30
Correlated Light-Matter Interactions in Cavity Quantum Electrodynamics Johannes Flick 1 , Heiko Appel 1 , and Angel Rubio 1,2 [1] Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin [2] NanoBio Spectroscopy group and ETSF, Universidad del Pa´ ıs Vasco, San Sebasti´ an, Spain DPG Fr¨ uhjahrstagung Dresden, 2 nd April 2014 Johannes Flick 1 , Heiko Appel 1 , and Angel Rubio 1,2 Light-Matter Interactions

Quantum Electrodynamics - DIGITAL.CSIC: Home

  • Upload
    others

  • View
    13

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Quantum Electrodynamics - DIGITAL.CSIC: Home

Correlated Light-Matter Interactions in CavityQuantum Electrodynamics

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2

[1] Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin[2] NanoBio Spectroscopy group and ETSF, Universidad del Paıs Vasco, San

Sebastian, Spain

DPG Fruhjahrstagung Dresden, 2nd April 2014

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 2: Quantum Electrodynamics - DIGITAL.CSIC: Home

Introduction

In condensed matter physics and quantum chemistryQuantum mechanics for electrons - classical electromagnetic fieldsAb-initio methods: (Time-dependent) density functional theory (TDDFT),Hartree-Fock, Coupled-cluster theory, Green’s function theory ...

In quantum opticsSimplified model for matter (Dicke model), quantum light(exactly solvable) model systems, density matrix formulation

In this work:

Generalization of TDDFT:Quantum Electrodynamical Density Functional Theory (QEDFT):Interacting electrons coupled with photon modes in cavity.

Example: Jaynes-Cummings-Hubbard model system driven by external scalarand vector potentials.

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 3: Quantum Electrodynamics - DIGITAL.CSIC: Home

ExperimentsMatter-light interactions in the single atom and single photon limit.

The Nobel Prize in Physics 2012

(Image source: Manipulating individual quantum systems - Nature 492, 55 (2012)).

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 4: Quantum Electrodynamics - DIGITAL.CSIC: Home

QEDFT: Quantum electrodynamical density functionaltheoryElectron-photon many-body Hamiltonian:

H =∑j

[∇2

j

2m+ Vext(xj , t)

]+

∑i>j

Wxi−xj

+∑α

[−1

2∂2pα +

ω2α

2

(pα −

λα

ωαX

)2

+Jαext(t)

ωαpα

],

with the dipole polarization operator X =N∑jxj ,

ωα the frequency of the photon mode α,and λα is the coupling constant related to the α-mode.

In QEDFT, the basic variables are:

electron density: n(x, t) = 〈Ψ| n(x) |Ψ〉 photon momenta: Pα(t) = 〈Ψ| pα |Ψ〉

I. V. Tokatly, Phys. Rev. Lett., 110, 233001 (2013).M. Ruggenthaler, F. Mackenroth, and D. Bauer, Phys. Rev. A 84, 042107 (2011).M. Ruggenthaler, J.Flick, et. al, arXiv: to be submitted before DPG.

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 5: Quantum Electrodynamics - DIGITAL.CSIC: Home

Jaynes-Cummings-Hubbard model Hamiltonian

ω

tx

|1> |2>

Two-level system

Single-field limit

Cavity, dipole coupling

Many-body Hamiltonian:

H(t) = −tx σx+ωa†a+ λσz

(a+ a†

)+jext(t)

(a+ a†

)+ vext(t)σz

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 6: Quantum Electrodynamics - DIGITAL.CSIC: Home

Jaynes-Cummings-Hubbard model Hamiltonian

H(t) = −tx σx + ωa†a+ λσz

(a+ a†

)+ jext(t)

(a+ a†

)+ vext(t)σz

tx : electron hopping constant, ω: mode frequency, λ: coupling strength

Electronic operators (Pauli-matrices): {σa, σb} = 2δabI

Photonic operators: [ai , a†j ] = δi,j , [ai , aj ] = [a†i , a

†j ] = 0

Pair of conjugated variables:

electron density 〈σz (t)〉 ←→ vext(t) external (classical) potentialphoton density 〈A(t)〉 =

⟨a+ a†

⟩(t)←→ jext(t) external (classical) potential

Equations of motion (using Heisenberg’s EOM):

∂2

∂2tσz (t) = −4tx {txσz (t) + vext(t)σx ([σz (t),A(t)]; t) + λ 〈Aσx 〉 ([σz (t),A(t)]; t)}

∂2

∂2tA(t) = −ω2A(t)− 2ω (λσz (t) + jext(t))

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 7: Quantum Electrodynamics - DIGITAL.CSIC: Home

Kohn-Sham approach to the model Hamiltonian

To solve the presented coupled equations in practice, one needs approximations for theterms, which contain the densities implicitly.

