68
Quantum Information Science (QIS) Dr. Boris Kiefer, Lecture 1 Quantum Computing Quantum Communication Quantum Sensing

Quantum Computing Quantum Communication Quantum Sensing

  • Upload
    others

  • View
    32

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quantum Computing Quantum Communication Quantum Sensing

Quantum Information Science (QIS)Dr. Boris Kiefer, Lecture 1

Quantum ComputingQuantum Communication

Quantum Sensing

Page 2: Quantum Computing Quantum Communication Quantum Sensing

What have we learned so far?

โ€ข Quantum States.โ€ข Measurements.โ€ข Qubits.โ€ข Entanglement.โ€ข Decoherence.โ€ข Quantum Computers.โ€ข Quantum Communication.โ€ข Quantum Sensing.

Page 3: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Quantum States.

Page 4: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Quantum States.

Page 5: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Measurements.

Page 6: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Measurement.

Page 7: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Qubits.

Page 8: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Qubits.

Example: 3 Qubit States:

Page 9: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Entanglement

Page 10: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Entanglement: Bell States

Page 11: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Entanglement: Bell States

Entangled States realize state correlations between quantum objects, regardless of distance: Teleportation,โ€ฆ

Page 12: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Entanglement: Creating a Bell State

Page 13: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Entanglement: Creating a Bell State

Page 14: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Entanglement: Creating a Bell State

Entangled State = CNOT * Hadamard * |0>

(Standard procedure after initialization of qubits to create entangled states).

Page 15: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Decoherence.

Page 16: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Quantum Computers.

Page 17: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Quantum Computers โ€“ Gates.

Krantz et al. (2019)

Page 18: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Quantum Computers โ€“ Universal Gate Sets

Krantz et al. (2019)

Page 19: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Quantum Communication.

Page 20: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Quantum Sensing.

Page 21: Quantum Computing Quantum Communication Quantum Sensing

Chapter 13.7: (The Physics and Engineering Behind)Building Quantum Computers

Dr. Boris KieferDepartment of Physics

New Mexico State UniversityEmail: [email protected]

From Concept to (Quantum)Computer

Page 22: Quantum Computing Quantum Communication Quantum Sensing

DiVincenzo criteria for qubit design (DiVincenzo, 2000):

โ€ข Scalable system with well-characterized qubits.

โ€ข Ability to initialize qubits.

โ€ข Stability of qubits.

โ€ข Support of universal computation.

โ€ข Ability to measure qubits.

Page 23: Quantum Computing Quantum Communication Quantum Sensing

From Concept to (Quantum)Computer

๐ป๐ป ๐œ“๐œ“ > ๐ธ๐ธ ๐œ“๐œ“ >

|๐œ“๐œ“ ๐‘ฅ๐‘ฅ, ๐‘ก๐‘ก >= ๐‘’๐‘’โˆ’๐‘–๐‘–๏ฟฝฬ‡๏ฟฝ๐ป๐‘ก๐‘กโ„ |๐œ“๐œ“(๐‘ฅ๐‘ฅ, 0) >

https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html

Google: Sycamore processor

SNL: ion trap

https://www.sandia.gov/quantum/

Page 24: Quantum Computing Quantum Communication Quantum Sensing

Quantum Mechanical ObjectsQuantization energy states.

Spin: No classical analogElectronic, nuclear, defectsโ€ฆ

Time evolution: unitary operator.

Superconductivity: Macroscopic Quantum States. Cooper-pairs.Josephson Junction.

In general: Low Temperatures.

Page 25: Quantum Computing Quantum Communication Quantum Sensing

https://science.sciencemag.org/content/354/6316/1090/tab-figures-data

Page 26: Quantum Computing Quantum Communication Quantum Sensing

Quantum โ€“ LC CircuitLow temperature

Page 27: Quantum Computing Quantum Communication Quantum Sensing

Creating AnharmonicitySuperconductors โ€“ Foundations

Superconductors: Discovered, 1911 by Kamerlingh Onnes.

Type-I superconductors:Bardeen-Cooper-Schrieffer theory:2 electrons form bound state (mediated by crystal lattice motion):

electron + electron + lattice => bound electron-electron state (Cooper-pair).

electron = fermionCooper-pair = boson

Bosons: Any number of bosons can occupy the same quantum state. => Perfect conductor in stability range: zero resistance, NO losses.

