22
QD0 stabilization L. Brunetti 1 , N. Allemandou 1 , J.-P. Baud 1 , G. Balik 1 , G. Deleglise 1 , A. Jeremie 1 , S. Vilalte 1 B. Caron 2 , C. Hernandez 2 , (LAViSta Team) 1 : LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France & 2 : SYMME-POLYTECH Annecy-Chambéry, Université de Savoie, Annecy, France

QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

Embed Size (px)

Citation preview

Page 1: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

QD0 stabilization

L. Brunetti1, N. Allemandou1, J.-P. Baud1, G. Balik1 , G. Deleglise1, A. Jeremie1, S. Vilalte1

B. Caron2, C. Hernandez2,(LAViSta Team)

1: LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France&

2: SYMME-POLYTECH Annecy-Chambéry, Université de Savoie, Annecy, France

Page 2: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

2

CLIC Challenge vs QD0 stabilization

• Final focus CLIC R&D:

Sub-nanometer beams

• Developments of Lavista team are dedicated to the final focus

2014-02-04 CLIC CERN QD0 Stabilization

0,2 nm RMS @ 0,1Hz

Page 3: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

3

Introduction

IP Beam based feedback : already developed in collaboration with CERN since 2010

Mechanical stabilization has to be achieved

2014-02-04 CLIC CERN QD0 Stabilization 3

• Final focus : beam stabilization strategy

At the IP (mechanical + beam feedback), we aim at 0,2nm at 0,1Hz

Page 4: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

4

IP feedback

• Beam trajectory control : simulation under Placet

2014-02-04 CLIC CERN QD0 Stabilization

- Caron B et al, 2012, “Vibration control of the beam of the future linear collider”, Control Engineering Practice.- G. Balik et al, 2012, “ Integrated simulation of ground motion mitigation, techniques for the future compact linear collider (CLIC) “, Nuclear Instruments and Methods in Physics Research

• Luminosity vs control ON or OFF and vs model of seismic motion (deal under Placet)

Page 5: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

2014-02-04 CLIC CERN QD0 Stabilization 5

• Prototype :

Active control demonstration

• Results : control with commercial sensors (2 geophones and 2 accelerometers) 0,6 nm RMS@4Hz.

Balik et al, “Active control of a subnanometer isolator“, JIMMSS.

Main limitation : SENSOR (simulation and experiment).

Page 6: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

6

Transfer on a real scale

2014-02-04 CLIC CERN QD0 Stabilization 6

• Demonstration active table to QD0 active control ?

One active foot Several active feet

Structure : QD0 Magnet Sensors Actuators Integration: control, data processing, real time…

• Mecatronics challenge

Schedule : CLIC development phase

Page 7: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

Mechanical structure

• Simulation studies of QD0 :

Initial study performed by the team of M. Modena

• CERN : mechanics aspects…

LAVISTA : control of a elementary prototype

FEM : dynamics of the quadrupole given its modal response State-space model and control strategy Test : on a real-scale prototype – “dummy QD0 magnet”

2014-02-04 CLIC CERN QD0 Stabilization 7

Page 8: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

2014-02-04 CLIC CERN QD0 Stabilization 8

Finite elements simulations Free system

224 Hz 312 Hz 450 Hz 555 HzAntonio: 208 Hz Antonio: 295 Hz Antonio: 416 Hz Antonio: 511 Hz

• (i) Simulation studies of QD0 : Free system

• Simulation studies of QD0 : Constrained system

243 HzAntonio: 190 Hz

286 HzAntonio: 260 Hz

332 HzAntonio: 310 Hz

388 HzAntonio: 366 Hz

Page 9: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

QD0 activities

• (ii) State space model and control strategy :

Targets : several aspects have to be defined- Location and number of active feet- Type of active feet- Degrees of freedom- Type of control (SISO, MIMO)- To adjust the specifications of actuators and sensors- Conditioning, real time processing…

After normalizing, the system can be expressed in the form of a state space model

Integration in a control loop using Simulink with the whole simulation (sensor, actuator, ADC, DAC, Data processing…. And seismic motion model and its coherence) : first simulations done (results are interesting)

2014-02-04 CLIC CERN QD0 Stabilization 9

Force Displacement

Another model : the input is the voltage applied to the PZT actuators and the output is QD0 displacement : current stage

Page 10: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

2014-02-04 CLIC CERN QD0 Stabilization 10

Design and modelling of the large prototype (recruitment of a student in progress)

Modal analysis of the short QD0 to confirm the simulation results (without coils).

Prospectives

Objectives of the prototype :

- Dynamics behavior (eigenfrequencies, damping…)- Size- Geometry- Mass

Most elementary as possible for machining, assembling, cost, delays…

SD0?

• (iii) Dummy QD0 magnet prototype :

Page 11: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

2014-02-04 CLIC CERN QD0 Stabilization 11

Actuator

• Industrial solution : PZT actuator

Two challenging ways : internal development or industrial partnership…

• Manufacturer identified

• Past “similar” developments for vibration control dedicated to machining

• Specifications will be the result of the whole simulation (prototype, sensor…)

• Collaboration with another French laboratory for the powering part.

• No commercial solution for dynamics, resolution, load, stiffness…

Funding plan is needed

• A French proposal (to ANR agency) has been recently submitted, 1st selection at beginning of March.

