102
PV Elite and CodeCalc Verification and Quality Assurance Manual Version 2014 (16.0) November 2013 DICAS-PE-200110E

Pv Manual

Embed Size (px)

Citation preview

Page 1: Pv Manual

PV Elite and CodeCalc Verification and Quality Assurance Manual

Version 2014 (16.0)

November 2013

DICAS-PE-200110E

Page 2: Pv Manual

2 PV Elite and CodeCalc Verification and Quality Assurance Manual

Copyright

Copyright © 1993-2013 Intergraph CAS, Inc. All Rights Reserved. Intergraph is part of Hexagon.

Including software, file formats, and audiovisual displays; may be used pursuant to applicable software license agreement; contains confidential and proprietary information of Intergraph and/or third parties which is protected by copyright law, trade secret law, and international treaty, and may not be provided or otherwise made available without proper authorization from Intergraph Corporation.

Contains RealDWG™ by Autodesk, Inc. Copyright © 1998-2013 Autodesk, Inc. All rights reserved.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the government is subject to restrictions as set forth below. For civilian agencies: This was developed at private expense and is "restricted computer software" submitted with restricted rights in accordance with subparagraphs (a) through (d) of the Commercial Computer Software - Restricted Rights clause at 52.227-19 of the Federal Acquisition Regulations ("FAR") and its successors, and is unpublished and all rights are reserved under the copyright laws of the United States. For units of the Department of Defense ("DoD"): This is "commercial computer software" as defined at DFARS 252.227-7014 and the rights of the Government are as specified at DFARS 227.7202-3.

Unpublished - rights reserved under the copyright laws of the United States.

Intergraph Corporation 300 Intergraph Way Huntsville, AL 35813

Documentation

Documentation shall mean, whether in electronic or printed form, User's Guides, Installation Guides, Reference Guides, Administrator's Guides, Customization Guides, Programmer's Guides, Configuration Guides and Help Guides delivered with a particular software product.

Other Documentation

Other Documentation shall mean, whether in electronic or printed form and delivered with software or on eCustomer, SharePoint, or box.net, any documentation related to work processes, workflows, and best practices that is provided by Intergraph as guidance for using a software product.

Terms of Use

a. Use of a software product and Documentation is subject to the End User License Agreement ("EULA") delivered with the software product unless the Licensee has a valid signed license for this software product with Intergraph Corporation. If the Licensee has a valid signed license for this software product with Intergraph Corporation, the valid signed license shall take precedence and govern the use of this software product and Documentation. Subject to the terms contained within the applicable license agreement, Intergraph Corporation gives Licensee permission to print a reasonable number of copies of the Documentation as defined in the applicable license agreement and delivered with the software product for Licensee's internal, non-commercial use. The Documentation may not be printed for resale or redistribution.

b. For use of Documentation or Other Documentation where end user does not receive a EULA or does not have a valid license agreement with Intergraph, Intergraph grants the Licensee a non-exclusive license to use the Documentation or Other Documentation for Licensee’s internal non-commercial use. Intergraph Corporation gives Licensee permission to print a reasonable number of copies of Other Documentation for Licensee’s internal, non-commercial. The Other Documentation may not be printed for resale or redistribution. This license contained in this subsection b) may be terminated at any time and for any reason by Intergraph Corporation by giving written notice to Licensee.

Disclaimer of Warranties

Except for any express warranties as may be stated in the EULA or separate license or separate terms and conditions, Intergraph Corporation disclaims any and all express or implied warranties including, but not limited to the implied warranties of merchantability and fitness for a particular purpose and nothing stated in, or implied by, this document or its contents shall be considered or deemed a modification or amendment of such disclaimer. Intergraph believes the information in this publication is accurate as of its publication date.

The information and the software discussed in this document are subject to change without notice and are subject to applicable technical product descriptions. Intergraph Corporation is not responsible for any error that may appear in this document.

The software, Documentation and Other Documentation discussed in this document are furnished under a license and may be used or copied only in accordance with the terms of this license. THE USER OF THE SOFTWARE IS EXPECTED TO MAKE THE FINAL EVALUATION AS TO THE USEFULNESS OF THE SOFTWARE IN HIS OWN ENVIRONMENT.

Intergraph is not responsible for the accuracy of delivered data including, but not limited to, catalog, reference and symbol data. Users should verify for themselves that the data is accurate and suitable for their project work.

Page 3: Pv Manual

PV Elite and CodeCalc Verification and Quality Assurance Manual 3

Limitation of Damages

IN NO EVENT WILL INTERGRAPH CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL INCIDENTAL, SPECIAL, OR PUNITIVE DAMAGES, INCLUDING BUT NOT LIMITED TO, LOSS OF USE OR PRODUCTION, LOSS OF REVENUE OR PROFIT, LOSS OF DATA, OR CLAIMS OF THIRD PARTIES, EVEN IF INTERGRAPH CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

UNDER NO CIRCUMSTANCES SHALL INTERGRAPH CORPORATION’S LIABILITY EXCEED THE AMOUNT THAT INTERGRAPH CORPORATION HAS BEEN PAID BY LICENSEE UNDER THIS AGREEMENT AT THE TIME THE CLAIM IS MADE. EXCEPT WHERE PROHIBITED BY APPLICABLE LAW, NO CLAIM, REGARDLESS OF FORM, ARISING OUT OF OR IN CONNECTION WITH THE SUBJECT MATTER OF THIS DOCUMENT MAY BE BROUGHT BY LICENSEE MORE THAN TWO (2) YEARS AFTER THE EVENT GIVING RISE TO THE CAUSE OF ACTION HAS OCCURRED.

IF UNDER THE LAW RULED APPLICABLE ANY PART OF THIS SECTION IS INVALID, THEN INTERGRAPH LIMITS ITS LIABILITY TO THE MAXIMUM EXTENT ALLOWED BY SAID LAW.

Export Controls

Intergraph Corporation’s software products and any third-party Software Products obtained from Intergraph Corporation, its subsidiaries, or distributors (including any Documentation, Other Documentation or technical data related to these products) are subject to the export control laws and regulations of the United States. Diversion contrary to U.S. law is prohibited. These Software Products, and the direct product thereof, must not be exported or re-exported, directly or indirectly (including via remote access) under the following circumstances:

a. To Cuba, Iran, North Korea, Sudan, or Syria, or any national of these countries.

b. To any person or entity listed on any U.S. government denial list, including but not limited to, the U.S. Department of Commerce Denied Persons, Entities, and Unverified Lists, http://www,bis.doc.gov/complianceandenforcement/liststocheck.htm, the U.S. Department of Treasury Specially Designated Nationals List, www.treas.gov/offices/enforcement/ofac/http://www.pmddtc.state.gov/compliance/debar.html, and the U.S. Department of State Debarred List.

c. To any entity when Licensee knows, or has reason to know, the end use of the Software Product is related to the design, development, production, or use of missiles, chemical, biological, or nuclear weapons, or other un-safeguarded or sensitive nuclear uses.

d. To any entity when Licensee knows, or has reason to know, that an illegal reshipment will take place.

Any questions regarding export or re-export of these Software Products should be addressed to Intergraph Corporation’s Export Compliance Department, Huntsville, Alabama 35894, USA.

Trademarks

Intergraph, the Intergraph logo, Intergraph Smart, PDS, SmartPlant, SmartMarine, FrameWorks, I-Sketch, IntelliShip, ISOGEN, SmartSketch, SPOOLGEN, SupportManager, and SupportModeler are trademarks or registered trademarks of Intergraph Corporation or its subsidiaries in the United States and other countries. Microsoft and Windows are registered trademarks of Microsoft Corporation. MicroStation is a registered trademark of Bentley Systems, Inc. Other brands and product names are trademarks of their respective owners.

Page 4: Pv Manual

4 PV Elite and CodeCalc Verification and Quality Assurance Manual

Page 5: Pv Manual

PV Elite and CodeCalc Verification and Quality Assurance Manual 5

Contents Introduction .................................................................................................................................................. 7

Intergraph CAS Quality Assurance ........................................................................................................... 9

Software Purpose.................................................................................................................................... 9 Intellectual Property Statement ............................................................................................................... 9 Management/Organization .................................................................................................................... 10 PV Elite Development ........................................................................................................................... 10 User Documentation ............................................................................................................................. 10 Product Support .................................................................................................................................... 11 Software Issue Tracking/Resolution ..................................................................................................... 11

Software Verification ................................................................................................................................. 13

Test Control ........................................................................................................................................... 13 Beta Tests ............................................................................................................................................. 14 Additional Manual Checks for Staff and Beta Users ............................................................................. 15 PV Elite Test Jobs ................................................................................................................................. 19 Corrective Action Standard ................................................................................................................... 20 Post-Development Procedures ............................................................................................................. 20 Distribution Control ............................................................................................................................... 21 Pre-Shipping Procedures ...................................................................................................................... 21 CodeCalc QA Checks ........................................................................................................................... 23

Introduction ..................................................................................................................................... 23 Shell and Head Checks .................................................................................................................. 24 Nozzle Checks ................................................................................................................................ 26 Flange Checks ................................................................................................................................ 28 Cone Checks .................................................................................................................................. 31 Floating Heads Checks .................................................................................................................. 32 Horizontal Vessel Checks .............................................................................................................. 34 Leg and Lug .................................................................................................................................... 34 ASME Tubesheets Checks ............................................................................................................ 36 TEMA Tubesheets Checks ............................................................................................................. 37 WRC 107 Checks ........................................................................................................................... 38 Pipe and Pad Checks ..................................................................................................................... 39 Base Ring Checks .......................................................................................................................... 39 Half-Pipe Check .............................................................................................................................. 40 Large Opening Checks ................................................................................................................... 41 Rectangular Vessel Checks ........................................................................................................... 42

PV Elite Sample Benchmark Problem Sets .......................................................................................... 45 Problem 1 - Natural Frequency Calculation ................................................................................... 45 Problem 2 - Example of Stiffening Ring Calculation ...................................................................... 49 Problem 3 - Nozzle Reinforcement, Weld Strength, Weld Size ..................................................... 52 Problem 4 - Vessel under Internal and External Pressure on Legs ............................................... 65 Problem 5 - Vertical Vessel with Wind and Seismic Loads ............................................................ 74 Problem 6 - Comparison against CAESAR II ................................................................................. 83 Problem 7 - ASME Section VIII Division 2 Sample Comparisons .................................................. 86 Problem 8 - EN-13445 Nozzle Reinforcement ............................................................................... 93

Page 6: Pv Manual

Contents

6 PV Elite and CodeCalc Verification and Quality Assurance Manual

Index ......................................................................................................................................................... 101

Page 7: Pv Manual

PV Elite and CodeCalc Verification and Quality Assurance Manual 7

S E C T I O N 1

The PV Elite®/CodeCalc

® Verification and Quality Assurance Manual provides a standard set of

PV Elite/CodeCalc jobs that are used in verifying both the operation of the software and the accuracy of the result for each release of the PV Elite/CodeCalc package. The examples presented in this manual are a representative cross-section of the jobs run by Intergraph CAS. The jobs selected for this manual compare the PV Elite/CodeCalc output with results published in industry journals and with results from other software products. The PV Elite/CodeCalc output is (also) verified with hand and/or MathCad™ calculations.

The component-analysis part of PV Elite, when sold separately, is called CodeCalc. CodeCalc-specific results can be found in the Software Verification section of this manual. In all other sections, the software is referred to simply as PV Elite.

This manual consists of two major sections: Intergraph CAS Quality Assurance and Software Verification.

Intergraph CAS Quality Assurance describes the quality assurance procedures employed by Intergraph CAS to ensure that PV Elite is producing correct results.