Page 28: Quantum Computing Quantum Communication Quantum Sensing

Superconductors โ€“ Temperature Range

https://en.wikipedia.org/wiki/High-temperature_superconductivity

Page 29: Quantum Computing Quantum Communication Quantum Sensing

Superconductors โ€“ Macroscopic EffectsJosephson Junction (JJ)

Tunneling of Cooper-pairs generates supercurrent.

Page 30: Quantum Computing Quantum Communication Quantum Sensing

Superconductors โ€“ Josephson JunctionsAnharmonicity

Quantum LC Circuit:โ€ข Equally spaced energies.โ€ข Selection of well-defined

qubits is impossible.

Anharmonic potential:โ€ข NON-equal level spacing.โ€ข Selection of unique qubit

possible.

Page 31: Quantum Computing Quantum Communication Quantum Sensing

Superconductors โ€“ Macroscopic EffectsJosephson Junctions

Anharmonic potential:โ€ข NON-equal level spacing.โ€ข Selection of unique qubit

possible.

Sensitive to environmental Noise

โ€œBufferโ€ with capacitor (โ€œCโ€).

Reduces anharmonicity.

Page 32: Quantum Computing Quantum Communication Quantum Sensing

Superconducting 1 Qubit Gates

Supercurrent can bias with an external applied current.Spins can bias with external magnetic field.

Superconducting Qubit/Transmon Microwave drive

๐œŽ๐œŽ๐‘๐‘ = 1 00 โˆ’1

Krantz et al. (2019)

๐œŽ๐œŽ๐‘Œ๐‘Œ = 0 โˆ’๐‘–๐‘–๐‘–๐‘– 0

Page 33: Quantum Computing Quantum Communication Quantum Sensing

Superconducting gates are implemented in the time domain.

Superconducting 1 Qubit Gates

Krantz et al. (2019)

Consider the interaction part of the Hamiltonian:

= 0 ๐ด๐ด๐ต๐ต 0

Logical operation: must have physical effect => |0> -> |1>, |1> -> |0>

Page 34: Quantum Computing Quantum Communication Quantum Sensing

Superconducting 2 Qubit Gates

Connecting TWO transmon qubits leads to a new interaction term:

Krantz et al. (2019)

Using time evolution, we can generate 2 qubit gates.

Page 35: Quantum Computing Quantum Communication Quantum Sensing

Superconducting 2 Qubit Gates

Ding and Chong (2020)

Page 36: Quantum Computing Quantum Communication Quantum Sensing

Superconducting 2 Qubit Gate

Gates are engineered through the sequence of a several operationsIn time domain.

Ding and Chong (2020)

Page 37: Quantum Computing Quantum Communication Quantum Sensing

Quantum Processor

https://foresight.org/prototype-quantum-computer-gives-small-molecule-quantum-simulation/

Page 38: Quantum Computing Quantum Communication Quantum Sensing

Quantum Information Science (QIS)Dr. Boris Kiefer, Lecture 2

Quantum ComputingQuantum Communication

Quantum Sensing

Page 39: Quantum Computing Quantum Communication Quantum Sensing

Both ๐‘ž๐‘ž0 and ๐‘ž๐‘ž1 are in the state |0> by default. In this case we see the state |0> regardless of which qubit we measure, since CZ only induces a phase flip.

Hardware(ibmq_16_melbourne): about a 98% probability to measure |0>

Simulator (Qasm_simulator): 100% probability to measure |1>

Testing Superconducting Qubits; IBM-Q; CZ-GateCourtesy: Bryan Garcia (MS, NMSU Physics)

Interested in Quantum Coding? See the IBM-Q developer pagehttps://qiskit.org/

Page 40: Quantum Computing Quantum Communication Quantum Sensing

๐‘ž๐‘ž0 is initialized in the state |1>, we apply a swap gate and measure ๐‘ž๐‘ž1. We indeed measure the state 1 after swapping

Hardware(ibmq_16_melbourne): about a 91% probability to measure |1>

Simulator (Qasm_simulator): 100% probability to measure |1>

Testing Superconducting Qubits; IBM-Q; SWAP-GateCourtesy: Bryan Garcia (MS, NMSU Physics)

Interested in Quantum Coding? See the IBM-Q developer pagehttps://qiskit.org/

Page 41: Quantum Computing Quantum Communication Quantum Sensing

Superconducting Qubits - 2013

Devoret and Schoelkopf (2013)

2013: N~2000, crucial to reach stage 4: quantum error correction requires that qubits can be monitored at a rate faster than the occurring error.