Has to be tested on the dummy magnet prototype

Example of an large actuator

Small size PZT actuator

Page 12: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

2014-02-04 CLIC CERN QD0 Stabilization 12

Sensor

• Already the limitation for the «demonstration » active table:

10-1

100

101

102

10-24

10-22

10-20

10-18

10-16

10-14

Frequency [Hz]

PS

D d

isp

lace

men

t [m

²/H

z]

Ground motionTop support motionTotal equivalent output noise

Sensors noise Sensors transfer function

No commercial solution , so different challenging options:- Laboratory developments

- Commercial investigations- PACMAN program (3.2)…

Internal development at LAPP

Page 13: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

2014-02-04 CLIC CERN QD0 Stabilization 13

Measurements

• Comparison with Guralp and Wilcoxon:

100

101

102

10-25

10-20

10-15

10-10

Frequency [Hz]

PS

D d

ispl

acem

ent [

m²/

Hz]

PSD of ground motion

Wilcoxon

Guralp6T

Guralp3ESP

Capteur LAPP

Efficient Approach validated → patent Next stage : miniaturization

Demonstration sensor

Page 14: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

2014-02-04 CLIC CERN QD0 Stabilization 14

Measurements

• Comparison with Guralp and Wilcoxon:

10-1

100

101

102

10-24

10-22

10-20

10-18

10-16

10-14

10-12

Frequency [Hz]

PS

D d

ispl

acem

ent

[m²/

Hz]

Comparison with different sensors

Wilcoxon

guralp6T

Corrected difference 6T

Lapp Miniaturized Sensor

Miniaturized sensor

Accele

romete

r

LAPP senso

r

Geophone 6

T

Geophone 3

ESP

Still efficient Control :

10-1

100

101

10210

-25

10-20

10-15

10-10

Guralp FB: 1 | Guralp FF: 0 | Will FB: 0 | Will FF: 0 | file: Control data.mat (08-août-2013 14:16:35)

Frequency [Hz]

PS

D [

m²/

Hz]

Displacement LAPIv2 on groundDisplacement LAPIv1 on foot

Page 15: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

2014-02-04 CLIC CERN QD0 Stabilization 15

Sensor

• Development in progress:

“Medium” bandwidth : assembling and tests in progress Validation of the machining and some of the sensor properties

“High” bandwidth: equivalent to accelerometers Less challenging Could be interesting for control

“Large” bandwidth: development in progress in term of machining and method Method tests will be done the next month. Most challenging – measure very low frequencies and on a large bandwidth - Very strategically for control French AAP (call for project) with SYMME for material properties and process

Sensitivity to magnetic field Tests on an experimental site : first at CERN (stabilization group), then ATF2, CLIC

module or CLEX…

• Future:

A new mechanical engineer has joined the team.

Page 16: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

2014-02-04 CLIC CERN QD0 Stabilization 16

Sensor

• Status:

A first innovative version has demonstrated the feasibility : performances are about the same as Guralp 6T.

2 miniaturized versions with our own electronics : still almost the same performance, but small adjustments have to be made (tuning, drift...)

Promising results in control “More industrial” versions are in progress whose one in low frequencies

Adapted to control Cost Size

• Advantages:

Page 17: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

2014-02-04 CLIC CERN QD0 Stabilization 17

Conclusion vs QD0 stabilization

• Structure:

Simulations in progress (f.e., state space model, prototype CAD...)

• Actuator:

Partnerships identified and the strategy chosen Funds, to be found

• Sensor:

Efficient and innovative sensor is being developed Several versions are manufactured to be able to build one for very low frequencies

and efficient on a large bandwidth Test on a site is foreseen

Page 18: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

ATF2 : 2013 Measurement campaign

Collaboration LAPP - CERN

FD relative displacement measurements Feedforward

ATF2 GM System team: A. Jeremie, K.Artoos, C.Charrondière, J.Pfingstner, D.Schulte, R.Tomas-Garcia,

B.Bolzon (past experience)

2013-11-13 LCWS TOKYO QD0 Stabilization 18

Page 19: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

FD : Final Doublet

Shintake monitor :beam size measurement

ATF2 layout

2013-11-13 LCWS TOKYO QD0 Stabilization

19

• Final Doublet relative displacement measurements :

Page 20: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

• ATF2 Objectives :

ATF2 – Strategy of stabilization

Steady and repetitive beam with a radius of 37 nm at the focus point.

Past : relative motion between shintake monitor and final doublets of 6 nm RMS @ 0,1 Hz in the vertical axis (i.e. B. Bolzon results).

20

Sol

Shintake monitor

Last focusing magnets

Beam

Interferencefringes Previous magnets

Relative motion beetwen Shintake monitor and last focusing magnets

4mEfficient coherence of ground

motion: measured on site

Very rigid and independent supports

i.e. B.Bolzon thesis

2013-11-13 LCWS TOKYO QD0 Stabilization

Page 21: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

• Shintake monitor has more components and is in operation:

• QF1FF has been replaced by a heavier magnet with better field quality and larger radius:

212013-11-13 LCWS TOKYO QD0 Stabilization

2008

2008

2013

2013

QD0

QF1

ATF2 - Why making new measurements?

Page 22: QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta

With ground motion, relative motion at 1 Hz of Shintake to [QD0; QF1] :

2008 by B. BOLZON Tolerance Measurement [SM-QD0] Measurement [SM-QF1]

Vertical 7 nm (for QD0)20 nm (for QF1)

4.8 nm 6.3 nm

Perpendicular to the beam

~ 500 nm 30.7 nm 30.6 nm

Parallel to the beam ~ 10,000 nm 36.5 nm 27.1 nm

2013 by A. JEREMIE Tolerance Measurement [SM-QD0] Measurement [SM-QF1]

Vertical 7 nm (for QD0)20 nm (for QF1)

4.8 nm 30 nm

Parallel to the beam ~ 10,000 nm 25 nm 290 nm

222013-11-13 LCWS TOKYO QD0 Stabilization

New QF1 : relative motion of Shintake monitor to new QF1 > Tolerance Outside tolerance for 2% effect on beam!