration

Eg. (6,1,1,-1/2) would represent the orbital electron:6p6 __ __ __Rn -1 0 +1

Eg. (5,2,2,+1/2) would represent the orbital electron:5d5 __ __ __ __ __

-2 -1 0 +1 +2

Re

Page 9: Quantum Theory & Structure of the Periodic Table The orbitals that the electrons in an atom occupy can be illustrated in the form of an electron configuration

Exceptions to Electron Configurations

There is a certain stability that is seen in an atom when it can achieve a totally full (or exactly half full) orbital of electrons.

• This can be seen in the configurations of elements in the d4 and d9 families.

Eg. 47Ag = [36Kr] 4s23d9 is really [36Kr] 4s13d10 since the ‘d’ orbital is completely filled and the ‘s’ orbital is now half filled with electrons.

Page 10: Quantum Theory & Structure of the Periodic Table The orbitals that the electrons in an atom occupy can be illustrated in the form of an electron configuration

Certain exceptions to the trends of ionization energy and electron affinity in the Periodic Table (learned about in grade 11) can be explained by the stability of these electron orbital arrangements.