Page 42: Quantum Computing Quantum Communication Quantum Sensing

Superconducting Qubits โ€“ 2019

Kjaergaard et al. (2019)

2013: ~2000

105 ns = 100 ยตs ~ 104 operations

2019:= 1000 ยตs ~ 105 operations

103 ยตs

Krantz et al. (2019)

Hamiltonian Engineering: Cross-talk Noise reduction

Page 43: Quantum Computing Quantum Communication Quantum Sensing

ApplicationQuantum Communication, Theory and Practice

Courtesy: Bryan Garcia (MS, NMSU Physics)

Page 44: Quantum Computing Quantum Communication Quantum Sensing

โ€ข Step a) Random state to be teleported:โŸฉ๐‘ž๐‘ž = ๐‘Ž๐‘Ž โŸฉ0 + ๐‘๐‘| โŸฉ1

โ€ข Step b) Alice and Bob each hold a qubit of the entangled Bell state:๐ป๐ปโจ‚| โŸฉ0 = 1

2(| โŸฉ0 + | โŸฉ1 )

๐ถ๐ถ๐‘›๐‘›๐‘›๐‘›๐‘ก๐‘ก12

| โŸฉ0 + | โŸฉ1 โจ‚ โŸฉ|0 = ๐ถ๐ถ๐‘›๐‘›๐‘›๐‘›๐‘ก๐‘ก12

| โŸฉ00 + | โŸฉ10

| โŸฉ๐œ“๐œ“ = 12

| โŸฉ00 + | โŸฉ11

โ€ข Step c) Applying a CNOT gate followed by a Hadamard gate, the three-qubit entangled system becomes: ๐ป๐ปโจ‚๐ผ๐ผโจ‚๐ผ๐ผ ๐ถ๐ถ๐‘›๐‘›๐‘›๐‘›๐‘ก๐‘กโจ‚๐ผ๐ผ | โŸฉ๐‘ž๐‘ž โจ‚| โŸฉ๐œ“๐œ“ = (๐ป๐ปโจ‚๐ผ๐ผโจ‚๐ผ๐ผ)(๐ถ๐ถ๐‘›๐‘›๐‘›๐‘›๐‘ก๐‘กโจ‚๐ผ๐ผ)

12

(๐‘Ž๐‘Ž| โŸฉ000 + ๐‘Ž๐‘Ž| โŸฉ011 + ๐‘๐‘| โŸฉ100 + ๐‘๐‘| โŸฉ111 )

= (๐ป๐ปโจ‚๐ผ๐ผโจ‚๐ผ๐ผ) 12๐‘Ž๐‘Ž โŸฉ000 + ๐‘Ž๐‘Ž โŸฉ011 + ๐‘๐‘| โŸฉ110 + ๐‘๐‘| โŸฉ101

= 12๐‘Ž๐‘Ž | โŸฉ000 + | โŸฉ011 + | โŸฉ100 + | โŸฉ111 + ๐‘๐‘ | โŸฉ010 + | โŸฉ001 โˆ’ | โŸฉ110 โˆ’ | โŸฉ101

โ€ข Step d & e) The state is separated into four states and sent to Bob, which he uses to decode:

โ†’[1] Team, T. (2020, December 14). Quantum Teleportation. Retrieved December 2020, from https://qiskit.org/textbook/ch-algorithms/teleportation.html#3.3-Using-the-QASM-Simulator-[2] Rieffel, E., & Polak, W. (2014). Ch. 5/Quantum State Transformations. In Quantum computing: A gentle introduction (pp. 76-83). Cambridge, MA: The MIT Press.