Software Verification explains a series of benchmark jobs that you can use to confirm software accuracy. These jobs compare PV Elite output to published results, to output from similar software, or to hand calculations. For each job in this section, a brief description of the job and any special considerations are discussed. Following the discussion is a graphical representation of the system with selected result comparisons. Because of the volume of output, important results like required thickness, maximum allowable working pressure (MAWP), and stress are listed in tables. Users interested in the entire output can re-analyze the jobs as necessary.

The PV Elite development team is constantly testing and adding new test jobs to the QA benchmark problem set. Currently, there are more than 250 test jobs run which test thousands of different calculations. It is impractical to include all of these tests in this manual. As new Quality Assurance procedures are published, they will be incorporated into the QA methods employed by Intergraph CAS. Users with questions, comments, or suggestions are encouraged to contact Intergraph CAS to discuss future revisions to this document. User requests for new features are always welcome. By working with the user, the PV Elite development staff will continue to develop a product that best meets the demands of pressure-vessel design and analysis users.

Introduction

Page 8: Pv Manual

Introduction

8 PV Elite and CodeCalc Verification and Quality Assurance Manual

Page 9: Pv Manual

PV Elite and CodeCalc Verification and Quality Assurance Manual 9

S E C T I O N 2

Software quality assurance is generally a speculative pursuit because, no matter how much testing is performed, the next test may reveal an error in the software. The goal of any quality assurance standard is to perform enough testing to achieve such a level of confidence in the software that errors are rare and unlikely. With this objective in mind, several organizations have published guidelines for use in software quality assurance.

In This Section Software Purpose .......................................................................... 9 Intellectual Property Statement...................................................... 9 Management/Organization ............................................................ 10 PV Elite Development .................................................................... 10 User Documentation ...................................................................... 10 Product Support ............................................................................. 11 Software Issue Tracking/Resolution .............................................. 11

Software Purpose PV Elite is a package of nineteen applications that work together to design and analyze pressure vessels and heat exchangers. The purpose of the software is to provide the mechanical engineer with easy-to-use, technically sound, well-documented calculations that will expedite and simplify vessel-design and re-rating tasks. The software also provides recent, industry-accepted analyses of the designs.

Calculations in PV Elite are based on the latest editions of national codes such as the ASME Boiler and Pressure Vessel Code, or other relevant industry standards that are not covered directly by ASME VIII-1, VIII-2 or other codes.

Intellectual Property Statement This manual and its contents should be considered proprietary. This material should not be copied or distributed to other parties without the expressed written consent of Intergraph CAS.

Intergraph CAS Quality Assurance

Page 10: Pv Manual

Intergraph CAS Quality Assurance

10 PV Elite and CodeCalc Verification and Quality Assurance Manual

Management/Organization At Intergraph CAS, the Chief Architect, Software Engineering Manager, and Product Manager oversee the development and testing of the software product. Software development team members include: engineers, software developers, and a technical writer. All members of the development team support customers and test the software prior to each release. Specialized technical support representatives work closely with the development team. In addition, an on-staff, certified Nuclear Quality Assurance (NQA) lead auditor oversees the quality assurance program followed by the team.

PV Elite Development Intergraph CAS is wholly responsible for all software made available to the public that bears the Intergraph label on the distribution media.

Changes to PV Elite are made by or with the consent of the Product Manager. Additional members of the software team include engineers, who interact at the same level and communicate directly with the product manager. Therefore, all software issues can be brought to the attention of Product Manager quickly and easily.

Software engineers each bring a different kind of expertise to the team and write routines for specialized functions in the software. For example, the source code to perform structural steel checks may be written by an engineer at Intergraph CAS whose educational background permits him to do this efficiently.

All members of the development staff provide customer support for PV Elite, directly or indirectly. One member of the team is tasked with quality assurance procedures for each release.

User Documentation The PV Elite user has online access to documentation spanning all facets of the software, including all of the ancillary processors and interfaces. The standard PV Elite documentation set consists of the following documents:

PV Elite User's Guide

CodeCalc User's Guide

Quick Start Guide

All of these documents can be accessed online, from the Help tab in PV Elite. The PV Elite documentation accompanies each new version of the program and is supplied in both PDF and CHM (online help) formats.

Contact information for Intergraph CAS is included in these documents, as well as displayed in the help system, and in a variety of other locations in the software. We encourage users experiencing problems or confusion with the software to reference the documentation first, and then contact us for further resolution and suggestions.

Page 11: Pv Manual

Intergraph CAS Quality Assurance

PV Elite and CodeCalc Verification and Quality Assurance Manual 11

Product Support Intergraph CAS welcomes input/suggestions from our users. Users having problems with our software may freely contact Intergraph CAS through our eCustomer support system, which is found on our company website.

Our Technical Support staff may ask users with a numerical/computational issue in PV Elite to submit the job to Intergraph CAS. This allows our support staff to identify the problem and locate the cause, and then contact the user for resolution.

Software Issue Tracking/Resolution PV Elite supports standard practices for tracking released software issues, including:

Incorporating user feedback directly back into the development process.

Notifying users regarding hot fix or service pack updates issued throughout development

Following software release criteria based on issue review and prioritization.

Page 12: Pv Manual

Intergraph CAS Quality Assurance

12 PV Elite and CodeCalc Verification and Quality Assurance Manual

Page 13: Pv Manual

PV Elite and CodeCalc Verification and Quality Assurance Manual 13

S E C T I O N 3

This section describes the test methods through which PV Elite software team performs Quality Assurance testing on PV Elite. In addition, the section describes test methods that you can implement to validate your PV Elite program data against industry-standard benchmarks.

In This Section Test Control ................................................................................... 13 Beta Tests ...................................................................................... 14 Additional Manual Checks for Staff and Beta Users ..................... 15 PV Elite Test Jobs ......................................................................... 19 Corrective Action Standard ............................................................ 20 Post-Development Procedures ...................................................... 20 Distribution Control ........................................................................ 21 Pre-Shipping Procedures ............................................................... 21 CodeCalc QA Checks .................................................................... 23 PV Elite Sample Benchmark Problem Sets ................................... 45

Test Control Currently in the United States there is no organization that formally establishes the credibility of pressure-vessel analysis software. Therefore, software suppliers take on this responsibility.

Generally, there are two ways to establish that any software product is performing correctly:

Comparing product results to hand calculations.

Comparing results to previously verified results from an external source.

If these methods compare favorably to software-generated results, then the software is assumed to be performing as expected. If the results do not compare favorably, the PV Elite development team identifies the differences and corrects the problem.

Testing Process

Before a new version of PV Elite is released, the development personnel perform alpha-level testing. This involves checking the Fortran/C++ or assembler code and running of basic test problems designed to test the functionality of the feature addition, error and abort conditions, and so forth. Next, the development staff generates a series of alpha jobs that:

Test new features against existing software.

Run tests against industry standard programs, such as Compress™ and BJAC™ teams.

Suggest to customers that they independently compare the results of PV Elite against their own in-house program or spreadsheets.

Test new features against hand calculations.

Test new features against published literature, such as the ASME VIII-1, PTB-3, and other codes.

Software Verification

Page 14: Pv Manual

Software Verification

14 PV Elite and CodeCalc Verification and Quality Assurance Manual

Test the interaction between new features and features already existing in the software.

Once these selected alpha jobs are run and verified to the satisfaction of the lead developer, beta series testing begins.

The new job results are compared to the previously verified results. Program errors that have been identified are remedied and/or justified.

To summarize, at Intergraph CAS, we believe that thoroughly checking software results by hand and comparing these results to those of other software and to benchmarks assures a quality product. This method has worked very well in the past and we will check new versions using this same methodology.

Beta Tests Often before releasing the PV Elite software, we distribute the alpha-tested software to users to perform beta testing. At the end of the test period, we ask that beta users send evaluations to us, so that we can process the information, resolve any issues found, and archive feedback.

The following are the beta test files for the CodeCalc module available from within PV Elite. Intergraph CAS ships some of these files with the PV Elite software.

Beta Test Files

Checks.cci Shell.cci

Extra_qa.cci Texample.cci

Fexample.cci Texample2.cci

Fexample2.cci Vesexmpl.cci

Lg_nozzl.cci WRC107.cci

Lg_nozzl.cci Rctexmpl.cci

Mm_wrc.cci Appy.cci

ASME_Tubesheet.cci

The following section discusses manual checks that users can perform additional verification of the software.

Page 15: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 15

Additional Manual Checks for Staff and Beta Users The tables below display a list of items that should be verified for each release of PV Elite. Different individuals should check each item multiple times.

Installation Checklist

Items to Check Initials Initials Comments

A. Program Installation

B. File Extraction

C. File CRC Check

Database Access Checklist

Items to Check Initials Initials Comments

A. Structural Steel - AISC89.BIN

B. ASME Materials *

1. Check some material properties (selected randomly) with ASME Code

2. Check yield stress vs. temperature table.

* Specify different material ID in the input, and check the allowable stresses, density, TEMA number, and external pressure chart.

Units Checklist

Items to Check Initials Initials Comments

A. Creation of input files

B. Verify change of units

Check each input field of the following modules to verify that the help facilities function properly.

Help Checklist

Items to Check Initials Initials Comments

A. Check Modules

Page 16: Pv Manual

Software Verification

16 PV Elite and CodeCalc Verification and Quality Assurance Manual

Items to Check Initials Initials Comments

1. Shells and Heads

2. Nozzles

3. Flange

4. Conical Sections

5. Floating head

6. Horizontal Vessels

7. ASME Tubesheets

8. Tubesheets

9. WRC107/FEA

10. Leg and Lug

11. Pipe and Pad

12. Base Rings

13. Thin Bellows Exp. Joints

14. Thick Joints

15. Half-Pipe

16. Large Openings

17. Rectangular Vessels

18. WRC 297/Annex G

19. Appendix Y

B. Check HELP Index.

C. Search on a topic.

D. Print a HELP topic.

Page 17: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 17

New Input Generation/General Operation Checklist

Items to Check Initials Initials Comments

A. Check each module with a random example.

1. Shells and Heads

2. Nozzles

3. Flange

4. Conical Sections

5. Floating head

6. Horizontal Vessel

7. ASME Tubesheets

8. TEMA Tubesheets

9. WRC 107

10. Leg and Lug

11. Pipe and Pad

12. Base Rings

13. Thin Joints

14. Thick Joints

15. Half Pipes

16. Large Openings

17. Rectangular Vessels

18. WRC 297

19. Appendix Y

B. Graphics

1. Onscreen

2. Printed

Page 18: Pv Manual

Software Verification

18 PV Elite and CodeCalc Verification and Quality Assurance Manual

Items to Check Initials Initials Comments

C. Window operation

1. Merge operation

2. Insert/Delete an item

3. Add an item

4. Browse items

Output Review Checklist

Items to Check Initials Initials Comments

A. Review output data in

1. Terminal

2. Printer

3. Disk file

B. Output Processor

1. Results on screen

2. Print the selected chapters

Operating Environments Checklist

Items to Check Initials Initials Comments

A. Dealer Version

B. Windows

C. Network

1. PV Elite and data on network

2. PV Elite on network, data local

3. PV Elite local, data on network

Page 19: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 19

Vessel Code Checklist

Items to Check Initials Initials Comments

ASME Section VIII, Div. 1

ASME Section VIII, Div. 2

PD-5500

EN - 13445

Miscellaneous Checklist

Items to Check Initials Initials Comments

A. ESL/SPLM (a)

B. Mouse Operations

C. Material Database Editor

1. Editing materials

2. Adding materials

(a) Insures program does not run without the ESL.

PV Elite Test Jobs The PV Elite QA benchmark problem set consists of over 250 different analysis jobs. Each of these jobs is run prior to release time and compared with the results from previous versions. A wide variety of jobs are checked, which includes tests of all wind and seismic codes, checks of baserings, weights, stresses, liquid pressures, MAWP, weights, volumes, required thickness and many others. By analyzing these jobs, the quality of the software is kept very high and consistent. Again, these are just a few sample problems run every time we test the software. Many of the jobs contained in this manual are listed in the table below.

