50
Jacqueline Bloch Center for Nanoscience and Nanotechnology C2N, CNRS - Université Paris Saclay Palaiseau, France Quantum fluids of light in semiconductor lattices [email protected] http://www.polaritonquantumfluid.fr

Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Jacqueline Bloch

Center for Nanoscience and NanotechnologyC2N, CNRS - Université Paris Saclay

Palaiseau, France

Quantum fluids of light in semiconductor lattices

[email protected]://www.polaritonquantumfluid.fr

Page 2: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Inspiration: Emerging physics in the solid state

Fractional Quantum Hall effect

Graphene Topological insulators

Superfluidity

Page 3: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Emulation with lightTopologicaledge states Si

Chiral edge states

Zheng Wang et al.,Nature 461 772 (2009)

M. Hafezi, Nat. Phot. 7 1001 (2013)

Synthetic Landau levels

N. Shine et al.Nature 354, 671 (2016)

2 photon Laughling state Arxiv 1907.05872

B.Bahari et al., Science10.1126/science.aao4551(2017)

M. A. Bandres et al. Science 10.1126/science.aar4005 (2018)

S. Klembt et al.,Nature 562, 552 (2018)

Non reciprocal lasing

Randon quantum walk

A. Crespi, Nature Photonics 7, 322 (2013)

Quasi crystal

Kraus et al., PRL 109, 106402 (2012)

Page 4: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Driven-dissipative photonic Bose-Hubbard model

Ciuti & Carusotto, Rev. Mod. Phys. 85, 299 (2013)M.J. Hartman, Journal of Optics (2016)

C.Noh and DG Angelakis, Report on progress in Physics (2016)A. Biella et al., Phys. Rev. A 96, 023839 (2017)

F. Vincentini et al., Phys. Rev. A 97, 013853 (2018)

Out of equilibrium quantum physics

Page 5: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Use nanotechnology to engineer photonic lattices

2 µm

Image from Würzburg

Page 6: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Outline

Introduction to polariton lattices

Emergence of criticality in quasi-crystals

Discrete gap solitons in a flat band

Page 7: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Upper polariton

Lower polariton

Exciton

Photon

Angle θ (º)

kin-plane (μm-1)

Em

issi

onen

ergy

(eV

)

Properties

Photonic component confinement in microstructuresreal space, k-space imaging

Excitonic component

Microcavity polaritons : mixed exciton-photon states

Microcavity polaritons

~ 15meV

-2 0 2

-20 -10 0 10 20

k kpol X exc C phot= +

Mirror

Cavity Quantum wells

Mirror

• Interactions - χ(3) (dominated by exchange)

• Gain (lasing)

• Sensitivity to magnetic field

Bragg mirrorGaAs/AlAs

T = 10K

Page 8: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

k// = ω/c sin(θ)

Imaging of k-space

Imaging of real space

Interferometry Coherenceg(1)

g(2)

0

1

Density

10 µm

- vortices- solitons

θ

Probing polariton states

Page 9: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Kasprzak et al. Nature, 443, 409 (2006)

See also H. Deng et al. Science (2002), R. Balili et al., Science (2007)

kx

ky

Benoid Deveaud

Le Si Dang

Increase excitation power

Page 10: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Polariton superfluidity

A. Amo et al. Nature Physics 5, 805 (2009)

C. Ciuti & I. Carusotto, Rev. Mod. Phys. 85, 299 (2013)

C. Ciuti and I. Carusotto PRL 242, 2224 (2005)

Cristiano CiutiIacopo Carusotto Alberto Amo Alberto Bramati Elisabeth Giacobino

Page 11: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Realizing the classical XY Hamiltonian inpolariton simulators, Natalia G. Berloff et al., Nature Materials 16, 1120 (2017)

Emulation of many body systems with lattices of polaritons

Phase locking of polariton condensates

Spin order and phase transitions in chainsof polariton condensates,

H. Ohadi, et al., Phys. Rev. Lett.. 119, 067401 (2017)

Polarization instability in coupledpolariton condensates

Southampton Cambridge

Cambridge

Pavlos Lagoudakis Natalia Berloff

Jeremy Baumberg

Page 12: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Ene

rgy

(meV

)

x (µm)

2 µm

x (µm)

S

P

0 10-10 0 1-1

0

2

1

k (µm-1)

Band structure

x (µm)

Ene

rgy

(meV

)

P band

S band

Polariton lattices:Tight binding approach

Review: C. Schneider et al., Rep. Prog. Phys. 80, 16503 (2017)

Page 13: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

CB

ACB

A

Pillar diameter = 3 µm

Interpillar distance= 2,4 µm

Engineering of a 1D flatband : “comb” lattice

-1 0 1

-2t

-t

0

t

2t

k / (π/a)

En

ergy

� ∗

flatband-??