Kohn-Sham construction:

One possible way: Coupled quantum problem replaced by uncoupled quantumproblem (matter and photon field decouples).

Uncoupled quantum system chosen to exactly reproduce physical densities σz (t)and A(t).

Shared features of real and auxiliary quantum system lead to reliableapproximations.

Kohn-Sham dynamics using single-particle wavefunctions:

Atom: i∂

∂t|φel (t)〉 = [−tx σx + vKS (t)σz ] |φel (t)〉 vKS (t) = vext(t) + vMF (t) + vxc (t).

Field: i∂

∂t|φpt(t)〉 =

[ωa†a+ jKS (t)

(a+ a†

)]|φpt(t)〉

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 8: Quantum Electrodynamics - DIGITAL.CSIC: Home

Mean-field approximation vs. exact potential

Mean-field approximation is identical to Schrodinger-Maxwell propagation

σx ([Ψ0, σz ,A]; t) ≈ σx ([Φ0, σz ]; t)⟨Aσx ([Ψ0, σz ,A]; t)

⟩≈ 〈A(t)〉 〈σx ([Φ0, σz ]; t)〉 = A(t)σx ([Φ0, σz ]; t)

Adiabatic approximation (no memory) and mean-field approximation.

vMFKS ([A, vext ] ; t) = vext(t) + λA(t) jKS (t) = λσz (t) + jext(t)

Compare to exact potential, obtained by Fixed-point iteration:M. Ruggenthaler, et. al, Phys. Rev. A 85, 052504 (2012)

Iterative equation (self-consistency):

vk+1KS (t) = −

−σz (t) + 4t2xσz (t)− 8txvkKS (t)

4tx(σx ([vk

KS ]; t) + 2)

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 9: Quantum Electrodynamics - DIGITAL.CSIC: Home

Mean-field - weak-coupling limit - Rabi oscillation

tx = 0.5, ω = 1, vext(t) = jext(t) = 0.Initial state: |Ψ0〉 = |Φ0〉 = |1〉 ⊗ |0〉

0.00.20.40.60.81.0

σx(t

) [a.u.] λ= 0.01

(a)

1.00.50.00.51.0

σz(t

) [a.u.]

(b)

0 100 200 300 400 500 600 700 800t [a.u.]

0.0100.0050.0000.0050.010

v KS(t

) [a.u.]

(c)

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 10: Quantum Electrodynamics - DIGITAL.CSIC: Home

Mean-field - weak-coupling limit - Rabi oscillation

tx = 0.5, ω = 1, vext(t) = jext(t) = 0.Initial state: |Ψ0〉 = |Φ0〉 = |1〉 ⊗ |0〉

0 100 200 300 400 500 600 700 800t [a.u.]

1.00.50.00.51.0

σz(t

) [a.u.]

(b)0.0150.0100.0050.0000.0050.0100.015

exactmean-fieldλ= 0.01

v KS(t

) [a.u.]

(a)

0.0100.0050.0000.0050.010

j KS(t

) [a.u.]

(c)

0 100 200 300 400 500 600 700 800t [a.u.]

1.51.00.50.00.51.01.5

A(t

) [a.u.]

(d)

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 11: Quantum Electrodynamics - DIGITAL.CSIC: Home

Mean-field - weak-coupling limit - coherent states

tx = 0.5, ω = 1, vext(t) = jext(t) = 0.Initial state: |Ψ0〉 = |Φ0〉 = |e〉 ⊗ |α〉,

|α〉 =∞∑n=0

fn(α) |n〉 , with fn(α) =αn√n!

exp(− 1

2|α|2

)

1.0

0.5

0.0

0.5

1.0

σx(t

) [a.u.]

λ= 0.01 <n>= 4(a)

1.00.50.00.51.0

σz(t

) [a.u.]

(b)

0 500 1000 1500 2000 2500t [a.u.]

0.040.020.000.020.04

v KS(t

) [a.u.]