Quality Assurance Test Form

Job Name Perform Analysis Analysis Date

104EX4

11436

ANDY1

APP1_7

Page 20: Pv Manual

Software Verification

20 PV Elite and CodeCalc Verification and Quality Assurance Manual

Job Name Perform Analysis Analysis Date

APP1_7_2

APP1_7_3

APPLCHK

AS_450V2

BEDN237

+200 more jobs

Corrective Action Standard PV Elite users have many channels through which they can reach the Intergraph CAS development staff. The main way to contact us is through the eCustomer system. When a problem or error is detected, the development staff reviews the problem and takes corrective action. When a user problem is verified to be a defect, a TR (trouble report) is filled out using internal Intergraph software. After the TR is completed, the problem is fixed, and the user is notified by email through the eCustomer system. Updated PV Elite files are made available in a product Hot Fix or Service Pack, which can be downloaded from the eCustomer website. In many cases, software issues have workarounds. The Intergraph CAS technical support staff notifies users of workarounds whenever possible.

Post-Development Procedures After a new version of the software has been developed, Intergraph CAS uses the following quality assurance procedures to ensure that the new CDs are correct in content, contain the proper ESL protection schemes, and can be reproduced properly.

1. Scan the development machine for virus infection before producing any distribution set. Use the latest version of Trend Micro Office Scan virus-scanning software.

2. Assemble in a "clean" directory all of the files that comprise the installation set. This includes .EXE files, database files, and example files.

3. Run the CRCCHK program to build the CRC verification file.

4. Generate an installation program using Install Shield. Once the DVD is made, test it according to the Distribution Control procedures outlined below.

Page 21: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 21

Distribution Control To control the distribution and integrity of the program DVDs before sending them out for mass production, Intergraph CAS adheres to the following procedures:

1. After the quality assurance procedures have been completed, use the lead developer's computer to make a production copy of PV Elite.

2. Modify the installation program to load any new executables that may be released with the new version.

3. Load PV Elite onto at least one PC in the production department to check the installation program and DVD integrity.

4. Use Office Scan virus-scanning software to scan each original, all disk drives, and memory for known viruses.

5. Using the appropriate ESL, install and test the masters on another computer. All EXE files accessing the ESL must be tested.

6. Install the masters on a production computer for further use. ESL-specific files should be copied into the appropriate subdirectories for organizational purposes.

7. Send the masters to the DVD duplicator.

8. Install the software from the DVD onto each of the PCs in the engineering and development groups at Intergraph CAS.

9. Load the required set of PV Elite executables onto at least one computer in the production department.

10. Using the DVD and installation checklists, perform periodic testing of the software as necessary.

The following section provides the tasks that must be performed by the development and production personnel to verify the quality of disk sets before shipment.

Pre-Shipping Procedures The following procedures help to ensure that the disk sets shipped by Intergraph CAS contain the correct product, are not infected with a virus, and are void of imperfections.

1. When DVDs are received from the duplicator, install and test a random selection from the batch. These final tests will ensure that the DVDs were correctly assembled by the duplicator, that they are not flawed, and that the ESL interaction routines are in order.

The tests are software-specific and are detailed elsewhere in this manual. None of these tests should use the environment support available from the programs. Run the tests from the installation directory. Ensure that the installation directory is empty before beginning this procedure.

2. Archive a set of DVDs from the first duplication for future use and referral.

Page 22: Pv Manual

Software Verification

22 PV Elite and CodeCalc Verification and Quality Assurance Manual

Page 23: Pv Manual

PV Elite and CodeCalc Verification and Quality Assurance Manual 23

S E C T I O N 4

CodeCalc QA Checks

In This Section Introduction .................................................................................... 23 Shell and Head Checks ................................................................. 24 Nozzle Checks ............................................................................... 26 Flange Checks ............................................................................... 28 Cone Checks ................................................................................. 31 Floating Heads Checks .................................................................. 32 Horizontal Vessel Checks .............................................................. 34 Leg and Lug ................................................................................... 34 ASME Tubesheets Checks ............................................................ 36 TEMA Tubesheets Checks ............................................................ 37 WRC 107 Checks .......................................................................... 38 Pipe and Pad Checks .................................................................... 39 Base Ring Checks ......................................................................... 39 Half-Pipe Check ............................................................................. 40 Large Opening Checks .................................................................. 41 Rectangular Vessel Checks ........................................................... 42

Introduction

This section provides the results of QA tests for CodeCalc, which is also the component-analysis part of PV Elite. For simplicity, this part of PV Elite will be referred to as CodeCalc in this chapter. The following CodeCalc modules have been subjected to Intergraph CAS quality assurance procedures.

Shell/Head

Nozzle

Flange

Cone

Floating Head

Horizontal Vessel

Leg and Lug

ASME Tubesheets

TEMA Tubesheets

WRC 107/537

Pipe and Pad

Base Ring

Thin Joint

Thick Joint

Page 24: Pv Manual

Software Verification

24 PV Elite and CodeCalc Verification and Quality Assurance Manual

Half-Pipe

Large Opening

Rectangular Vessel

Shell and Head Checks

As a part of its quality assurance procedures, Intergraph CAS completed the following shell and head checks on CodeCalc:

ASME Appendix 1-4, 2 (CodeCalc job: Checks.cc2/ASME VIII-1 2011a, APP 1, 1-4, 2) - Ellipsoidal head under internal pressure.

Parameters CodeCalc ASME

MAWP (psi) 338.87 339

ASME Appendix 1-4, D (CodeCalc job: Checks.cc2/ASME VIII-1 2011a, APP 1, 1-4, D) -Torispherical head under internal pressure

Parameters CodeCalc ASME

Req. thickness (in.) 0.4488 0.45

ASME Appendix 1-4, D2 (CodeCalc job: Checks.cc2/ASME VIII-1 2011a, APP 1, 1-4, D2) -Torispherical head under internal pressure

Parameters CodeCalc ASME

MAWP (psi) 167.16 167

ASME Appendix L-6.1 (CodeCalc job: Checks.cc2/ASME VIII-1 2011a, APP L, L-6.1) - Ellipsoidal head under external pressure

Parameters CodeCalc ASME

A 0.0004623 0.000462

B 5662.91* 5100

EMAWP (psi) 20.9427* 18.9

ASME Appendix L-6.2 (CodeCalc job: Checks.cc2/ASME VIII-1 2011a, APP L, L-6.2) -Torispherical head under external pressure

Page 25: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 25

Parameters CodeCalc ASME

A 0.0004157 0.00042

B 5092.85* 4700

EMAWP (psi) 16.9385* 15.6

ASME Appendix L-6.3 (CodeCalc job: Checks.cc2/APP L, L-6.3) -Hemispherical head under external pressure

Parameters CodeCalc ASME

A 0.0004623 0.00046

B 5662.91* 5200

EMAWP (psi) 20.9427* 19.23

ASME Appendix L-6.4 (CodeCalc job: Checks.cc2/APP L, L-6.4) - Conical head under external pressure

Parameters CodeCalc ASME

Design Len. 102.30 102.30

A 0.0005912 0.0006

B 7004.29 6900

EMAWP (psi) 38.1777 37.5

ASME Appendix L-9.2.1 (CodeCalc job: Checks.cc2/APP L, L-9.1, 2) - Minimum design metal temperature (MDMT) of a cylinder

Parameters CodeCalc ASME

Unadjusted MDMT (°F) 31 31

Adjusted MDMT (°F) 12 12

ASME Appendix. L-5 (CodeCalc job: Checks.cc2/APP L, L-5): Selection of a circumferential stiffening ring for a cylinder under external pressure. A bar type 2 in. x 3.75 in. stiffening ring selected.

Page 26: Pv Manual

Software Verification

26 PV Elite and CodeCalc Verification and Quality Assurance Manual

Parameters CodeCalc ASME

Moment of Inertia (in. 4) 16.541 16.57

Required Moment of Inertia (in.

4)

16.1933 16.25

Weld load 643.78 644

Weld Allowable load 1828.75 1830

Minimum Weld Thickness 0.25 0.25

* As of this printing the ASME Appendix L6.1, 6.2, 6.3 appear to be in error in determining the B value from the External Pressure chart CS-2 for SA-285C, with E = 24.5 x 106 psi. When points lie in the linear portion of the chart CS-2 (as in cases 4, 5, 60, CodeCalc uses the formula B = A*E/2.

Nozzle Checks

Nozzle checks involve the area of reinforcement and failure path calculations. Intergraph CAS performed the following nozzle checks using CodeCalc:

ASME Appendix L-7.3b (CodeCalc Job: Checks.cc2/APP L, L-7.3B): Insert-type Nozzle lying on a longitudinal weld of a cylindrical shell. A 19-in. Diameter and 0.5-in. thick reinforcement pad is selected.

Parameters CodeCalc ASME

Req. Thk. Shell (in.) 0.5300 0.530

Req. Thk. Noz (in.) 0.0893 0.0893

Reinforcement Area Req. (in.2) 6.228 6.23

Total Area available (in.2) 6.267 6.27

Total weld load, W (lb) 72539.17 72600

Weld load for path 1-1, W1-1 (lb) 71556.86 71600

Weld load for path 2-2, W2-2 (lb) 34856.25 34900

Weld load for path 3-3, W3-3 (lb) 82280.86 82300

Strength of failure path 1-1 (lb) 203289 203000

Strength of failure path 2-2 (lb) 229116 229000

Strength of failure path 3-3 (lb) 250441 250000

Page 27: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 27

ASME Appendix L-7.4 (CodeCalc Job Checks.cc2/APP L, L-7.4): Abutting-type Nozzle on a cylindrical shell. A 26-in. Diameter and 2.75-in. (average value) thick reinforcement pad is selected.

Parameters CodeCalc ASME

Req. Thk. Shell (in.) 1.8593 1.83

Req. Thk. Noz (in.) 0.3542 0.292

Reinforcement Area Req. (in.2) 29.554 29.6

Total Area available (in.2) 33.647 33.7

Total weld load, W (lb) 317668.22 318000

Weld load for path 1-1, W1-1 (lb) 364331.03 364000

Strength of failure path 1-1 (lb) 319507 318000

ASME Appendix L-7.6 (CodeCalc Job Checks.cc2/APP L, L-7.6): Insert-type Nozzle without pad on a 2:1 ellipsoidal head.

Parameters CodeCalc ASME

Req. Thk. Head (in.) 0.0912 0.091

Req. Thk. Noz (in.) 0.0512 0.051

Reinforcement Area Req. (in.2) 0.755 0.754

Total Area available (in.2) 1.146 1.15

Total weld load, W (lb) 302.43* 250

Weld load for path 1-1, W1-1 (lb) 2992.86 2990

Weld load for path 2-2, W2-2 (lb) 7691.86 7690

Strength of failure path 1-1 (lb) 47542 47500

Strength of failure path 2-2 (lb) 39831 39800

*The differences in dimensions, of the order of 1E-3, are magnified after being multiplied by the allowable stress.

ASME Appendix L-7.7 (CodeCalc Job Checks.cc2/APP L, L-7.71): Abutting-type Hillside Nozzle on a cylindrical shell.

Page 28: Pv Manual

Software Verification

28 PV Elite and CodeCalc Verification and Quality Assurance Manual

Parameters CodeCalc ASME

Req. Thk. Shell (in.) 1.1364 1.14

Req. Thk. Noz (in.) 0.1389 0.139

Area Req. in circumferential dir. (in.

2)

3.720 3.68

Area available in circumferential dir. (in.

2)

7.486 7.16

Area Req. in longitudinal dir. (in.

