42
Quantum computing Quantum computing hardware hardware aka Experimental Aspects aka Experimental Aspects of Quantum Computation of Quantum Computation PHYS 576 PHYS 576

Quantum computing hardware

  • Upload
    gamada

  • View
    45

  • Download
    0

Embed Size (px)

DESCRIPTION

Quantum computing hardware. aka Experimental Aspects of Quantum Computation. PHYS 576. Class format. 1 st hour: introduction by BB 2 nd and 3 rd hour: two student presentations, about 40 minutes each followed by discussions - PowerPoint PPT Presentation

Citation preview

Page 1: Quantum computing hardware

Quantum computing Quantum computing hardwarehardware

aka Experimental Aspects aka Experimental Aspects of Quantum Computationof Quantum Computation

PHYS 576PHYS 576

Page 2: Quantum computing hardware

Class formatClass format

1st hour: introduction by BB

2nd and 3rd hour: two student presentations, about 40 minutes each followed by discussions

Coffee break(s) in between

Page 3: Quantum computing hardware

What you do:What you do:

• Choose a topic• Research literature• Put together title and the abstract• Prepare and give a talk

Hopefully, by the third half of today’s classHopefully, by the third half of today’s classa few of you can decide on the topic and sign up.a few of you can decide on the topic and sign up.

Page 4: Quantum computing hardware

Workshops themes (generic)Workshops themes (generic)

1. NMR (quantum computer in a vial)

2. Ion Trap (“vacuum tubes”)

3. Neutral Atom (catching up)

4. Cavity QED (0.01 atoms interacting with 0.01 photons)

5. Optical (fiber... and more fiber)

6. Solid State (what real computers are made of)

7. Superconducting (the cool)

8. "Unique“ (really crazy stuff)

Page 5: Quantum computing hardware

Class scheduleClass schedule

January 5 IntroductionJanuary 12 Short class (1 hour)January 19 Workshop 1 SCSCJanuary 26 Workshop 2 SCFebruary 2 Workshop 3February 9 Workshop 4February 16 No Class (SQuInT meeting)February 23 Workshop 5March 2 Workshop 6March 9 Workshop 7

Page 6: Quantum computing hardware

Reprinted fromQuantum Information Processing 3 (2004).

Page 7: Quantum computing hardware

http://qist.lanl.gov/qcomp_map.shtmlhttp://qist.lanl.gov/qcomp_map.shtml

Page 8: Quantum computing hardware

NMR (obsolete?) - David Cory, Ike Chuang (MIT)

Ion Trap – David Wineland (NIST), Chris Monroe (Michigan), Rainer Blatt (Innsbruck), ...

Neutral Atom – Phillipe Grangier (Orsay), Poul Jessen (Arizona)

Cavity QED - Jeff Kimble (Caltech), Michael Chapman (GATech)

Optical – Paul Kwiat (Illinois)

Solid State – too many to mention a few? David Awschalom (UCSB), Duncan Steel (Michigan)

Superconducting – Michel Devoret (Yale), John Martinis (UCSB)

"Unique“ – Phil Platzman (Bell Labs)

““Approaches”Approaches”

Page 9: Quantum computing hardware

QC implementation proposals

Bulk spin Resonance (NMR)

Optical Atoms Solid state

Linear opticsCavity QED

Trapped ionsOptical lattices

Electrons on He Semiconductors Superconductors

Nuclear spin qubits

Electron spinqubits

Orbital statequbits

Flux qubits

Charge qubits

Page 10: Quantum computing hardware

Chapman LawChapman Law

# o

f en

tan

gle

d ion

s

year

Page 11: Quantum computing hardware

Chapman LawChapman Law

Page 12: Quantum computing hardware

1

10

100

1000

10000

100000

1990 2000 2010 2020 2030 2040 2050 2060

Chapman LawChapman Law

Page 13: Quantum computing hardware
Page 14: Quantum computing hardware

http://www.org.chemie.tu-muenchen.de/glaser/NMR.jpg http://www.physics.iitm.ac.in/~kavita/qc.jpg

Page 15: Quantum computing hardware

http://qist.lanl.gov/qcomp_map.shtmlhttp://qist.lanl.gov/qcomp_map.shtml

Page 16: Quantum computing hardware

15 ≈ 5 x 315 ≈ 5 x 3

http://cba.mit.edu/docs/05.06.NSF/images/factor.jpg

Page 17: Quantum computing hardware

http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html

http://www.nature.com/nphys/journal/v2/n1/images/nphys171-f2.jpg

http://www.physics.gatech.edu/ultracool/Ions/7ions.jpg

Page 18: Quantum computing hardware

Blinov, B U. of Washington Ba+

Haljan, P Simon Fraser U. Yb+

Hensinger, W U. of Sussex Ca+

Madsen, M Wabash College Ca+

Page 19: Quantum computing hardware

UW ion trap QC lab

Page 20: Quantum computing hardware

Cirac-Zoller CNOT gate – the classic trapped ion gate

To create an effective spin-spin coupling, “control” spin state is mapped on to the motional “bus” state, the target spin is flipped according to its motion state, then motion is remapped onto the control qubit.