Unentangled two-qubit state

Entangled two-qubit Bell State

Quantum Communication, Theory and PracticeCourtesy: Bryan Garcia (MS, NMSU Physics)

01: 0 11 0

๐‘๐‘๐‘Ž๐‘Ž = ๐‘Ž๐‘Ž

๐‘๐‘

Page 45: Quantum Computing Quantum Communication Quantum Sensing

Quantum Communication, Theory and PracticeCourtesy: Bryan Garcia (MS, NMSU Physics)

Alice

Bob

a b c d e f

Fig.2 a) Qubit ๐‘ž๐‘ž0 is initialized in a random state. b) We create a Bell state. c) ๐‘ž๐‘ž0is entangled with ๐‘ž๐‘ž1 and ๐‘ž๐‘ž2. d) Alice measures and sends her qubits to Bob. e) Bob decodes qubits. f) Bob recovers Aliceโ€™s original state, measures and stores in a classical register.

[1] Team, T. (2020, December 14). Quantum Teleportation. Retrieved December 2020, from https://qiskit.org/textbook/ch-algorithms/teleportation.html#3.3-Using-the-QASM-Simulator-

Qisket: Open-source IBM-Q experience.

Page 46: Quantum Computing Quantum Communication Quantum Sensing

Quantum Communication, Theory and PracticeCourtesy: Bryan Garcia (MS, NMSU Physics)

Bob Measures the state |0> 100% percent of the time

Simulator (Python based) Simulator

Interested in Quantum Coding? See the IBM-Q developer pagehttps://qiskit.org/

Page 47: Quantum Computing Quantum Communication Quantum Sensing

Context:โ€ข Linear/Chain Cluster Statesโ€ข Teleportation Protocol (Johnston, 2019)

Approach: ๐‘›๐‘›-qubit ๐บ๐บ๐ป๐ป๐‘๐‘๐‘›๐‘› state entangled with CZ gates [Wang, Li, Yin, Zq. et al. (2018)]

Circuits:โ€ข 2-Qubit Chain Cluster State (Huang et al., 2020)

Preliminary results: โ€ข 2-Qubit Chain Cluster state Simulator: (๐น๐น โ‰ˆ 99%)โ€ข 2-Qubit Chain Cluster state Hardware: (๐น๐น โ‰ˆ 85%)โ€ข Compare to ๐น๐น โ‰ˆ 87% (Huang et al, 2020)

Fig.) 2-Qubit Cluster State Teleportation Protocol Circuit

Fig.) Hardware: State Fidelities for a 2-Qubit Chain Cluster State

Quantum Communication, Theory and PracticeCourtesy: Bryan Garcia (MS, NMSU Physics)

Fidelity ~ 85%

Maximum classical fidelity: ~68% (Huang et al., 2020)

Page 48: Quantum Computing Quantum Communication Quantum Sensing

Quantum Communication, Theory and PracticeCourtesy: Bryan Garcia (MS, NMSU Physics)

Teleportation fidelity:Measure CORRELATION between Alice and Bob. Expected to be 100%.

Results:6-qubit cluster state: 49%.8-qubit cluster state: same.10-qubit cluster state: same.

Maximum classical fidelity:~68% (Huang et al., 2020)

|+> |+> |+>

|+> |+> |+>

CZ

CZ

CZ CZ

CZ CZ

CZ

At present, quantum teleportation inferior to classical transmission.

Page 49: Quantum Computing Quantum Communication Quantum Sensing

Quantum Sensing โ€“ A Primer

Page 50: Quantum Computing Quantum Communication Quantum Sensing

Quantum Sensing โ€“ Introduction

Page 51: Quantum Computing Quantum Communication Quantum Sensing

Quantum Sensing

If energy levels are nearly equally spaced:

โ‡’ Initializing qubits is difficult/impossible.

Flipside:

Weak interactions can be resolved excellent sensor for weak interactions/signals.