2)

4.545 4.56

Area available in longitudinal dir. (in.

2)

2.607 2.59

The area available in the longitudinal direction is insufficient. The new area values after increasing the nozzle thickness from 0.5 in. to 0.875 in.

Parameters CodeCalc ASME

Area Req. in longitudinal dir. in.2) 4.545 4.56

Area available in longitudinal dir. (in.

2)

5.198 5.18

Minimum Weld throat. (in.2) 0.25 0.25

Actual Weld throat. (in.2) 0.3535 0.35

Flange Checks

Intergraph CAS completed the following flange checks on CodeCalc:

Taylor Forge, Bulletin 502 (CodeCalc Job: Checks.cc2/TAYLOR FORGE)- Integral weld neck flange.

Parameters CodeCalc Taylor Forge

Gasket Reaction Diameter, G (in.) 33.888 33.88

Operating

Bolt Load WM1 (lb) 432484.688 432484

Gasket Seating Force, HG (lb) 71713.25 71713

End Pressure, MD (in. lb) 623292 623292

Page 29: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 29

Parameters CodeCalc Taylor Forge

Face Pressure, MT (in. lb) 79248 79242

Gasket Load, MG (in. lb) 111600 111599

Total Moment, Mo (in. lb) 814128 814133

Longitudinal Hub Stress (psi) 22865.0 22865

Radial Flange Stress (psi) 10981.8 10982

Tangential Stress Flange (psi) 6799.5 6800

Seating

Bolt Load, WM2 (lb) 120608.648 120609

Flange Design Bolt Load, W (lb) 464192.38 464192

Total Moment, MG (in. lb) * 722364 722371

Longitudinal Hub Stress (psi) 20287.8 20288

Radial Flange Stress (psi) 9744.0 9744

Tangential Stress Flange (psi) 6033.1 6033

*Total Moment is MG in the Taylor Forge bulletin 502 and MA in CodeCalc output.

Taylor Forge, Bulletin 502 (CodeCalc Job: Checks.cc2/ FULL FACE SLIP)- Loose, Slip on Flange with a full face gasket.

Parameters CodeCalc Taylor Forge

Dist. to Gasket Load Reaction hg, (in.) 1.328 1.325

Gasket Reaction Diameter, G (in.) 26.844 26.85

Full Face ID Pressure Load, H’GY (lb) 48614.715 48555

Operating

Bolt Load, WM1 (lb) 96302.469 96286

Gasket Seating Force, HG (lb) 68003.63 67994

End Pressure, MD (in. lb) 93300 93305

Face Pressure, MT (in. lb) 17364 17390

Total Moment, MO (in. lb) 110676 110695

Page 30: Pv Manual

Software Verification

30 PV Elite and CodeCalc Verification and Quality Assurance Manual

Parameters CodeCalc Taylor Forge

Longitudinal Hub Stress (psi) 1951.8 1995

Radial Flange Stress (psi) 5141.6 5236

Tangential Flange Stress (psi) 13470.3 13176

Bolt Circle Stress (psi) 2585.7 2679

Seating

Bolt Load, WM2 (lb) 71806.469 23196

Flange Design Bolt Load, W (lb) 110451.23 110460

Reverse Moment MG (in. lb) * 29160 29101

*Reverse Moment is MG in Taylor Forge bulletin 502 and MR in CodeCalc output. See "Notes" below.

a. The value of hg, in the Taylor Forge Bulletin is off by 0.0029, using

With C = 29.5 in. and B =24 in. this comes out to be 1.3279 and not 1.325. This error is magnified resulting in error in the calculations of G, WM1, W, H

G, MT, MO, MG, and H’GY.

b. The value of WM2 computed in the Taylor Forge Bulletin is incorrect,

Where b = 1.375, y = 200

Gives WM2 = 71806.5

An example taken from Process Equipment Design by Brownell and Young. (P-243) (CodeCalc Job: Checks.cc2/BROWNELL&YOUNG)- Loose-ring type flange.

*Total Flange Moment is MA in Brownell & Young and RMA in CodeCalc output.

Parameters

CodeCalc

Brownell & Young

Gasket Reaction Diameter, G (in.) 33.250 33.25

Operating

Bolt Load, WM1 (lb) 151790.469 152100

Gasket Seating Force, HG (lb) 21544.45 21600

End Pressure, MD (in. lb) 198132 226000

Page 31: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 31

Parameters

CodeCalc

Brownell & Young

Face Pressure, MT (in. lb) 20220 25200

Gasket Load, MG (in. lb) 13464 18900

Total Moment, MO (in. lb) 231816 270100

Seating

Bolt Load, WM2 (lb) 96623.617 93600

Flange Design Bolt Load, W (lb) 172855.25 160500

Total Moment MG (in. lb) * 1806036 140500

Cone Checks

Cone checks involve area-of-reinforcement and moment-of-inertia requirements. Intergraph CAS performed the following cone checks using CodeCalc:

ASME Appendix L-2.3 (CodeCalc Job: Checks.cc2/ASME VIII-1 2011a, APP L, L-2.3): - A cone-to-cylinder transition under internal pressure.

Parameters CodeCalc ASME

Large end

Line Force, QL (lb) 2749.608 2750

Reinforcement Area Req., Arl (in.2) 12.8802 4.54

Total Area available , Ael(in.2) 0.3490 0.500

Small end

Line Force, QA (lb) 1312.383 1312.5

Reinforcement Area Req., Ars (in.2) 2.2146 2.22

Total Area available, Aes (in.2) 0.7799 0.78

ASME Appendix L-3.3 (CodeCalc File: Checks.cc2/APP L, L-3.3): - A cone-to-cylinder transition under external pressure.

Parameters CodeCalc ASME

Large end

Line Force, QL (lb) 9.6960 2781

Reinforcement Area Req., Arl (in.2) 12.6509 12.7

Total Area available, Ael (in.2) 23.5682 28.9

Page 32: Pv Manual

Software Verification

32 PV Elite and CodeCalc Verification and Quality Assurance Manual

Small end

Line Force, QS (lb) 697.3355 696.9

Reinforcement Area Req., Ars (in.2) 0.7046 0.71

Area available in Shell, Aes ( in.2)* 2.5022 2.05*

Area available in Pad (in.2) 2.6250 2.63

Total Area available, Aes (in.2) 5.8318 4.68

The small end available area from the shell does not match as a result of different values of tr, the minimum required thickness of cone at small end. CodeCalc calculates this value iteratively so that the cone can withstand the design pressure.

With, E = 25.125 * 106 psi, A = 4.453 * 10-6, B = 5595.042, D/T = 149.191

CodeCalc computes a tr of 0.392 in., resulting in a MAWP of

which matches the design pressure of 50 psi. The ASME example uses a tr = 0.55 in., which seems incorrect.

Floating Heads Checks

Intergraph CAS completed the following floating heads checks on CodeCalc:

Tested against Exxon’s in-house design program PEAs- A Type D floating head under both external and internal pressure. (CodeCalc job: Extra_Qa.cc2/TYPE D)

Tubeside Internal Pressure Results:

Parameters CodeCalc PEAs

Operating

Head Req. Thickness (in.) 0.3601 0.360

Flange Req. Thickness (in.) 3.2956 3.296

Operating Bolt Load, WM1 (lb) 302398.0 302398

Gasket Seating Force, HG (lb) 44348.5 44348.4

Flo. Head Moment, Mh (in. lb) -136812 -136739.5

Total Moment, Internal, MO (in. lb) 127584 127660.90

Seating Flange Req. Thickness, Internal Bolt-Up (in.)

3.4527 3.453

Page 33: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 33

Parameters CodeCalc PEAs

Flange Design Bolt Load, W (lb) 335559.0 335559.0

Total Moment, Internal MG (in. lb) * 235939.9 235939.92

Shellside External Pressure Results:

Parameters CodeCalc PEAs

Operating

Head Req. Thickness (in.) 0.6158 0.609

Flange Req. Thickness (in.) 4.0155 4.015

Operating Bolt Load, WM1 (lb) 302398.0 302398

Gasket Seating Force, HG (lb) 430082.6 430082.59

Flo. Head Moment, Mh (in. lb) -228012 -227899.17

Total Moment, MO (in. lb) 141715.56 141604.46

Seating

Flange Req. Thickness (in.) 3.4527 3.453

Flange Design Bolt Load, W (lb) 335559.0 335559.0

Total Moment MG (in. lb) ** 235939.94 235939.92

The results below are for Soehrens Calculations for Stresses in Spherical Heads and Flanges. The following table displays the Nomenclature and Equation Numbers per ASME Paper 57-A-247.

Parameters

CodeCalc Tubeside Int.

Parameter

CodeCalc Shellside Ext.

PEA Shellside Ext.

Ttl Stress at Head OD, psi Eqn. 30

6611.2 6611.218 21175.1 21175.1

Ttl Stress at Head ID, psi Eqn. 31

1202.5 1202.488 -33058.6 -33058.6

Ttl Flange Stress, Upper psi Eqn. 35

746.6 746.647 5081.8 5081.8

Ttl Flange Stress, Lower psi Eqn. 36

-7432.6 -7432.58 -3803.6 -3803.6

Page 34: Pv Manual

Software Verification

34 PV Elite and CodeCalc Verification and Quality Assurance Manual

Horizontal Vessel Checks

Intergraph CAS completed the following horizontal vessel checks on CodeCalc:

ASME APP L, L-2.2 (CodeCalc job Checks.cc2/ASME PG 530): Insert-type Nozzle lying on a longitudinal weld of a cylindrical shell. A 19-in. diameter and 0.5-in. thick reinforcement pad selected.

Parameters CodeCalc ASME

Factor K.2 * 0.7906 0.7904

Total weight of the vessel, full (lb) 345837.91 350000

Longitudinal Compressive Shell allowable (psi)

9440.10 9446

The factor k.2 is an important factor used by CodeCalc to compute the stresses using Zick analysis. ASME has used a different method to find the required thickness. Moreover, ASME does not compute shear stresses at the saddles in this example.

Leg and Lug

Intergraph CAS completed the following leg and lug checks on CodeCalc:

Design of legs for a vertical vessel under internal pressure and wind loading, verified by hand calculations (CodeCalc job: ExtraQa.cc2/Hand Check Legs). Angle legs attached in the diagonal orientation (both legs attached to the vessel).

Wind velocity is 100 miles/hr.

Importance factor = 1

Force coefficient = 1

Exposure category = C

Parameters CodeCalc Hand Check

Wind Pressure (psf) 28.038 28.88

Total Wind Force (lb) 1345.848 1376.7

Shear at Top of Leg (lb) 530.53 542.02

Total Overturning Moment at Top of Legs (ft-lb)

3364.6 3441.85

Axial Compression on Leg

Furthest from Neutral Axis (psi)

910.71 915.76

Page 35: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 35

Unity Check on the Legs:

Parameters CodeCalc Hand Check

Actual Allowable Actual Allowable

Weak Axis Bending Stress (psi) 16384.77 24227.28 16723.5 24227

Strong Axis Bending Stress (psi)

11613.22 24227.28 11869 24227

Axial Compressive Stress (psi) 910.71 16053.99 915.7 16068

Unity Check Ratio 1.212 1.237

Design of a support lug for a vertical vessel. Taken from the Pressure Vessel Design Handbook by Bednar, 2nd edition (page 154) example 5.1 (CodeCalc job: Lugs.cc2/BEDNAR EX. 5.1).

Parameters CodeCalc BEDNAR

Force on One Lug, F (lb) 41,000.64 41,000

Bending Stress in the Base Plate (psi)

13,814.78 18,700

Gusset Plate Allowable

Compressive Stress, SgaB (psi)

9,785.29 9,885

The bending stress in the base plate s which, is Spl2 in the CodeCalc printouts is calculated as,

This expression is for stress on a rectangular plate under uniform pressure p, with three edges fixed and one edge free. (Formulas for Stress and Strain, Roark and Young, 5th edition page 396.)