(c)

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 12: Quantum Electrodynamics - DIGITAL.CSIC: Home

Mean-field - weak-coupling limit - coherent states

tx = 0.5, ω = 1, vext(t) = jext(t) = 0.Initial state: |Ψ0〉 = |Φ0〉 = |e〉 ⊗ |α〉,

|α〉 =∞∑n=0

fn(α) |n〉 , with fn(α) =αn√n!

exp(− 1

2|α|2

)

0 500 1000 1500 2000 2500t [a.u.]

1.00.50.00.51.0

σz(t

) [a.u.]

(b)0.040.020.000.020.04

exactmean-fieldλ= 0.01 <n>= 4

v KS(t

) [a.u.]

(a)

0.0100.0050.0000.0050.010

j KS(t

) [a.u.]

(c)

0 500 1000 1500 2000 2500t [a.u.]

42024

A(t

) [a.u.]

(d)

Better functionals, beyond mean-field approximation, are needed!

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 13: Quantum Electrodynamics - DIGITAL.CSIC: Home

Summary and Outlook

QEDFT is capable of reducing computational costs in correlated photon-matterproblems.

Already in the weak coupling limit, the mean-field approximation shows cleardeviations from the exact results.

Improved approximation available with optimized effective potential (OEP)scheme:See following talk by Camilla Pellegrini (O 47.3).

Outlook:

Scale approach to larger system size.

Fixed-point iteration for larger/two-dimensional system size.

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 14: Quantum Electrodynamics - DIGITAL.CSIC: Home

Acknowledgements

Camilla Pellegrini(San Sebastian)

Michael Ruggenthaler(Innsbruck)

Ilya Tokatly(San Sebastian)

Angel Rubio(San Sebastian + FHI)

Rene Jestadt (FHI) Heiko Appel (FHI)

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 15: Quantum Electrodynamics - DIGITAL.CSIC: Home

Summary and Outlook

QEDFT is capable of reducing computational costs in correlated photon-matterproblems.

Already in the weak coupling limit, the mean-field approximation shows cleardeviations from the exact results.

Improved approximation available with optimized effective potential (OEP)scheme:See following talk by Camilla Pellegrini (O 47.3).

Outlook:

Scale approach to larger system size.

Fixed-point iteration for larger/two-dimensional system size.

Thank you for your attention!

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 16: Quantum Electrodynamics - DIGITAL.CSIC: Home

Experiments

”Wiring up quantum systems”R. J. Schoelkopf and S. M. Girvin, Nature 451, 664 (2008).

”Cavity Optomechanics: Back-Action at the Mesoscale”T. J. Kippenberg and K. J. Vahala, Science 321, 1172 (2008).

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 17: Quantum Electrodynamics - DIGITAL.CSIC: Home

DFTGeneral remarks on (normal) DFT for electrons

H =∑j

[∇2

j

2m+ Vext(xj , t)

]+

∑i>j

Wxi−xj

Ground-state DFT (Hohenberg-Kohn theorem):

vext1:1←→ |Ψ0〉

1:1←→ n0 or |Ψ[vext ]〉1:1←→ |Ψ[n0]〉 or O[vext ]

1:1←→ O[n0]

TDDFT: Bijective Mapping (one-to-one correspondence):

|Ψ([Ψ0, vext ]; t)〉1:1←→ |Ψ([Ψ0, n]; t)〉

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 18: Quantum Electrodynamics - DIGITAL.CSIC: Home

Generalization

H =∑j

[∇2

j

2m+ Vext(xj , t)

]+

∑i>j

Wxi−xj

+∑α

[−1

2∂2pα +

ω2α

2

(pα −

λα

ωαX

)2

+Jαext(t)

ωαpα

],

where X =N∑jxj and the basic variables are:

density : n(x, t) = 〈Ψ| n(x) |Ψ〉 photon momenta : Pα(t) = 〈Ψ| pα |Ψ〉

Equations of motion for photon momenta:

∂2

∂t2Pα + ω2

αPα − ωαλαR = −Jαext/ωα

Kohn-Sham dynamics for electrons:

i∂tφj =∇2

j

2mφj +

[Vs +

∑α

(ωαPα − λαR)λαx

]φj ,

with Vs = Vext + V elHxc +

∑α

Vαxc (I. V. Tokatly, Phys. Rev. Lett., 110, 233001 (2013).)

