28
QCD phase diagram with functional methods Christian S. Fischer JLU Giessen November 2011 C.F., J. A. Mueller, PRD 84 (2011) 054013. C.F., J. Luecker, J. A. Mueller, PLB 702 (2011) 438-441. C.F., A. Maas and J. A. Mueller, EPJC 68 (2010) 165-181. Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 1 / 25

QCD phase diagram with functional methods

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: QCD phase diagram with functional methods

QCD phase diagram with functional methods

Christian S. Fischer

JLU Giessen

November 2011

C.F., J. A. Mueller, PRD 84 (2011) 054013.

C.F., J. Luecker, J. A. Mueller, PLB 702 (2011) 438-441.

C.F., A. Maas and J. A. Mueller, EPJC 68 (2010) 165-181.

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 1 / 25

Page 2: QCD phase diagram with functional methods

Content

1 Introduction

2 Gluon screening massesT = 0T 6= 0

3 Chiral and deconfinement transitions in QCD

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 2 / 25

Page 3: QCD phase diagram with functional methods

Content

1 Introduction

2 Gluon screening massesT = 0T 6= 0

3 Chiral and deconfinement transitions in QCD

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 3 / 25

Page 4: QCD phase diagram with functional methods

QCD phase transitions I

Open questions:

Gluons and quarks in QGP

Existence and location of CEP

Phase transitions:

Chiral limit (Mweak → 0): order parameter chiral condensate

〈ψ̄ψ〉 = Z2NcTrD

∫d4p(2π)4 S(p)

Static quarks (Mweak → ∞): order parameter Polyakov-loop

Φ ∼ e−Fq/T

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 4 / 25

Page 5: QCD phase diagram with functional methods

QCD phase transitions II

Quark mass dependence:

Deconfinement transition at large masses

Chiral transition at small masses

in this talk: pure gauge and Nf = 2

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 5 / 25

Page 6: QCD phase diagram with functional methods

QCD in covariant gauge

ZQCD =

∫D[Ψ,A, c] exp

{−

∫ 1/T

0dt∫

d3x(Ψ̄ (iD/ − m)Ψ

−14

(F aµν

)2+

(∂A)2

2ξ+ c̄(−∂D)c

)}

Landau gauge (ξ = 0) propagators in momentum space, q = (~q, ωq):

DGluonµν (q) =

ZT (q)q2 PT

µν(q) +ZL(q)

q2 PLµν(q)

SQuark(q) =1

−i ~γ~q A(q)− i γ4ωn C(q) + B(q)

The Goal:Gauge invariant information from gauge fixed functional approach

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 6 / 25

Page 7: QCD phase diagram with functional methods

Lattice QCD vs. DSE/FRG: Complementary!

Lattice simulations

◮ Ab initio

◮ Gauge invariant

Functional approaches:Dyson-Schwinger equations (DSE)Functional renormalisation group (FRG)

◮ Analytic solutions at small momenta

◮ Space-Time-Continuum

◮ Chiral symmetry: light quarks and mesons

◮ Multi-scale problems feasible: e.g. (g-2)µT. Goecke, C.F., R. Williams, PLB 704 (2011); PRD 83 (2011)

◮ Chemical potential: no sign problem

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 7 / 25

Page 8: QCD phase diagram with functional methods

Content

1 Introduction

2 Gluon screening massesT = 0T 6= 0

3 Chiral and deconfinement transitions in QCD

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 8 / 25

Page 9: QCD phase diagram with functional methods

Dyson-Schwinger equations (DSEs)

−1

=

−1

-1

2

-1

2-

1

6

-1

2+

−1

=

−1

-

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 9 / 25

Page 10: QCD phase diagram with functional methods

DSEs vs Lattice (T = 0)

0 1 2 3 4 5p [GeV]

0

0.5

1

1.5

ZT=Z

L

Bowman (2004)Sternbeck (2006)DSEFRG

C.F., A. Maas and J. M. Pawlowski, Annals Phys. 324 (2009) 2408-2437.