With,

Where,

a = 15 in.,

b = 12 in.,

t = 1.125 in.

The factor is taken from a table in Roark and Young for a known of a/b, which in this case is

1.25. The correct value of after interpolating is 0.524, which gives σ a value of 13580.22 psi.

While Bednar took the next higher value of as 0.72, this results in a different value of σ.

Page 36: Pv Manual

Software Verification

36 PV Elite and CodeCalc Verification and Quality Assurance Manual

This example is for the design of a support lug with Full Ring-Girder type reinforcement ring. Taken from the Pressure Vessel Design Handbook by Bednar, 2

nd edition (page 158) example

5.2 (CodeCalc job: Lugs.cc2/BEDNAR EX. 5.2).

Parameters CodeCalc Bednar

Force on one lug (compression side), Flug (lb.)

5000.00 5000

Force acting in the plane of ring, P (lb.)

2500.00 2500

Ring load pt

Bending moment, M1 (lb-in) 29841.55 29900

Tangential thrust, T1 (lb.) 0.00 0.0

Ring mid pt

Bending moment, M2 (lb-in) 42583.66 17062.5

Tangential thrust, T2 (lb.) 1250.00 1250

ASME Tubesheets Checks

These examples follow the 1997 edition of the ASME code.

ASME Part UHX - 20.1.1 (c) (CodeCalc job: ASME_Tubesheet.cc2/UHX-20.1.1): U-tube type heat exchanger with integral tubesheet construction.

Parameters CodeCalc ASME

Eff. Tube hole dia., d*(in.) 0.7500 0.75

Eff. Tube pitch, p*(in.) 1.1508 1.15

Axial Shell bending Stress,σ s,b (psi) -17575.04 -17600

ASME Part UHX - 20.2.1 (c) (CodeCalc job: ASME_Tubesheet.cc2/UHX-20.2.1) A fixed tubesheet with tubesheet extended as flange and gasketed channel side. This is compared with ASME UHX 20.2.1, step 10 case 7.

Parameters CodeCalc ASME

Shell Membrane Stress due to Joint Interaction, σ sm (psi)

-99.1947 -96.1

Shell Bending Stress due to Joint Interaction, σ s, b (psi)

-61109 -61100

Shell Stress Summation, σs (psi) 61217.12 61200

Page 37: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 37

Parameters CodeCalc ASME

σs, Allow 61500.00 61500

Bending stress σ (Pres. Only) (psi)

Effective pres. Pe (Temp. only) (psi)

Bending stress σ (Temp. only) (psi)

TEMA Tubesheets Checks

A fixed tubesheet with the tubesheet extended has a flange and a gasketed channel side. This is compared with B-JAC

TM teams, a heat exchanger design package. (CodeCalc job:

Checks.cc2/COMPARISON).

Parameters CodeCalc B-JACTM

Eff. Shell side design Pres., bend., PSU (psi)

5.664 5.8

Eff. Tube side design Pres., bend., PTU (psi)

55.069 55.1

Req. Thk. Shellside, Trs (in.) 0.8304 0.8205

Req. Thk. Tubeside. Trc (in.) 2.5893 2.524

Equiv. Differential Exp. Pres., PD (psi) -0.488 0.0*

Shell longitudinal stress (Tensile), STSMAX (psi)

44 0.0*

Shell longitudinal stress (Comp.), STSMIN (psi)

278 296

Tube longitudinal stress (Tensile), STTMAX (psi)

12556.94 12772

Tube longitudinal Stress (Comp.), STTMIN (psi)

117.77 0*

Tube to Tubesheet load, WJ (lb) 1355.03 1378

This difference in the value of Pd and stresses is due to different interpretation of factor J,

Page 38: Pv Manual

Software Verification

38 PV Elite and CodeCalc Verification and Quality Assurance Manual

TEMA suggests that if, …(a)

Then, J can be assumed equal to 0, this is used by BJAC. According to some experts J should be taken 0 if,

and …(b)

CodeCalc uses this interpretation. Consequently, there are differences in the Pd, the Shell longitudinal tensile stress, and the Tube longitudinal compressive stress values obtained from both the programs.

WRC 107 Checks

This example is a comparison with another computer program, called CompressTM

. This example compares a round solid attachment on a cylindrical shell. (CodeCalc job: Extra_qa.cc2/COMPAR. TO COMP).

Using WRC 107 March 1979 Version

Parameters CodeCalc CompressTM

Beta 0.230 0.23

Total circumferential stress @ Au (psi)

-34281 -30118

Total Longitudinal stress @ Bl (psi) 30083 32407

Total shear stress @ Cu (psi) -92 -92

Stress Intensity, @ Al (psi) 30283 32574

Stress Intensity, @ Bu (psi) 47999 45950

Stress Intensity, @ Cl (psi) 41165 43630

Stress Intensity, @ Du (psi) 58573 51845

Stress Intensity, @ Dl (psi) 40655 43100

Page 39: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 39

Pipe and Pad Checks

A B31.3 intersection area of reinforcement and MAWP calculations tested with MathCad calculations. (CodeCalc Job: Extra_Qa.cc2 /Hand_Calcs).

Parameters CodeCalc PEAs

Req. thk. of header (in.) 0.450 0.449

Req. thk. of branch (in.) 0.194 0.194

Req. reinforcement area (in.2) 3.4855 3.485

Available reinforcement area (in.2) 3.6052 3.604

MAWP of Header (psi) 694.18 694.13

MAWP of Branch (psi) 1385.28 1385.19

Est. MAWP of Assembly (psi) 609.60 609.55

Base Ring Checks

This example is benchmarked with hand calculations. A base ring with a continuous top ring. (CodeCalc job: Checks.cc2/PVHB EXAMPLE).

The following illustrates the comparison of results for a simplified analysis for base ring thickness from Jawad and Farr.

Parameters CodeCalc Hand Calcs

Load per bolt, (lb) 43527.7344 43528

Req. Area/Bolt, (in.2) 1.7411 1.741

Bolt stress, approx. analysis (psi) 18925.10 16413

Concrete stress, operating condition (psi)

813.64 875.31

Basering Thk., simplified (in.) 1.8677 1.937

More accurate analysis using neutral axis shift calculations for base ring thickness, from Singh and Soler.

Parameters CodeCalc Hand Calcs

Bolt stress (psi) 14244.13 12549

Page 40: Pv Manual

Software Verification

40 PV Elite and CodeCalc Verification and Quality Assurance Manual

Parameters CodeCalc Hand Calcs

Concrete stress (psi) 493.33 478.84

Basering Thk. (in.) 1.4573 1.432

Continuous Top Ring Calculations:

Parameters CodeCalc Hand Calcs

Req. Thk. as fixed beam (in.) 1.7850 1.916

Req. Thk. per Moss (in.) 1.3669 1.467

Gusset Thickness:

Parameters CodeCalc Hand Calcs

Req. Thk. in tension (in.) 0.3286 0.378

Req. Thk. in compression (in.) 0.672 0.672

Skirt Thickness at Operating Condition:

Parameters CodeCalc Hand Calcs

Req. Thk. in tension (in.) 0.3286 0.398

Req. Thk. in compression (in.) 0.2835 0.287

Half-Pipe Check

ASME Appendix EE-3 (CodeCalc Job: Checks.cc2/ ASME EXAMPLE): A cylindrical shell with a half-pipe.

Parameters CodeCalc ASME

Min. req. thk. of shell, Int. press. (in.) 0.2392 0.24

Max. permissible pressure, P¢

(Pprime) (psig) 385.3763 366

Longitudinal tensile stress in shell, S¢

(Sprime) (psi) 6080.0000 6080

Req. half-pipe thk., T (in.) 0.0502 0.050

Page 41: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 41

Parameters CodeCalc ASME

Min. fillet weld size, Fillet (in.) 0.1180 0.12

Large Opening Checks

Shell with a large nozzle (CodeCalc Job: Checks.cc2/SENIOR GB TEST): Tested against hand calculations performed by a client.

Parameters CodeCalc Hand Calcs.

Longitudinal hub stress, SH* (psi) 19520 19494

Radial flange stress, SR* (psi) 1036 1032

Tangential flange stress, ST* (psi) 10945 10960

Stresses at the head-shell junction,

Parameters CodeCalc Hand Calcs.

Longitudinal hub stress, Shs (psi) 13314.04 13161

Radial stress, Srs (psi) 603.63 610

Tangential stress, Sts (psi) 5578.62 5564

Stresses at the opening head junction,

Parameters CodeCalc Hand Calcs.

Longitudinal hub stress, Sho (psi) 16997.471 16960

Radial stress, Sro (psi) 902.257 898

Tangential stress, Sto (psi) 9750.84 9759

Page 42: Pv Manual

Software Verification

42 PV Elite and CodeCalc Verification and Quality Assurance Manual

Rectangular Vessel Checks

ASME APP. 13, 13-17(b) (CodeCalc job: Rctexmpl.cc2/EXAMPLE A2): A rectangular vessel with two long sides having different thickness (sketch A2), designed for internal pressure.

Parameters CodeCalc ASME

Membrane

Short side plate, (psi) 1242.00 1242

Long side plate, t2 (psi) 488.39 488

Long side plate, t22 (psi) 100.81 101

Bending

Short side plate, @ Q (psi) ±2560.62 ±2571

Short side plate, @ Q1 (psi) ±15775.12 ±15778

Long side plate, @ M (psi) ±3679.71 ±3683

Long side plate, @ Q (psi) ±250.06 ±250

Long side plate, @ M1 (psi) ±9556.91 ±9572

Long side plate, @ Q1 (psi) ±6162.16 ±6153

ASME APP. 13, 13-17(c) (CodeCalc job Rctexmpl.cc2/EXAMPLE A3): A rectangular vessel with uniform wall thickness and corners bend to a radius (sketch A3) designed for internal pressure.

Parameters* CodeCalc ASME

Membrane

Short side plate, @ C (psi) 450.00 450

Long side plate, @ A (psi) 300.00 300

Corner section, (psi) 485.41 485

Bending

Moment at mid pt of long side, Ma (in.-lb)

-2812.6814 -2820

Short side plate, Inner @ C (psi) 10123.91 10084

Short side plate, Outer @ C (psi) -10123.91 -10084

Short side plate, Inner @ D (psi) 5623.91 -5583*

Short side plate, Outer @ D (psi) -5623.91 5583*

Long side plate, Inner @ A (psi) -16876.09 -16927

Page 43: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 43

Parameters* CodeCalc ASME

Long side plate, Outer @ A (psi) 16876.09 16927

Long side plate, Inner @ B (psi) 1123.91 1080

Long side plate, Outer @ B (psi) -1123.91 -1080

Corner section, Inner (psi) 12248.52 12209

Corner section, Outer (psi) -12248.52 -12209

As of this printing, ASME is in error about the stress state at point D. The stress at the point D on the short side is as per ASME Section VIII Div. 1 Appendix 13-7 Equation 29.

With,

MA = -2812.68 in-lb

P = 15 psi

I1 = 0.0833 in4

L1 = 10 in.

L2 = 20 in.

R = 10 in.

For the inner side,

c=ci=0.5

Which gives, (Sb)Di = 5623.91 psi,

while ASME has a stress value of -5583 psi.

ASME Appendix 13, 13-17(g) (CodeCalc job: Extra_QA.cc2/ASME EXAMPLE 13): A vessel of obround cross section, with an I-section reinforcement member welded on, Sketch B2.

Taking the pressure P = 29.9 psi. to get the ASME stress values.