Page 52: Quantum Computing Quantum Communication Quantum Sensing

Quantum Sensing โ€“ Interference

Waves can interfere

โ€ข Amplify.โ€ข Weaken.

https://flexbooks.ck12.org/cbook/ck-12-physics-flexbook-2.0/section/11.5/primary/lesson/wave-interference-ms-ps

Page 53: Quantum Computing Quantum Communication Quantum Sensing

Quantum Sensing โ€“ Matter WavesDe Broglie (1924)

The Nature of Light? Newton: Particle. Young: Wave.Einstein (photoelectric effect): Particle.

https://www.metmuseum.org/art/collection/search/191811 https://www.aps.org/publications/apsnews/201010/physicshistory.cfm

Particle:๐ธ๐ธ = ๐‘š๐‘š๐‘๐‘2๐ธ๐ธ = ๐‘๐‘๐‘๐‘

๐‘Š๐‘Š๐‘Ž๐‘Ž๐‘Š๐‘Š๐‘’๐‘’: ๐‘๐‘ = ๐œ†๐œ†๐œ†๐œ†๐ธ๐ธ = โ„Ž๐œ†๐œ†๐ธ๐ธ = โ„Ž๐‘๐‘/๐œ†๐œ†

Combine:๐€๐€ = ๐’‰๐’‰/๐’‘๐’‘

Page 54: Quantum Computing Quantum Communication Quantum Sensing

Quantum Sensing โ€“ Matter WavesDavisson and Germer (1925)

https://en.wikipedia.org/wiki/Davisson%E2%80%93Germer_experiment

Electron beam on Ni target. Objective:

Study angular distribution of electrons emitted from the Ni target.

Vacuum failure oxide formation remove oxide at high temperatures.

Unintentional: Ni single crystal.

Page 55: Quantum Computing Quantum Communication Quantum Sensing

Quantum Sensing โ€“ Matter WavesDavisson and Germer (1925)

http://hyperphysics.phy-astr.gsu.edu/hbase/DavGer.html

De Broglie:๐œ†๐œ† = โ„Ž

๐‘๐‘= โ„Ž

๐‘š๐‘š๐‘š๐‘š

๐ธ๐ธ =๐‘š๐‘š๐‘Š๐‘Š2

2

๐ธ๐ธ =๐‘๐‘2

2๐‘š๐‘š๐‘๐‘ = 2๐‘š๐‘š๐ธ๐ธ

๐œ†๐œ† =โ„Ž2๐‘š๐‘š๐ธ๐ธ

๐œ†๐œ† = 1.67 ร…Electron diffraction

Page 56: Quantum Computing Quantum Communication Quantum Sensing

Quantum Sensing โ€“ Gravity

Raymer, M. G., โ€œQuantum Physicsโ€ (2017)

First gravity measurement:Neutrons from nuclear reactor(immobile)

Neutrons are particles:Split into two beams.

A-C: slowing down, C-D, slow.C-D: longer wavelengthA-B: fast, B-D slowing down.B-D: shorter wavelength

=> Interference pattern CHANGES.

Alternating constructive/destructive interference: Repetition (angle) increment depends on local gravity.

Page 57: Quantum Computing Quantum Communication Quantum Sensing

Quantum Sensing โ€“ Gravity

https://en.wikipedia.org/wiki/Gravitational_wave

Page 58: Quantum Computing Quantum Communication Quantum Sensing

Quantum Sensing โ€“ Gravitational Waves, LIGO

http://hyperphysics.phy-astr.gsu.edu/hbase/Forces/gravwav.html#c1

Hanford: 0.007s delayed, distance = 2000kmโ‡’speed: v=distance/time =285714 km/s.

Within errorbar consistent with speed of lightโ‡’ Gravitational waves travel at speed of lightโ‡’ Gravitational waves are massless.

โ€œStrain Measurementโ€

Page 59: Quantum Computing Quantum Communication Quantum Sensing

Quantum Sensing โ€“ Gravitational Waves, LIGO

Falling objects (kinematics):

๐‘ก๐‘ก = 2๐‘”๐‘”โ„Ž

Observation:Time depends on gravity => changes in gravity can be measured using sensitive clocks.

Satellite:Gravitational wave passes.Oscillatory change in gravity.

https://www.pacw.org/nist-u-s-time-standard-nist-f2-atomic-clock

Page 60: Quantum Computing Quantum Communication Quantum Sensing

Quantum Sensing โ€“ Atomic Clocks

All atoms have identical energy levelsโ‡’ Energy for transition between energy levels are identical โ‡’ Frequency of emitted/absorbed photons is identical.โ‡’ Ideal clocks/time keepers.

Page 61: Quantum Computing Quantum Communication Quantum Sensing

Quantum Sensing โ€“ Gravitational Waves

Satellite:Gravitational wave passes.Oscillatory change in gravity.