Gluon mass generation in agreement with lattice resultsCucchieri, Mendes, PoS LAT2007 (2007) 297.

Schwinger function/analytic structure: positivity violations→ gluon screening

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 10 / 25

Page 11: QCD phase diagram with functional methods

Glue at finite temperature T 6= 0

T -dependent gluon propagator from lattice simulations:

0 5 10 15

p2 [Gev

2]

0

0.5

1

1.5

2

2.5

ZT(p

2 )

T=0T=0.6 T

cT=0.99 T

cT=2.2 T

c

0 5 10 15

p2 [Gev

2]

0

0.5

1

1.5

2

2.5

ZL(p

2 )

T=0T=0.6 T

cT=0.99 T

cT=2.2 T

c

Difference between electric and magnetic gluonMaximum of electric gluon around Tc

Cucchieri, Maas, Mendes, PRD 75 (2007)

C.F., Maas and Mueller, EPJC 68 (2010)

Cucchieri, Mendes, PoS FACESQCD (2010) 007.

Aouane, Bornyakov, Ilgenfritz, Mitrjushkin, Muller-Preussker, Sternbeck, [arXiv:1108.1735 [hep-lat]].

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 11 / 25

Page 12: QCD phase diagram with functional methods

Gluon screening mass at Tc: SU(2) vs. SU(3)

SU(2) SU(3)

t = (T − Tc )/Tc

Maas, Pawlowski, Smekal, Spielmann, arXiv:1110.6340.

C.F., Maas and Mueller, EPJC 68 (2010)

phase transition of second and first ordernow clearly visible in electric screening mass

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 12 / 25

Page 13: QCD phase diagram with functional methods

Content

1 Introduction

2 Gluon screening massesT = 0T 6= 0

3 Chiral and deconfinement transitions in QCD

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 13 / 25

Page 14: QCD phase diagram with functional methods

The ordinary chiral condensate

=−1

+−1

−1= +

−1 −1

quenched lattice gluon propagator + DSE-quark-loop (Nf = 2)

T = 0 : quark-gluon vertex studied via DSEsAlkofer, C.F., Llanes-Estrada, Schwenzer, Annals Phys.324:106-172,2009.

C.F, R. Williams, PRL 103 (2009) 122001

T 6= 0 : ansatz, T , µ and mass dependent (STI)

Order parameter for chiral symmetry breaking:

〈ψ̄ψ〉 = Z2NcT∑

np

∫d3p(2π)3 TrD S(~p, ωp)

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 14 / 25

Page 15: QCD phase diagram with functional methods

The Polyakov Loop

Φ =

⟨1

NcTrDP exp

{i∫ 1/T

0A4 dt

}⟩∼ e−Fq/T

Lattice:

x

t

Order parameter for centersymmetry breaking:Φ = 0 : confinedΦ 6= 0 : deconfined

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 15 / 25

Page 16: QCD phase diagram with functional methods

The dual condensate I

Consider general U(1)-valued boundary conditions in temporaldirection for quark fields ψ:

ψ(~x ,1/T ) = eiϕψ(~x ,0)

Matsubara frequencies: ωp(nt) = (2πT )(nt + ϕ/2π)

Lattice:ϕ

e i

〈ψψ〉ϕ ∼∑ exp[i ϕn]

(am)l Closed Loops

E. Bilgici, F. Bruckmann, C. Gattringer and C. Hagen, PRD 77 (2008) 094007.F. Synatschke, A. Wipf and C. Wozar, PRD 75, 114003 (2007).