Parameters CodeCalc ASME

Combined MOI, I11 (in.4) 6.8592 6.859

Membrane

Short side plate, @ C (psi) 978.19 978.32

Long side plate, @ A (psi) 489.09 489.16

Bending

Short side plate, Outer @ C (psi) -15647.72 -15641.75

Long side plate, Outer @ A (psi) 16935.70 16928.78

Page 44: Pv Manual

Software Verification

44 PV Elite and CodeCalc Verification and Quality Assurance Manual

Parameters CodeCalc ASME

Total

Short side plate, Outer @ C (psi) -14669.54 -14662.96

Long side plate, Outer @ A (psi) 17424.79 17417.946

ASME Appendix 13, 13-17(i) (CodeCalc job: Rctexmpl.cc2/EXAMPLE C1): A vessel of circular cross section, with a single diametral staying plate, Sketch C1.

These stresses are maximum stresses occurring at the shell-plate junction.

Parameters CodeCalc ASME

Membrane

Shell section (psi) 800.00 800

Diametral plate (psi) 2.10 2.1

Bending

Shell section, Inner (psi) 8884.12 8856

Diametral plate, Inner (psi) 25140.69 25020

Total

Shell section, Inner (psi) 9684.12 9656

Diametral plate, Inner (psi) 25142.79 25022

Page 45: Pv Manual

PV Elite and CodeCalc Verification and Quality Assurance Manual 45

S E C T I O N 5

PV Elite Sample Benchmark Problem Sets

In This Section Problem 1 - Natural Frequency Calculation ................................... 45 Problem 2 - Example of Stiffening Ring Calculation ...................... 49 Problem 3 - Nozzle Reinforcement, Weld Strength, Weld Size .... 52 Problem 4 - Vessel under Internal and External Pressure on Legs ....................................................................................................... 64 Problem 5 - Vertical Vessel with Wind and Seismic Loads ........... 74 Problem 6 - Comparison against CAESAR II ................................ 83 Problem 7 - ASME Section VIII Division 2 Sample Comparisons . 86 Problem 8 - EN-13445 Nozzle Reinforcement .............................. 93

Problem 1 - Natural Frequency Calculation

The purpose of this problem is to ensure that PV Elite is computing the fundamental frequency of a vertical tower correctly. This problem is a comparison against the sample presented in Henry Bednar’s Pressure Vessel Design Handbook, 2nd Edition (Page 126). The result for this problem should be approximately 1.15 sec/cycle or 0.9 hertz.

Page 46: Pv Manual

Software Verification

46 PV Elite and CodeCalc Verification and Quality Assurance Manual

PV Elite® Vessel Analysis Program: Input Data

Natural Frequency Comparison to Bednar p126

Design Internal Pressure (for Hydrotest) 100.00 psig

Design Internal Temperature 200 F

Type of Hydrotest UG99-b

Hydrotest Position Vertical

Projection of Nozzle from Vessel Top 0.0000 in.

Projection of Nozzle from Vessel Bottom 0.0000 in.

Minimum Design Metal Temperature - 1994 F

Type of Construction Welded

Special Service None

Degree of Radiography RT 1

Miscellaneous Weight Percent 0.0

Use Higher Longitudinal Stresses (Flag) Y

Select t for Internal Pressure (Flag) N

Select t for External Pressure (Flag) N

Select t for Axial Stress (Flag) N

Select Location for Stiff. Rings (Flag) N

Consider Vortex Shedding

Perform a Corroded Hydrotest

Is this a Heat Exchanger N

User Defined Hydro. Press (Used if > 0) 0.0000 psig

User defined MAWP 0.0000 psig

Load Case 1 NP+EW+WI+BW

Load Case 2 NP+EW+EQ+BS

Load Case 3 NP+OW+WI+BW

Load Case 4 NP+OW+EQ+BS

Load Case 5 NP+HW+HI

Load Case 6 NP+HW+HE

Load Case 7 IP+OW+WI+BW

Load Case 8 IP+OW+EQ+BS

Load Case 9 EP+OW+WI+BW

Load Case 10 EP+OW+EQ+BS

Load Case 11 HP+HW+HI

Load Case 12 HP+HW+HE

Wind Design Code ASCE-7 93

Basic Wind Speed [V] 0.0000 mile/hr

Surface Roughness Category C: Open Terrain

Importance Factor 1.0

Base Elevation 0.0000 ft.

Percent Wind for Hydrotest 0.0

Using User defined Wind Press. Vs. Elev. N

Damping Factor (Beta) for Wind (Ope) 0.0000

Damping Factor (Beta) for Wind (Empty) 0.0000

Damping Factor (Beta) for Wind (Filled) 0.0000

Seismic Design Code ASCE-7 88

Seismic Zone 0.0000

Importance Factor 1.0000

Soil Type S1

Horizontal Force Factor 2.0000

Percent Seismic for Hydrotest 0.0000

Design Nozzle for M.A.W.P. + Static Head Y

Consider MAP New and Cold in Noz. Design

Consider External Loads for Nozzle Des. N

Use ASME VIII-1 Appendix 1-9 N

Material Database Year 1997

Configuration Directives:

Do not use Nozzle MDMT Interpretation VIII-1 01-37 No

Use Table G instead of exact equation for "A" No

Shell Head Joints are Tapered No

Compute "K" in corroded condition No

Use Code Case 2286 No

Use the MAWP to compute the MDMT No

Using Metric Material Databases, ASME II D No

Complete Listing of Vessel Elements and Details:

Element From Node 10

Element To Node 20

Element Type Skirt Sup.

Description

Distance "FROM" to "TO" 10.000 ft.

Skirt Inside Diameter 60.000 in.

Diameter of Skirt at Base 60.000 in.

Skirt Thickness 0.5000 in.

Internal Corrosion Allowance 0.0000 in.

Design Temperature Internal Pressure 100 F

Design Temperature External Pressure 100 F

Effective Diameter Multiplier 1.2

Page 47: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 47

Material Name SA516-70

Allowable Stress, Ambient 17500. psi

Allowable Stress, Operating 17500. psi

Allowable Stress, Hydrotest 26250. psi

Material Density 0.0010000 lb./cu.in.

P Number Thickness 1.25 in.

Yield Stress, Operating 38000. psi

UCS-66 Chart Curve Designation B

External Pressure Chart Name CS-2

UNS Number K02700

Product Form Plate

Efficiency, Longitudinal Seam 1.0

Efficiency, Head-to-Skirt or Circ. Seam 1.0

Element From Node 10

Detail Type Weight

Detail ID F

Dist. from "FROM" Node / Offset dist 5.0000 ft.

Miscellaneous Weight 10000. lb.

Offset from Element Centerline 0.0000in.

--------------------------------------------------------

Element From Node 20

Element To Node 40

Element Type Cylinder

Description

Distance "FROM" to "TO" 20.000 ft.

Inside Diameter 60.000 in.

Element Thickness 0.5000 in.

Internal Corrosion Allowance 0.0000 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 10.000 psig

Design Temperature Internal Pressure 100 F

Design External Pressure 10.000 psig

Design Temperature External Pressure 100 F

Effective Diameter Multiplier 1.2

Material Name SA-516 70

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Element From Node 20

Detail Type Weight

Detail ID E

Dist. from "FROM" Node/Offset dist 10.000 ft.

Miscellaneous Weight 15000. lb.

Offset from Element Centerline 0.0000 in.

--------------------------------------------------------

Element From Node 40

Element To Node 50

Element Type Cylinder

Description

Distance "FROM" to "TO" 19.000 ft.

Inside Diameter 60.000 in.

Element Thickness 0.5000 in.

Internal Corrosion Allowance 0.0000 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 10.000 psig

Design Temperature Internal Pressure 100 F

Design External Pressure 10.000 psig

Design Temperature External Pressure 100 F

Effective Diameter Multiplier 1.2

Material Name SA-516 70

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Element From Node 50

Detail Type Weight

Detail ID C

Dist. from "FROM" Node / Offset dist 9.5000 ft.

Miscellaneous Weight 10000. lb.

Offset from Element Centerline 0.0000 in.

--------------------------------------------------------

Page 48: Pv Manual

Software Verification

48 PV Elite and CodeCalc Verification and Quality Assurance Manual

Element From Node 60

Element To Node 80

Element Type Cylinder

Description

Distance "FROM" to "TO" 16.000 ft.

Inside Diameter 96.000 in.

Element Thickness 0.7500 in.

Internal Corrosion Allowance 0.0000 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 10.000 psig

Design Temperature Internal Pressure 100 F

Design External Pressure 10.000 psig

Design Temperature External Pressure 100 F

Effective Diameter Multiplier 1.2

Material Name SA-516 70

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Element From Node 60

Detail Type Weight

Detail ID B

Dist. from "FROM" Node / Offset dist 8.0000 ft.

Miscellaneous Weight 20000. lb.

Offset from Element Centerline 0.0000 in.

--------------------------------------------------------

Element From Node 60

Element To Node 80

Element Type Cylinder

Description

Distance "FROM" to "TO" 16.000 ft.

Inside Diameter 96.000 in.

Element Thickness 0.7500 in.

Internal Corrosion Allowance 0.0000 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 10.000 psig

Design Temperature Internal Pressure 100 F

Design External Pressure 10.000 psig

Design Temperature External Pressure 100 F

Effective Diameter Multiplier 1.2

Material Name SA-516 70

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Element From Node 60

Detail Type Weight

Detail ID B

Dist. from "FROM" Node / Offset dist 8.0000 ft.

Miscellaneous Weight 20000. lb.

Offset from Element Centerline 0.0000 in.

--------------------------------------------------------

Element From Node 80

Element To Node 90

Element Type Cylinder

Description

Distance "FROM" to "TO" 16.000 ft.

Inside Diameter 96.000 in.

Element Thickness 0.7500 in.

Internal Corrosion Allowance 0.0000 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 10.000 psig

Design Temperature Internal Pressure 100 F

Design External Pressure 10.000 psig

Design Temperature External Pressure 100 F

Effective Diameter Multiplier 1.2

Material Name SA-516 70

Efficiency, Longitudinal Seam 1.0

Efficiency,. Circumferential Seam 1.0

Element From Node 80

Detail Type Weight

Detail ID A

Dist. from "FROM" Node / Offset dist 8.0000 ft.

Miscellaneous Weight 20000. lb.

Offset from Element Centerline 0.0000 in.

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014

Natural Frequency for the Operating Case (No Liquid), Freese Method

Natural Frequency Calculation

Page 49: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 49

| | Element | Centroid | Elem. End | Elem. Ang. | Element

From| To | Total Wgt. | Deflection | Deflection | Rotation | Empty Wgt.

| | lbm | in. | in. | | lbm

-------------------------------------------------------------------------

10 | 20 | 10011.4 | 0.077412 | 0.30044 | 0.0048560 | 10011.4

20 | 40 | 15022.8 | 1.13129 | 2.39547 | 0.012092 | 15022.8

40 | 50 | 10021.7 | 3.91854 | 5.68701 | 0.016406 | 10021.7

50 | 60 | 10021.7 | 7.63959 | 9.72088 | 0.018672 | 10021.7

60 | 80 | 20043.8 | 11.5172 | 13.3188 | 0.018782 | 20043.8

80 | 90 | 20043.8 | 15.1227 | 16.9273 | 0.018798 | 20043.8

The Natural Frequency for the Vessel (Empty.) is 0.90323 Hz.

Natural Frequency for the Operating Case, Freese Method

Natural Frequency Calculation

| | Element | Centroid | Elem. End | Elem. Ang. | Element

From| To | Total Wgt. | Deflection | Deflection | Rotation | Emtpy Wgt.

| | lbm | in. | in. | | lbm

10 | 20 | 10011.4 | 0.077412 | 0.30044 | 0.0048560 | 10011.4

20 | 40 | 15022.8 | 1.13129 | 2.39547 | 0.012092 | 15022.8

40 | 50 | 10021.7 | 3.91854 | 5.68701 | 0.016406 | 10021.7

50 | 60 | 10021.7 | 7.63959 | 9.72088 | 0.018672 | 10021.7

60 | 80 | 20043.8 | 11.5172 | 13.3188 | 0.018782 | 20043.8

80 | 90 | 20043.8 | 15.1227 | 16.9273 | 0.018798 | 20043.8

The Natural Frequency for the Vessel (Ope...) is 0.90323 Hz.