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 19: Quantum Electrodynamics - DIGITAL.CSIC: Home

Electron-photon interactionsTo describe dynamics of particles coupled to photons, we solve an evolution equationof the form:

i~c∂0 |Ψ(t)〉 = H(t) |Ψ(t)〉 with |Ψ(t0)〉 = |Ψ0〉 ,

where x0 = ct and x = (ct,~r)

H(t) =HM + HEM +1

c

∫d3r Jµ(x)A

µ(x)

+1

c

∫d3r

(Jµ(x)a

µext(x) + Aµ(x)j

µext(x)

)

Jµ(x) charge current

Aµ(x) Maxwell-field operator

aµext(x) (classical) external vector potential

jµext(x) (classical) external current

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 20: Quantum Electrodynamics - DIGITAL.CSIC: Home

Wavefunction

Typically, one chooses an initial state |Ψ0〉 and an external pair (vext ,jext):

|Ψ([Ψ0, vext , jext ]; t)〉 =2∑

x=1

∞∑n=0

cxn(t) |x〉 ⊗ |n〉

These initial settings determine all observables, especially the observables:

〈σz (t)〉 = 〈Ψ(t)| σz |Ψ(t)〉 and 〈A(t)〉 = 〈Ψ(t)|(a+ a†

)|Ψ(t)〉

Proof shows 1:1 correspondence between

〈σz (t)〉1:1←→ vext(t)

〈A(t)〉 1:1←→ jext(t)

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 21: Quantum Electrodynamics - DIGITAL.CSIC: Home

Wavefunction

|Ψ([Ψ0, vext , jext ]; t)〉1:1←→ |Ψ([Ψ0, 〈σz 〉 , 〈p〉]; t)〉

Accordingly, every expectation value becomes a unique functional of the initial state|Ψ0〉 and the internal pair (〈σz (t)〉 , 〈A(t)〉)

Thus, instead of trying to calculate the (numerically expensive) wave function, it isenough to determine the internal pair for a given initial state.

For general observables: the explicit functional dependency on the densitiesmight be unknown.

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 22: Quantum Electrodynamics - DIGITAL.CSIC: Home

Direct connection between conjugated pairs

For the present model system, it is rather straightforward to establish a directconnection between the conjugated pairs.Using Heisenberg’s equation of motion, yields:

∂2

∂2tσz = −4tx (tx σz + vext(t)σx + λpσx )

∂2

∂2tp = −ω2p − 2ω (λσz + jext(t))

Now, we can write an equation for the expectation values:(Remember: all expectation values are by construction functionals of vext and jext forfixed initial state |Ψ0〉):

∂2

∂2tσz ([vext , jext ]; t) = −4tx {txσz ([vext , jext ]; t)

+vext(t)σx ([vext , jext ]; t) + λ 〈pσx 〉 ([vext , jext ]; t)}∂2

∂2tp([vext , jext ]; t) = −ω2p([vext , jext ]; t)− 2ω (λσz ([vext , jext ]; t) + jext(t))

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 23: Quantum Electrodynamics - DIGITAL.CSIC: Home

Using functional variable-transformation

Expressed using external potentials:

∂2

∂2tσz ([vext , jext ]; t) = −4tx {txσz ([vext , jext ]; t)

+vext(t)σx ([vext , jext ]; t) + λ 〈pσx 〉 ([vext , jext ]; t)}∂2

∂2tp([vext , jext ]; t) = −ω2p([vext , jext ]; t)− 2ω (λσz ([vext , jext ]; t) + jext(t))

Now, we use the 1:1 correspondence 〈σz (t)〉1:1←→ vext(t) and 〈p(t)〉 1:1←→ jext(t) and

we can formulate the problem as follows:

Expressed using densities:

∂2

∂2tσz (t) = −4tx {txσz (t) + vext(t)σx ([σz (t), p(t)]; t) + λ 〈pσx 〉 ([σz (t), p(t)]; t)}

∂2

∂2tp(t) = −ω2p(t)− 2ω (λσz (t) + jext(t))

Hence, instead of solving for the (numerically expensive) wavefunction, solve

non-linear coupled evolution equations.