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 16 / 25

Page 17: QCD phase diagram with functional methods

The dual condensate II

Then define dual condensate Σn:

Σn = −

∫ 2π

0

dϕ2π

e−iϕn 〈ψψ〉ϕ

n = 1 projects out loops with n(l) = 1: dressed Polyakov loop

transforms under center transformation exactly like ordinaryPolyakov loop: order parameter for center symmetry breaking

Σ1 is accessible with functional methodsC.F., PRL 103 (2009) 052003

C. Gattringer, PRL 97, 032003 (2006)F. Synatschke, A. Wipf and C. Wozar, PRD 75, 114003 (2007).E. Bilgici, F. Bruckmann, C. Gattringer and C. Hagen, PRD 77 094007 (2008).F. Synatschke, A. Wipf and K. Langfeld, PRD 77, 114018 (2008).J. Braun, L. Haas, F. Marhauser, J. M. Pawlowski, PRL 106 (2011)

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 17 / 25

Page 18: QCD phase diagram with functional methods

T = 0: Explicit vs. dynamical chiral symmetry breaking

−1= +

−1 −1

10-2

10-1

100

101

102

103

p2 [GeV

2]

10-4

10-3

10-2

10-1

100

101

Qua

rk M

ass

Fun

ctio

n: M

(p2 )

Bottom quarkCharm quarkStrange quarkUp/Down quarkChiral limit

C.F. J.Phys.G G32 (2006) R253-R291

M(p2) = B(p2)/A(p2):momentum dependent!

Dynamical massesMstrong(0) ≈ 350 MeV

Flavour dependencebecause of Mweak

〈ψ̄ψ〉 ≈ (250MeV)3

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 18 / 25

Page 19: QCD phase diagram with functional methods

Condensate: angular dependence in chiral limit

Σ1 = −

∫ 2π

0

dϕ2π

e−iϕ 〈ψψ〉ϕ

Width of plateau is T -dependent, 〈ψψ〉ϕ(ϕ = 0) ∼ T 2

C.F. and Jens Mueller, PRD 80 (2009) 074029.

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 19 / 25

Page 20: QCD phase diagram with functional methods

Transition temperatures, quenched

quenched, DSE

0.5 1 1.5 2T/T

c

0

0.05

0.1

[a.u

.]

Dressed Polyakov loopCondensate

Luecker, C.F., arXiv:1111.0180

C.F., Maas, Mueller, EPJC 68 (2010).

SU(2): Tc ≈ 305 MeVSU(3): Tc ≈ 270 MeV

increasing condensate due toelectric part of gluon

quenched, FRG

Braun, Gies, Pawlowski, PLB 684 (2010) 262-267.

Polyakov loop potential viagluon/ghost propagators

cf. Buividovich, Luschevskaya, Polikarpov, PRD 78 (2008) 074505.

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 20 / 25

Page 21: QCD phase diagram with functional methods

Nf = 2: Transition temperatures at µ = 0DSE

100 120 140 160 180 200 220 240T [MeV]

0

0.01

0.02

0.03

0.04

0.05

a.u.

Quark condensateDressed Polyakov-loop

C.F., J. Luecker, J. A. Mueller, PL B702 (2011) 438-441.

Tχ ≈ 185 MeV

Tconf ≈ 195 MeV

condensate in qualitativeagreement with χPT

FRG

0

0.2

0.4

0.6

0.8

1

150 160 170 180 190 200 210 220 230

T [MeV]

fπ(T)/fπ(0)

Dual density

Polyakov Loop

160 180 200

χ L,d

ual

J. Braun, L. Haas, F. Marhauser, J. M. Pawlowski,PRL 106 (2011) 022002

chiral limit

Tχ ≃ Tconf ≃ 180 MeV

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 21 / 25

Page 22: QCD phase diagram with functional methods

Nf = 2: QCD phase diagram

0 100 200 300µ [MeV]

0

50

100

150

200

T [

MeV

]

dressed Polyakov-loopdressed conjugate P.-loopchiral crossoverchiral CEPchiral first order region

C.F., J. Luecker, J. A. Mueller, PLB 702 (2011) 438-441.

chiral CEPQin, Chang, Chen, Liu, Roberts, PRL 106 (2011) 172301.

crucial: backreaction of quark onto gluonqualitative agreement with RG-improved PQM modelHerbst, Pawlowski, Schaefer, PLB 696 (2011)

no CEP at µc/Tc < 1 in agreement with latticede Forcrand, Philipsen, JHEP 0811 (2008) 012; Nucl. Phys. B642 (2002) 290-306.