Natural Frequency for the Filled Case, Freese Method

The Natural Frequency for the Vessel (Filled) is 0.48376 Hz.

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014.

Problem 2 - Example of Stiffening Ring Calculation

This sample problem was taken from the ASME Section VIII Division 1 pressure vessel code page 531-532 A-98 addenda. This stiffening ring is a channel welded to the outside of a 169-inch OD vessel. The test here is to compute the required moment of inertia of the ring. The ASME code calculated value for I’s (the required moment of inertia) 15.61 in

4. PV Elite obtains

an almost identical result of 16.2 in4. The difference is due to the fact that PV Elite computes the

strain factor A to more significant figures than the code example.

Page 50: Pv Manual

Software Verification

50 PV Elite and CodeCalc Verification and Quality Assurance Manual

PV Elite® Vessel Analysis Program: Input Data

Design Internal Pressure (for Hydrotest) 0.0000 psig

Design Internal Temperature 0 F

Type of Hydrotest Not Specified

Hydrotest Position Horizontal

Projection of Nozzle from Vessel Top 0.0000 in.

Projection of Nozzle from Vessel Bottom 0.0000 in.

Minimum Design Metal Temperature -20 F

Type of Construction Welded

Special Service None

Degree of Radiography RT 1

Miscellaneous Weight Percent 0.0

Use Higher Longitudinal Stresses (Flag) Y

Select t for Internal Pressure (Flag) N

Select t for External Pressure (Flag) N

Select t for Axial Stress (Flag) N

Select Location for Stiff. Rings (Flag) N

Consider Vortex Shedding Y

Perform a Corroded Hydrotest N

Is this a Heat Exchanger N

User Defined Hydro. Press. (Used if > 0) 0.0000 psig

User Defined MAWP 0.0000 psig

User Defined MAPnc 0.0000 psig

Load Case 1 NP+EW+WI+FW+BW

Load Case 2 NP+EW+EE+FS+BS

Load Case 3 NP+OW+WI+FW+BW

Load Case 4 NP+OW+EQ+FS+BS

Load Case 5 NP+HW+HI

Load Case 6 NP+HW+HE

Load Case 7 IP+OW+WI+FW+BW

Load Case 8 IP+OW+EQ+FS+BS

Load Case 9 EP+OW+WI+FW+BW

Load Case 10 EP+OW+EQ+FS+BS

Load Case 11 HP+HW+HI

Load Case 12 HP+HW+HE

Load Case 13 IP+WE+EW

Load Case 14 IP+WF+CW

Load Case 15 IP+VO+OW

Load Case 16 IP+VE+OW

Load Case 17 IP+VF+CW

Load Case 18 FS+BS+EP+OW

Load Case 19 FS+BS+EP+OW

Wind Design Code ASCE-7 93

Basic Wind Speed [V] 70.000 mile/hr

Surface Roughness Category C: Open Terrain

Importance Factor 1.0

Type of Surface Moderately Smooth

Base Elevation 0.0000 in.

Percent Wind for Hydrotest 33.0

Using User defined Wind Press. Vs. Elev. N

Damping Factor (Beta) for Wind (Ope) 0.0100

Damping Factor (Beta) for Wind (Empty) 0.0000

Damping Factor (Beta) for Wind (Filled) 0.0000

Seismic Design Code UBC 94

UBC Seismic Zone (1=1,2=2a,3=2b,4=3,5=4) 0.000

UBC Importance Factor 1.000

UBC Soil Type S1

UBC Horizontal Force Factor 3.000

UBC Percent Seismic for Hydrotest 0.000

Design Nozzle for Des. Press. + St. Head Y

Consider MAP New and Cold in Noz. Design N

Consider External Loads for Nozzle Des. Y

Use ASME VIII-1 Appendix 1-9 N

Material Database Year Current w/Addenda or Code Year

Configuration Directives

Do not use Nozzle MDMT Interpretation VIII-1 01-37 N

Use Table G instead of exact equation for "A" Y

Shell Head Joints are Tapered Y

Compute "K" in corroded condition Y

Use the MAWP to compute the MDMT Y

Complete Listing of Vessel Elements and Details

Page 51: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 51

Element From Node 10

Element To Node 20

Element Type Cylinder

Description

Distance "FROM" to "TO" 80.000 in.

Element Outside Diameter 169.00 in.

Element Thickness 0.3125 in.

Internal Corrosion Allowance 0.0000 in.

Design Internal Pressure 15.000 psig

Design Temperature Internal Pressure 700 F

Design External Pressure 15.000 psig

Design Temperature External Pressure 700 F

Effective Diameter Multiplier 1.2

Material Name SA-285 C

Allowable Stress, Ambient 15700. psi

Allowable Stress, Operating 14300. psi

Allowable Stress, Hydrotest 20410. psi

Material Density 0.2800 lbm/in3

P Number Thickness 1.2500 in.

Yield Stress, Operating 21500. psi

UCS-66 Chart Curve Designation A

External Pressure Chart Name CS-2

UNS Number K02801

Product Form Plate

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Element From Node 10

Detail Type Ring

Detail ID Ring:[1 of 1]

Dist. from "FROM" Node / Offset dist 40.000 in.

Stiffening Ring Moment of Inertia 13.100 in**4

Distance from Shell Surface to Center 3.0000 in.

Stiffening Ring Cross Sectional Area 2.4000 in²

Material Name SA-516 70

Stiffening Ring Section Name C6X8.2

Height of Section Ring 6.000 in.

Using Custom Stiffener Section No

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014

External Pressure Calculation Results

ASME Code, Section VIII, Division 1, 2011a

Cylindrical Shell From 10 To Ring:[1 of 1] Ext. Chart: CS-2 at 700 F

Elastic Modulus from Chart: CS-2 at 700F: 0.245E+08 psi

Results for Maximum Allowable Pressure (MAEP):

| TCA | OD | SLEN | D/t | L/D | Factor A | B |

| 0.312 | 169.00 | 40.00 | 540.80 | 0.2367 | 0.0004801 | 5880.68 |

EMAP = (4*B)/(3*(D/t)) = (4* 5880.6768)/(3* 540.8000) = 14.4987 psig

Results for Required Thickness (TCA):

| TCA | OD | SLEN | D/t | L/D | Factor A | B |

| 0.317 | 169.00 | 40.00 | 533.48 | 0.2367 | 0.0004900 | 6001.98 |

EMAP = (4*B)/(3*(D/t)) = (4* 6001.9790)/(3* 533.4799) = 15.0008 psig

Results for Maximum Stiffened Length (SLEN):

| TCA | OD | SLEN | D/t | L/D | Factor A | B |

| 0.312 | 169.00 | 38.76 | 540.80 | 0.2294 | 0.0004966 | 6083.58 |

EMAP = (4*B)/(3*(D/t)) = (4* 6083.5762)/(3* 540.8000) = 14.9990 psig

Cylindrical Shell From Ring[1 of 1] to the end: Ext. Chart: CS-2 at 700 F

Elastic Modulus from Chart: CS-2 at 700 F: 0.245E+08 psi

Results for Maximum Allowable Pressure (EMAP):

| TCA | OD | SLEN | D/t | L/D | Factor A | B |

| 0.312 | 169.00 | 40.00 | 540.80 | 0.2367 | 0.0004801 | 5880.68 |

EMAP = (4*B)/(3*(D/t)) = (4* 5880.6768)/(3* 540.8000) = 14.4987 psig

Results for Required Thickness (TCA):

| TCA | OD | SLEN | D/t | L/D | Factor A | B |

| 0.317 | 169.00 | 40.00 | 533.48 | 0.2367 | 0.0004900 | 6001.98 |

EMAP = (4*B)/(3*(D/t)) = (4* 6001.9790)/(3* 533.4799) = 15.0008 psig

Results for Maximum Stiffened Length (SLEN):

| TCA | OD | SLEN | D/t | L/D | Factor A | B |

| 0.312 | 169.00 | 38.76 | 540.80 | 0.2294 | 0.0004966 | 6083.58 |

EMAP = (4*B)/(3*(D/t)) = (4* 6083.5762)/(3* 540.8000) = 14.9990 psig

Stiffening Ring Calculations for: Ring:[1 of 1], C6X8.2, SA-516 70

Page 52: Pv Manual

Software Verification

52 PV Elite and CodeCalc Verification and Quality Assurance Manual

Effective Length of Shell 7.99 in.

Area (in2) Distance (in.) Area*Dist

Shell: 2.498 0.1562 0.390

Ring : 2.400 3.3125 7.950

Total: 4.898 8.340

Centroid of Ring plus Shell = 1.703 in.

Inertia Distance A*Dist2

Shell: 0.020 1.5465 5.975

Ring : 13.100 -1.6097 6.219

Total: 13.120 12.194

Available Moment of Inertia, Ring plus Shell 25.314 in**4

Required Stress in Ring plus Shell BREQ 5103.88 psi

Required Strain in Ring plus Shell AREQ 0.0004150

Required Moment of Inertia, Ring plus Shell

= ( OD² * SLEN * (TCA+ARING/SLEN) * AREQ )/ 10.9

= (168.0000²*40.0000*(0.3125+2.4000/40.0000)*0.0004150)/10.9

= 16.2025 in**4

External Pressure Calculations

| | Section | Outside | Corroded | Factor | Factor |

From| To | Length | Diameter | Thickness | A | B |

| | in. | in. | in. | | psi |

--------------------------------------------------------------------

10 |Ring| 40.0000 | 169.000 | 0.31250 | 0.00048006 | 5880.68 |

Ring| 20 | 40.0000 | 169.000 | 0.31250 | 0.00048006 | 5880.68 |

External Pressure Calculations

| | External | External | External | External |

From| To | Actual T. | Required T.| Des. Press.| M.A.W.P. |

| | in. | in. | psig | psig |

------------------------------------------------------------

10 |Ring| 0.31250 <<< 0.31679 | 15.0000 >>> 14.4987 |

Ring| 20 | 0.31250 <<< 0.31679 | 15.0000 >>> 14.4987 |

Minimum 14.499

External Pressure Calculations

| | Actual Len.| Allow. Len.| Ring Inertia | Ring Inertia |

From| To | Bet. Stiff.| Bet. Stiff.| Required | Available |

| | in. | in. | in**4 | in**4 |

------------------------------------------------------------------

10 |Ring| 40.0000 >>> 38.7605 | No Calc | No Calc |

Ring| 20 | 40.0000 >>> 38.7605 | 16.2025 | 25.3141 |

One or more Elements or Rings Failed Code requirements for External Pressure with the given thickness!

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014

Problem 3 - Nozzle Reinforcement, Weld Strength, Weld Size

The next sample problem was adapted from the ASME code Appendix L. This example problem tests PV Elite nozzle calculations in accordance with paragraph UG-37. This sample problem compares with ASME’s hillside nozzle example 7 Addenda 98. PV Elite automatically performs the nozzle calculation in both the hoop direction and the longitudinal direction. The results for areas required and available are in excellent agreement. This particular file applchk.pvi contains all of the ASME nozzle reinforcement calculation examples.

Page 53: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 53

Page 54: Pv Manual

Software Verification

54 PV Elite and CodeCalc Verification and Quality Assurance Manual

PV Elite® Vessel Analysis Program: Input Data

Design Internal Pressure (for Hydrotest) 100.00 psig

Design Internal Temperature 225 F

Type of Hydrotest UG99-b

Hydrotest Position Horizontal

Projection of Nozzle from Vessel Top 0.0000 in.