+

F. Baboux et al. PRL116, 066402 (2016)See also Stanford, Sheffield, Würzburg

Emission of flat band in real space

Page 14: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

4 µm

Pillar diameter = 3 µm Interpillar distance a = 2.4 µm

Polariton honeycomb lattice

y

-20

2-4 -2 0 2 4

kx/(2π/3a)

ky/(

/3√3

a)

Ene

rgy

(meV

–15

77)

Jacqmin et al., PRL 112, 116402 (2014)

Dirac cones

Page 15: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Polaritonics at C2N

Quasi-periodic 1D latticeD. Tanese et al.,

PRL 112, 146404 (2014)

F. Baboux et al.,PRB 95, 161114(R) (2017)

V. Goblot et al., Arxiv1911.07809

Flat band physicsDirac physics

Spin orbit coupling

Sala et al., Phys. Rev. X 5, 011034 (2015)

T. Jacqmin et al., PRL 112, 116402 (2014)M. Milicevic et al, 2D Mater. 2, 034012 (2016)M. Milicevic et al. PRL. 118, 107403 ( 2017)M. Milicevic et al., Phys. Rev. X 9, 31010 (2019)

O. Jamadi et al., arXiv:2001.10395P. St-Jean et al., arXiv:2002.09528

Hawking physics H.S. Nguyen et al., PRL. 114, 036402 (2015)

F. Baboux et al. PRL116, 066402 (2016)

V. Goblot et al. Phys. Rev. Lett. 123, 113901

(2019)

SSH chain and topological lasing

P. Saint Jean et al., Nature Photonics 11, 651 (2017)

N Carlon Zambon et al., Nature Photonics 13, 283 (2019)

N. Carlon Zambon et al.,Opt. Lett. 44, 4531 (2019)

Page 16: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Outline

Introduction to polariton lattices

Emergence of criticality in quasi-crystals

Discrete gap solitons in a flat band

Page 17: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

• Quasicrystal: aperiodic system with long-range order

• Penrose tilings • Diffraction peaks of AlMn alloys:

Shechtman et al., PRL, 1984

(2011)Levine, Steinhardt, PRL, 1984

Quasicrystals

Page 18: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Cold atoms

Phonons

Coupled waveguides

Multilayer structures Microwave resonators

Gellermann et al., PRL 72, 633 (1994)Hattori et al., PRB 50, 4220 (1994)

Vignolo et al., PRB 93, 075141 (2016)

Levi et al., Science 332, 1541 (2011)Lahini et al., PRL 103, 013901 (2012)Kraus et al., PRL 109, 106402 (2012)

Roati et al., Nature 453, 895 (2008)

Steurer & Sutter-Widmer, J. of Phys. D: Applied Physics 40, R229 (2007)

Dareau et al., PRL 119, 215304 (2017)

Digital Mirror Device array

Synthetic Quasicrystals

Henrik P. Lüschen et al., Phys. Rev. Lett. 119, 260401

(2017)

Page 19: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

• Crystal perturbed by incommensurate on-site potential:

� �

-1

1

Aubry-André-Harper quasicrystal

Page 20: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

• Crystal perturbed by incommensurate on-site potential:

• Also in coupled waveguides arrays:• Cold atoms in optical lattices:

Lahini et al., Phys. Rev. Lett. 103, 013901 2009)

Roati et al., Nature 453, 895 (2008)

Aubry-André-Harper quasicrystal

� �

-1

1

• Localization properties:

Extended

Localized

Lahini et al., Phys. Rev. Lett. 103, 013901 (2009)

λ/t = 2λ/t

Page 21: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

For each site Vn = ±λ, according to:

Fibonacci quasicrystal

Y. E. Kraus et al., PRL 109, 106402 (2012)

• Fibonacci quasicrystal: ABAABABAABAABABAABABAABAABABAAλ

n

phasonsite 2/(1+√5)

• Localization properties:critical eigenstates

site

Page 22: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

• Interpolating Aubry-André-Fibonacci model:

Kraus, Zilberberg, PRL 109, 116404 (2012)

O. Zilberberg

Modulation frequency: b = 2/(1+√5)

Continuous deformation: IAAF model

Page 23: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

• Interpolating Aubry-André-Fibonacci model:

Kraus, Zilberberg, PRL 109, 116404 (2012)

O. Zilberberg

Modulation frequency: b = 2/(1+√5)

Continuous deformation: IAAF model

Page 24: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Localization phase diagram: theory

• Tight-binding approach:

• Inverse participation ratio for a state:

• Extended state:

• State localized on Nstates:

O. ZilberbergA. Štrkalj

Page 25: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Localization phase diagram: theory

• Tight-binding approach:

• Inverse participation ratio for a state:

• Extended state:

• State localized on Nstates:

O. ZilberbergA. Štrkalj

Page 26: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

D. Tanese et al., Nature Com. 4, 1749 (2013)

Polaritons in a 1D periodic potential

ExperimentTheory

Page 27: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Polaritons Interpolating AA-Fibo structures

Page 28: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Aubry André (Harper) quasi-periodic potential

On-site potential incommensuratewith the lattice period

a = 2 µm

Ene

rgy

Page 29: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Localization in interpolating AAFibo structures

V. Goblot et al., Arxiv1911.07809

Page 30: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Localization in interpolating AAFibo structures

V. Goblot et al., Arxiv1911.07809

Band curvature=

Extended states

Page 31: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Experimental localization phase diagram

V. Goblot et al., Arxiv1911.07809

Page 32: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Experimental localization phase diagram

V. Goblot et al., Arxiv1911.07809

Page 33: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Outline

Introduction to polariton lattices

Emergence of criticality in quasi-crystals

Discrete gap solitons in a flat band

Page 34: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

What about interactions? Non-linear physics?

C. Ciuti & I. Carusotto, Rev. Mod. Phys. 85, 299 (2013)

�ℏ�Ψ

��= −

2� + � � + � � − �

2� + �� � ���(������)

Weak on-site interaction :

�≪ 1

Mean field approximation :

Page 35: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Nonlinear micropillar

2-4 µmsingle pillar gapped spectrum

Interaction energy Decay

• Repulsive interactions leadto resonance blue-shift

Bistability

Baas et al., PRB. 70, 161307(R) (2004)Baas et al., PRA 69, 023809 (2004)

cwpumping

�ℏ!"

!�= # + � " − �

γ

2" + �����

F≪ γ

-2 0 20

0.5

1

1.5

2

(ω - ω0)/γ

U|ψ

|2 /γ

F≪ γ F~γ

ω0

Optical bistabiiltyH.M. Gibbs et al., PRL 36, 1135 (1976)

Page 36: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Nonlinear dimer

�ℏ!"&

!�= #& + � "&

− �γ1

2"& − '" + �����

�ℏ!"

!�= # + � "

− �γ2

2" − '"&

1/J

γ1 γ2

U U

tiFe

ω

S. Rodriguez et al., Nature Commun. 7, 11887 (2016).

Page 37: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Weak driving: F ≪ γT – driven ("&)– undriven (")

γ= 26 µeV

2J = 263µeV

Transmission of the dimer

Bonding Anti-Bonding

Page 38: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Phase diagram at strong driving

Optical Limiter Bistability Multistability

Very Strong driving: UNT ≫ γT , J

Page 39: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Observation of tristability

1476.3 1476.5 1476.7 1476.9 1477.10

0.2

0.4

0.6

0.8

1

Energy (meV)

Tra

nsm

itte

d I

nte

nsi

ty (

no

rm.)

Undriven

Pump

S. Rodriguez et al., Nature Commun. 7, 11887 (2016).

Interaction induceddestructive interference

Page 40: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Non-linearity in a flat band

Coupled waveguidesD. Guzman-Silva et al., New. J. Phys. 16, 063061 (2014)Rodrigo A. Vicencioet al., PRL 114, 245503 (2015)S. Mukherjee et al., PRL 114, 245504 (2015)

Cold atomsShintaro Taie et al., Sci. Adv. 1, e1500854 (2015)

PolaritonsNaoyuki Masumoto et al., NJP 14 065002 (2012)S. Klembt et al., Appl. Phys. Lett. 111, 231102 (2017)C. E. Whittaker et al., Phys. Rev. Lett. 120, 97401 (2018)

Coupled lasers: M. Nixon et al., Phys. Rev. Lett. 110, 184102 (2013).