Endrodi, Fodor, Katz, Szabo, JHEP 1104 (2011) 001.

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 22 / 25

Page 23: QCD phase diagram with functional methods

Nf = 2: QCD phase diagram (preliminary)

Full backreaction included:

0 50 100 150 200 250 300 350µ/MeV

0

50

100

150

200

T/M

eV

Chiral crossover, HTLChiral first order, HTLCEP, HTLChiral crossoverChiral first orderCEP

J. Luecker, C.F. in preparation

CEP: µc/Tc ≃ 3 −→ µc/Tc ≃ 1.7

no quarkyonic region

To do: Nf = 2 + 1, curvature...

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 23 / 25

Page 24: QCD phase diagram with functional methods

Summary: QCD transitions

Summary:

Temperature dependent gluon propagator:

characteristic behavior of electric screening mass at Tc

’melting’ of magnetic gluon with temperature

Deconfinement Tc from dressed Polyakov-loop calculated fromDSEs

Nf = 2-QCD with finite chemical potential (beyond mean field)

backreaction of quarks onto gluon crucial

Nf = 2: CEP at µc/Tc > 1

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 24 / 25

Page 25: QCD phase diagram with functional methods

Thank you for your attention!

Helmholtz Young Investigator Group ”Nonperturbative Phenomena in QCD”

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 25 / 25

Page 26: QCD phase diagram with functional methods

Gluon and Quark-Gluon-Vertex

Ansatz for Quark-Gluon-Vertex:

Γν(q, k ,p) = Z̃3

(δ4νγ4

C(k) + C(p)2

+ δjνγjA(k) + A(p)

2

×

(d1

d2 + q2 +q2

Λ2 + q2

(β0α(µ) ln[q2/Λ2 + 1]

)2δ).

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 23 / 25

Page 27: QCD phase diagram with functional methods

Gluon propagator (T = 0)

0.001 0.01 0.1 1 10 100 1000p

2 [GeV

2]

0

2

4

6

8

10

12

14

∆(p2 )

[GeV

-2]

Bowman (2004)Sternbeck (2006)decoupling (DSE)

Aguilar, Binosi, Papavassiliou, PRD 78, 025010 (2008). C.F., Maas and Pawlowski, Annals Phys. 324 (2009) 2408.

Cornwall, PRD 26 (1982) 1453.

∆(p2) = Z (p2)p2

Gluon mass generation in agreement with lattice resultsCucchieri, Mendes, PoS LAT2007 (2007) 297.

see howeverSternbeck, L. von Smekal, Eur. Phys. J. C68 (2010) 487;Cucchieri, Mendes, Phys. Rev. D81 (2010) 016005.Maas, Phys. Lett. B689 (2010) 107-111.

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 24 / 25

Page 28: QCD phase diagram with functional methods

T 6= 0: Chiral symmetry restauration

SQuark(q) =1

−i ~γ~q A(q)− i γ4ωn C(q) + B(q)

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

p2

[GeV2]

10-3

10-2

10-1

100

B(i

ω0,p

) [

GeV

]

T= 130 MeVT= 190 MeV

m(µ)=1.85 MeV

10-4

10-2

100

102

104

p2

[GeV2]

1

1.2

1.4

1.6

1.8

A(i

ω0,p

) ,

C(i

ω0,p

) T= 130 MeVT= 190 MeV

m(µ)=1.85 MeV

A(iω0,p)

C(iω0,p)

dynamical effects below Tc ↔ ’HTL-ish’ above Tc

Christian S. Fischer (JLU Giessen) QCD phase diagram Nov. 2011 25 / 25