|

|

control

target

Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995)

Raman beams

Page 21: Quantum computing hardware

http://www.physics.gatech.edu/ultracool/http://www.physics.gatech.edu/ultracool/

http://www.iqo.uni-hannover.de/ertmer/atoindex/http://www.iqo.uni-hannover.de/ertmer/atoindex/

Page 22: Quantum computing hardware
Page 23: Quantum computing hardware

““Cold collision” gatesCold collision” gates

Atoms trapped in optical latticesAtoms trapped in optical lattices

Lattices move, atoms collideLattices move, atoms collide

Massively parallel operation: gates on all pairs of neighboringMassively parallel operation: gates on all pairs of neighboringqubits at once... but no individual addressability.qubits at once... but no individual addressability.Good for quantum simulatorsGood for quantum simulators

Page 24: Quantum computing hardware

Entanglement of atomic ensemblesEntanglement of atomic ensembles

E. Polzik, University of Aarhus E. Polzik, University of Aarhus

Page 25: Quantum computing hardware

http://www.wmi.badw.de/SFB631/tps/dipoletrap_and_cavity.jpghttp://www.wmi.badw.de/SFB631/tps/dipoletrap_and_cavity.jpg

http://www2.nict.go.jp/http://www2.nict.go.jp/

http://www.nature.com/http://www.nature.com/

Page 26: Quantum computing hardware
Page 27: Quantum computing hardware

g

g2

> 1>

Strong coupling:

Photon-mediated entanglement

Page 28: Quantum computing hardware

http://www.qipirc.org/images/projects/image018.jpghttp://www.qipirc.org/images/projects/image018.jpg

http://focus.aps.org/http://focus.aps.org/

http://www.quantum.at/http://www.quantum.at/

Page 29: Quantum computing hardware
Page 30: Quantum computing hardware

Entangled-photon six-state quantum cryptography (Paul G Kwiat)

Page 31: Quantum computing hardware

http://www.wmi.badw.de/SFB631/tps/DQD2.gifhttp://www.wmi.badw.de/SFB631/tps/DQD2.gif

http://mcba2.phys.unsw.edu.au/~mcba/hons02-1-12-figb.jpghttp://mcba2.phys.unsw.edu.au/~mcba/hons02-1-12-figb.jpghttp://groups.mrl.uiuc.edu/http://groups.mrl.uiuc.edu/

Page 32: Quantum computing hardware
Page 33: Quantum computing hardware

Semiconductor qubits

1 sec

10-3 sec

10-6 sec

10-9 sec

10-12 sec

10-15 sec

Nuclear spinstates

Orbitalstates

Electron spinstates

Fast microprocessor

Control

Decoherence

Control

Control

Decoherence

Decoherence

Page 34: Quantum computing hardware

“Kane proposal”

Page 35: Quantum computing hardware
Page 36: Quantum computing hardware
Page 37: Quantum computing hardware

http://qt.tn.tudelft.nl/research/fluxqubit/qubit_rabi.jpghttp://qt.tn.tudelft.nl/research/fluxqubit/qubit_rabi.jpg

http://www-drecam.cea.fr/http://www-drecam.cea.fr/

www.physics.ku.edu www.physics.ku.edu

Page 38: Quantum computing hardware
Page 39: Quantum computing hardware

Josephson junction qubitsJosephson junction qubits

Cooper pair box (charge qubit)Cooper pair box (charge qubit)

Flux qubitFlux qubit

Quantization of magnetic field fluxQuantization of magnetic field fluxinside the loop containing several JJsinside the loop containing several JJs

Quantization of electric chargeQuantization of electric charge(number of Cooper pairs) trapped(number of Cooper pairs) trappedon an island sealed off by a JJ.on an island sealed off by a JJ.(|0> and |1> states are 1000000(|0> and |1> states are 1000000Cooper pairs vs. 1000001 CooperCooper pairs vs. 1000001 Cooperpairs)pairs)

Page 40: Quantum computing hardware

http://www-drecam.cea.fr/Images/astImg/375_1.gifhttp://www-drecam.cea.fr/Images/astImg/375_1.gif

Any o

ther

wild

idea

s???

Any o

ther

wild

idea

s???

Page 41: Quantum computing hardware
Page 42: Quantum computing hardware

Quantum Computing Abyss(after D. Wineland)

?noise

reduction

newtechnology

errorcorrection

efficientalgorithms

5 >1000

<100 >109

theoretical requirementsfor “useful” QC

state-of-the-artexperiments

# quantum bits

# logic gates