�ℏ�Ψ

��= −

2� + � � + � � − �

2� + �� � ���(������)

No kinetic energy => strong effect of disorder, of interactions

2D Lieb lattice

Page 41: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Non-linearity in a flat band

A

B

C

5 µm

Excitation in the gap: laser detuning = interaction energy

Pump

V. Goblot et al, Phys. Rev. Lett. 123, 113901 (2019)

Page 42: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

P increasing

Linear regime

a

b

c

d

• Formation of nonlinear domains:

• Total intensity in the chain:

a

b cd

0 10.5• Spot profile:

Dom

ain

size

(u.

c.)

Power (a.u.)0 5 10 15 20 25

0

5

10

• Domain size:

Linear regime

a b

c d

Non-linearity in a flat band

Page 43: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

• Discretized GPE equation:

Excitation of gap solitons

• Truncated Bloch Waves in conservative systems:

? = @ ℏA

? = B ℏA

C. Bersch et al., Phys. Rev. Lett. 109, 093903 (2012)

F. Bennet et al., Phys. Rev. Lett. 106, 093901 (2011)Th. Anker et al., Phys. Rev. Lett. 94, 020403 (2005)

Here driven dissipative context

Page 44: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

- - - -- - -

--

y / a

0

1

0 2 4 6-2-4

-6

Multistability of the domains

- - - -- - -

--

y / a

0

1

0 2 4 6-2-4

-6- - - -- - -

--

y / a

0

1

0 2 4 6-2-4

-6

x / a

- - - -- - -

--

y / a

0

1

0 2 4 6-2-4-6

High degeneracy (no kinetic energy) => Complex multistability

Dynamical hysteresis? Chaotic instability?

V. Goblot et al, Phys. Rev. Lett. 123, 113901 (2019)

Page 45: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Summary

Emulation of Hamiltonians with lattices of coupled cavities

Potential for Applications

Important developments for room temperature operation of polariton devicesZnO, 2D materials, Perovskite……

- What about going beyond mean field? Blockade regime

Page 46: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

How far from quantum regime ? Quantum correlations?

�C 1Photon blockade if :

Presently in the best samples : �

�D 0.1

G. Muñoz-Matutano et al, Nature Materials 18, 213 (2019) A. Delteil et al., Nature Materials 18, 219 (2019)

First evidence for « weak » polariton antibunching:

A. Verger et al., Phys. Rev. B 73, 193306 (2006)

See J. Simon’s group: Nature Physics 14, 550, (2018)

U

Page 47: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

How to increase interactions? Couple to different excitations

Dipolar polaritons:P. Cristofolini et al., Science 336, 704 (2012)E. Togan et al., Physical Review Letters 121, 227402 (2018)see also : I. Rosenberg et al., Sci. Adv. 4, eaat8880 (2018)

Polaron polaritons: S. Ravets et al., Phys. Rev. Lett. 120, 057401 (2018) Trion in 2D materials : R. P. A. Emmanuele et al., arXiv:1910.14636

Photons coupled to fractional quantum Hall states, P. Knüppel et al., Nature 572, 91 (2019)

Bose-Hubbard

Strongly correlatedphoton phaseswithin reach!!!

Page 48: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Generation of multi-photon correlated states

I. Carusotto et al., Phys. Rev. Lett. 103, 033601 (2009)

Page 49: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Acknowledgment to our theoretician collaborators

FranceGuillaume Malpuech

Cristiano Ciuti

IacopoCarusotto

DmitrySolnishkov

Wim Casteels Florent Storme

TomokiOzawa

Paris

Trento

Filippo Vincentini

OdedZilberberg

Antonio Štrkalj

Jose Lado

Alexandre Le Boité

MichielWouters

Page 50: Quantum fluids of light in semiconductor lattices · Photonic component confinement in microstructures real space, k-space imaging Excitonic component ... Band structure x (µm) Energy

Alberto AmoLilles University

Isabelle Sagnes Luc LegratietMartina MorassiAristide Lemaitre

Acknowledgements to experimentalists

SylvainRavets

Abdou Herouri

Valentin Goblot

Philippe St Jean

NicolaCarlon

Zambon

Nicolas Pernet

Said Rodrigueznow at Amolph

AteebToor

and to fundings

QuentinFontaine