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 24: Quantum Electrodynamics - DIGITAL.CSIC: Home

Convergence of fixed point iteration

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 25: Quantum Electrodynamics - DIGITAL.CSIC: Home

Mean-field - stronger-coupling limit - Rabi oscillation

tx = 0.5, ω = 1, vext(t) = jext(t) = 0.Initial state: |Ψ0〉 = |Φ0〉 = |1〉 ⊗ |0〉

0 10 20 30 40 50 60t [a.u.]

1.00.50.00.51.0

σz(t

) [a.u.]

(b)0.150.100.050.000.050.100.15

exactmean-fieldλ= 0.1

v KS(t

) [a.u.]

(a)

0.100.050.000.050.10

j KS(t

) [a.u.]

(c)

0 10 20 30 40 50 60t [a.u.]

1.51.00.50.00.51.01.5

A(t

) [a.u.]

(d)

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 26: Quantum Electrodynamics - DIGITAL.CSIC: Home

Mean-field - weak-coupling limit - coherent states

tx = 0.5, ω = 1, vext(t) = jext(t) = 0.Initial state: |Ψ0〉 = |Φ0〉 = |e〉 ⊗ |α〉,

|α〉 =∞∑n=0

fn(α) |n〉 , with fn(α) =αn√(n!)

exp(− 1

2|α|2

)

0 500 1000 1500 2000 2500t [a.u.]

1.00.50.00.51.0

σz(t

) [a.u.]

(b)0.040.020.000.020.04

exactmean-fieldλ= 0.01 <n>= 4

v KS(t

) [a.u.]

(a)

0.0100.0050.0000.0050.010

j KS(t

) [a.u.]

(c)

0 500 1000 1500 2000 2500t [a.u.]

42024

A(t

) [a.u.]

(d)

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 27: Quantum Electrodynamics - DIGITAL.CSIC: Home

How to construct approximations?Optimized effective Potential (OEP)

Similar derivation as in normal DFT: (Review: S. Kummel and L. Kronik, Rev. Mod.Phys. 80, 3 (2008).C. Pellegrini et. al. (2014) in preparation.

static OEP equation

a− δ − λ2aω + 4

√a2 + T 2(

ω + 2√a2 + T 2

)2= 0

TDOEP equation (Volterra equation first kind)

−2t∫

0

dt′Vxc (t′)={d12(t′)d21(t)} = −ωλ2<

t∫

0

dt′′c(t′, t′′)d12(t)

+

+ωλ2<

t∫

0

dt′t∫

0

dt′′c(t′, t)d21(t′′)e−iω(t′−t′′)

+2ωλ2

2W + ω=

t∫

0

dt′c(t′, t)d12(0)e−iωt′

−ωλ2d2

12(0)1

(2W + ω)2

[n(t)−

<{d12(t)}d12(0)

]

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 28: Quantum Electrodynamics - DIGITAL.CSIC: Home

OEP - weak-coupling limit - Sudden switch

tx = 0.7, ω = 1, vext(t) = −0.2 , jext(t) = 0.

1.0

0.8

0.6

0.4

0.2σz(λ

) [a.u.]

(a) exactstatic OEPstatic mean-field

0 1 2 3 4 5λ [a.u.]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

E(λ

) [a.u.]

(b)

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 29: Quantum Electrodynamics - DIGITAL.CSIC: Home

OEP - weak-coupling limit - Sudden switch

tx = 0.7, ω = 1, vext(t) = −0.2 , jext(t) = 0.

time in a.u.0.40.20.00.20.40.60.8

σz(t

) [a.u.]

exactTDOEPmean-field

λ= 0.01

(a)

0 5 10 15 20 25 30 35 40t [a.u.]

-0.15-0.10-0.050.000.050.100.150.20

v KS(t

) [a.u.]

×10−3

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0ω [a.u.]

420246

σz(ω

) [a.u.]

(c)

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions

Page 30: Quantum Electrodynamics - DIGITAL.CSIC: Home

OEP - stronger-coupling limit - Sudden switch

tx = 0.7, ω = 1, vext(t) = −0.2 , jext(t) = 0.

time in a.u.0.40.20.00.20.40.60.8

σz(t

) [a.u.]

exactTDOEPmean-field

λ= 0.5

(a)

0 5 10 15 20 25 30 35 40t [a.u.]

0.40.30.20.10.00.10.2

v KS(t

) [a.u.]

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0ω [a.u.]

420246

σz(ω

) [a.u.]

(c)

Johannes Flick1, Heiko Appel1, and Angel Rubio1,2 Light-Matter Interactions