Noise?!?Reduce by using three satellites.

https://www.google.com/search?q=satellites+quantum+kasevitch&tbm=isch&ved=2ahUKEwiXm9_IhoPvAhUBcs0KHYrSCTUQ2-cCegQIABAA&oq=satellites+quantum+kasevitch&gs_lcp=CgNpbWcQA1CvggFYpJoBYOGbAWgAcAB4AIAB2wGIAfENkgEFMC45LjGYAQCgAQGqAQtnd3Mtd2l6LWltZ8ABAQ&sclient=img&ei=h402YNe7OoHktQaKpaeoAw&bih=667&biw=13&rlz=1C1CHBF_enUS811US811#imgrc=pRQ_nv1UzBOqzM

Page 62: Quantum Computing Quantum Communication Quantum Sensing

Summary

โ€ข QIS Overview.โ€ข Review of Core Concepts:

Quantum States; Superposition; Measurement; Entanglement.โ€ข Some Types of Quantum Hardware.โ€ข Quantum LC Circuit: Equally Spaced Energy levels. โ€ข Superconductivity: A Quantum State of Matter:

Fundamentals. Josephson Junction.NON-Equally Spaced Energy Levels.

Page 63: Quantum Computing Quantum Communication Quantum Sensing

Summary

โ€ข Transmon: IBM, Google,โ€ฆโ€ข Superconducting 1 Qubit Gates.โ€ข Superconducting 2 Qubit Gates: CNOT + Entanglement.โ€ข Qisket: Testing of Superconducting Qubits on IBM-Q.

โ€ข Quantum Communication (courtesy: Bryan Garcia, NMSU Physics).

Teleportation. Qisket Implementation:

Divergence theory and practice. At present: generally superconducting teleportation implementation inferior to classical information processing.

Page 64: Quantum Computing Quantum Communication Quantum Sensing

Summary

โ€ข Quantum Sensing.โ€ข De Broglie relationship; wave matter duality. โ€ข Atomic clocks.โ€ข Gravitational waves.

This is an exciting time, with many new opportunities for quantum enabled technologies.

Page 65: Quantum Computing Quantum Communication Quantum Sensing

Quantum hardware:โ€ข 2D Materials, topological materials,

fault tolerant quantum computing.

โ€ข Discovery of novel solid state qubits.

โ€ข Molecular qubits for quantum computing.

โ€ข Improving superconducting qubits,transmons.

Microwaves: 0.1 โ€“ 10 cm-1

(0.01โ€“ 1 eV)

QIS Efforts Kiefer Research Group

Page 66: Quantum Computing Quantum Communication Quantum Sensing

QIS Efforts Kiefer Research Group

Quantum software:โ€ข Cluster states. โ€ข IBM-Q hardware testing.โ€ข Next: SNL, ion traps hardware testing.

What is a path forward in Quantum Skilled Workforce Development?

What would you like to see? What would help you to consider a QIS career?

QIS Workforce Development

Page 67: Quantum Computing Quantum Communication Quantum Sensing

This is an exciting time, with many new opportunities for

quantum enabled technologies.

Quantum Information Science (QIS)

Quantum ComputingQuantum Communication

Quantum Sensing

Page 68: Quantum Computing Quantum Communication Quantum Sensing

References

BOOKS:Rieffel and Polak, 2014, โ€œQuantum Computing, A Gentle Introductionโ€.Ding and Chong, 2020, โ€œQuantum Computer Systems, Research for Noisy Intermediate-Scale Quantum Computersโ€.De Vos et al., 2018, โ€œSynthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuitsโ€. Tinkham, 1996, โ€œIntroduction to Superconductivityโ€.

PAPERS:Josephson, 1962, โ€œPossible new effects in superconductive tunnelingโ€.Josephson, 1964, โ€œCoupled superconductorsโ€.Nakamura et al., 1999, โ€œCoherent control of macroscopic quantum states in a single-Cooper-pairboxโ€.

Devoret and Schoelkopf, 2013, โ€œSuperconducting Circuits for Quantum Information: an Outlookโ€.

Krantz et al., 2019, โ€œA quantum engineerโ€™s guide to superconducting qubitsโ€.Kjaergaard et al., 2019, โ€œSuperconducting Qubits: State of Playโ€.