Projection of Nozzle from Vessel Bottom 0.0000 in.

Minimum Design Metal Temperature -20 F

Type of Construction Welded

Special Service None

Degree of Radiography RT 1

Miscellaneous Weight Percent 0.0

Use Higher Longitudinal Stresses (Flag) Y

Select t for Internal Pressure (Flag) N

Select t for External Pressure (Flag) N

Select t for Axial Stress (Flag) N

Select Location for Stiff. Rings (Flag) N

Consider Vortex Shedding

Perform a Corroded Hydrotest N

Is this a Heat Exchanger Y

User Defined Hydro. Press. (Used if > 0) 0.0000 psig

User defined MAWP 0.0000 psig

User defined MAPnc 0.0000 psig

Load Case 1 NP+EW+WI+BW

Load Case 2 NP+EW+EQ+BS

Load Case 3 NP+OW+WI+BW

Load Case 4 NP+OW+EQ+BS

Load Case 5 NP+HW+HI

Load Case 6 NP+HW+HE

Load Case 7 IP+OW+WI+BW

Load Case 8 IP+OW+EQ+BS

Load Case 9 EP+OW+WI+BW

Load Case 10 EP+OW+EQ+BS

Load Case 11 HP+HW+HI

Load Case 12 HP+HW+HE

Wind Design Code ASCE-7 93

Basic Wind Speed [V] 70.000 mile/hr

Surface Roughness Category C: Open Terrain

Importance Factor 1.0

Type of Surface Moderately Smooth

Base Elevation 0.0000 ft.

Percent Wind for Hydrotest 33.0

Using User defined Wind Press. Vs Elev. N

Damping Factor (Beta) for Wind (Ope) 0.0000

Damping Factor (Beta) for Wind (Empty) 0.0000

Damping Factor (Beta) for Wind (Filled) 0.0000

Seismic Design Code UBC 94

UBC Seismic Zone (1=1,2=2a,3=2b,4=3,5=4) 0.000

UBC Importance Factor 1.000

UBC Soil Type S1

UBC Horizontal Force Factor 2.000

UBC Percent Seismic for Hydrotest 0.000

Design Nozzle for Des. Press. + St. Head Y

Consider MAP New and Cold in Noz. Design

Consider External Loads for Nozzle Des. Y

Use ASME VIII-1 Appendix 1-9 N

Material Database Year 2009

Configuration Directives:

Do not use Nozzle MDMT Interpretation VIII-1 01-37 No

Use Table G instead of exact equation for "A" No

Shell Head Joints are Tapered No

Compute "K" in corroded condition No

Use Code Case 2286 No

Use the MAWP to compute the MDMT No

Using Metric Material Databases, ASME II D No

Complete Listing of Vessel Elements and Details:

Page 55: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 55

Element From Node 10

Element To Node 20

Element Type Cylinder

Description

Distance "FROM" to "TO" 5.0000 ft.

Inside Diameter 60.000 in.

Element Thickness 0.7500 in.

Internal Corrosion Allowance 0.0000 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 250.00 psig

Design Temperature Internal Pressure 704 F

Design External Pressure 0.0000 psig

Design Temperature External Pressure 0 F

Effective Diameter Multiplier 1.2

Material Name SA515-60

Allowable Stress, Ambient 15000. psi

Allowable Stress, Operating 14300. psi

Allowable Stress, Hydrotest 22500. psi

Material Density 0.2830 lb./cu.in.

P Number Thickness 1.2500 in.

UCS-66 Chart Curve Designation B

External Pressure Chart Name CS-2

UNS Number K02401

Product Form Plate

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Element From Node 10

Detail Type Nozzle

Detail ID APP EX-2

Dist. from "FROM" Node / Offset dist 1.0000 ft.

Nozzle Diameter 11.75 in.

Nozzle Schedule None

Nozzle Class 150

Layout Angle 0.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Material Name SA516-70

-----------------------------------------------------------------

Element From Node 20

Element To Node 30

Element Type Elliptical

Description

Distance "FROM" to "TO" 0.2500 ft.

Inside Diameter 23.625 in.

Element Thickness 0.1880 in.

Internal Corrosion Allowance 0.0000 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 150.00 psig

Design Temperature Internal Pressure 400 F

Design External Pressure 0.0000 psig

Design Temperature External Pressure 0 F

Effective Diameter Multiplier 1.2

Material Name SA516-70

Allowable Stress, Ambient 17500. psi

Allowable Stress, Operating 17500. psi

Allowable Stress, Hydrotest 26250. psi

Material Density 0.2830 lb./cu.in.

P Number Thickness 1.2500 in.

UCS-66 Chart Curve Designation B

External Pressure Chart Name CS-2

UNS Number K02700

Product Form Plate

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Elliptical Head Factor 2.0

Element From Node 20

Detail Type Nozzle

Detail ID APP EX6

Dist. from "FROM" Node / Offset dist 0.0000 in.

Nozzle Diameter 8.0 in.

Nozzle Schedule 20

Nozzle Class 150

Layout Angle 0.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Matl SA106-B

----------------------------------------------------------------

Page 56: Pv Manual

Software Verification

56 PV Elite and CodeCalc Verification and Quality Assurance Manual

Element From Node 30

Element To Node 40

Element Type Cylinder

Description

Distance "FROM" to "TO" 5.0000 ft.

Inside Diameter 30.000 in.

Element Thickness 1.5000 in.

Internal Corrosion Allowance 0.0000 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 1000.0 psig

Design Temperature Internal Pressure 150 F

Design External Pressure 0.0000 psig

Design Temperature External Pressure 0 F

Effective Diameter Multiplier 1.2

Material Name SA516-55

Allowable Stress, Ambient 13800. psi

Allowable Stress, Operating 13800. psi

Allowable Stress, Hydrotest 20700. psi

Material Density 0.2830 lb./cu.in.

P Number Thickness 1.2500 in.

UCS-66 Chart Curve Designation C

External Pressure Chart Name CS-2

UNS Number K01800

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Element From Node 30

Detail Type Nozzle

Detail ID APP EX-7

Dist. from "FROM" Node / Offset dist 2.0000 ft.

Nozzle Diameter 4.0 in.

Nozzle Schedule None

Nozzle Class 150

Layout Angle 0.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Matl SA516-60

---------------------------------------------------------------

Element From Node 40

Element To Node 50

Element Type Cylinder

Description

Distance "FROM" to "TO" 5.0000 ft.

Inside Diameter 30.000 in.

Element Thickness 0.3750 in.

Internal Corrosion Allowance 0.0000 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 250.00 psig

Design Temperature Internal Pressure 150 F

Design External Pressure 0.0000 psig

Design Temperature External Pressure 0 F

Effective Diameter Multiplier 1.2

Material Name SA516-55

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Element From Node 40

Detail Type Nozzle

Detail ID APP L EX-1

Dist. from "FROM" Node / Offset dist 3.0000 ft.

Nozzle Diameter 4.0 in.

Nozzle Schedule None

Nozzle Class 150

Layout Angle 180.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Matl SA106-B

---------------------------------------------------------------

Page 57: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 57

Element From Node 50

Element To Node 60

Element Type Cylinder

Description

Distance "FROM" to "TO" 5.0000 ft.

Inside Diameter 60.000 in.

Element Thickness 0.7500 in.

Internal Corrosion Allowance 0.0000 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 250.00 psig

Design Temperature Internal Pressure 700 F

Design External Pressure 0.0000 psig

Design Temperature External Pressure 0 F

Effective Diameter Multiplier 1.2

Material Name SA515-70

Allowable Stress, Ambient 17500. psi

Allowable Stress, Operating 14300. psi

Allowable Stress, Hydrotest 26250. psi

Material Density 0.2830 lb./cu.in.

P Number Thickness 1.2500 in.

UCS-66 Chart Curve Designation A

External Pressure Chart Name CS-2

UNS Number K03101

Product Form Plate

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Element From Node 50

Detail Type Nozzle

Detail ID APP EX-3

Dist. from "FROM" Node / Offset dist 2.0000 ft.

Nozzle Diameter 11.75 in.

Nozzle Schedule None

Nozzle Class 150

Layout Angle 0.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Material Name SA516-70

Element From Node 50

Detail Type Nozzle

Detail ID APP EX-3B

Dist. from "FROM" Node / Offset dist 2.0000 ft.

Nozzle Diameter 11.75 in.

Nozzle Schedule None

Nozzle Class 150

Layout Angle 180.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Material Name SA516-70

----------------------------------------------------------------

Element From Node 60

Element To Node 70

Element Type Cylinder

Description

Distance "FROM" to "TO" 5.0000 ft.

Inside Diameter 96.000 in.

Element Thickness 2.0000 in.

Internal Corrosion Allowance 0.06250 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 425.00 psig

Design Temperature Internal Pressure 800 F

Design External Pressure 0.0000 psig

Design Temperature External Pressure 0 F

Effective Diameter Multiplier 1.2

Material Name SA516-70

Allowable Stress, Ambient 17500. psi

Allowable Stress, Operating 11400. psi

Allowable Stress, Hydrotest 26250. psi

Material Density 0.2830 lb./cu.in.

P Number Thickness 1.2500 in.

UCS-66 Chart Curve Designation B

External Pressure Chart Name CS-2

UNS Number K02700

Product Form Plate

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Page 58: Pv Manual

Software Verification

58 PV Elite and CodeCalc Verification and Quality Assurance Manual

Element From Node 60

Detail Type Nozzle

Detail ID APP EX-4

Dist. from "FROM" Node / Offset dist 2.0000 ft.

Nozzle Diameter 16.0 in.

Nozzle Schedule None

Nozzle Class 150

Layout Angle 0.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Material Name SA516-70

-----------------------------------------------------------------

Element From Node 70

Element To Node 80

Element Type Cylinder

Description

Distance "FROM" to "TO" 5.0000 ft.

Inside Diameter 83.000 in.

Element Thickness 2.0000 in.

Internal Corrosion Allowance 0.2500 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.2500 in.

Design Internal Pressure 500.00 psig

Design Temperature Internal Pressure 400 F

Design External Pressure 0.0000 psig

Design Temperature External Pressure 0 F

Effective Diameter Multiplier 1.2

Material Name SA515-70

Allowable Stress, Ambient 17500. psi

Allowable Stress, Operating 13700. psi

Allowable Stress, Hydrotest 26250. psi

Material Density 0.2830 lb./cu.in.

P Number Thickness 1.2500 in.

UCS-66 Chart Curve Designation A

External Pressure Chart Name CS-2

UNS Number K03101

Product Form Plate

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Element From Node 70

Detail Type Nozzle

Detail ID APP EX-5

Dist. from "FROM" Node / Offset dist 2.0000 ft.

Nozzle Diameter 14.5 in.

Nozzle Schedule None

Nozzle Class 150

Layout Angle 0.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Matl SA515-60

------------------------------------------------------------------

Element From Node 80

Element To Node 90

Element Type Cylinder

Description

Distance "FROM" to "TO" 5.0000 ft.

Inside Diameter 42.000 in.

Element Thickness 0.5630 in.

Internal Corrosion Allowance 0.1250 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.2500 in.

Design Internal Pressure 300.00 psig

Design Temperature Internal Pressure 650 F

Design External Pressure 0.0000 psig

Design Temperature External Pressure 0 F

Effective Diameter Multiplier 1.2

Material Name SA515-70

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Element From Node 80

Detail Type Nozzle

Detail ID APP 8

Dist. from "FROM" Node / Offset dist 2.0000 ft.

Nozzle Diameter 10.0 in.

Nozzle Schedule 80

Nozzle Class 150

Layout Angle 0.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Material Name SA106-B

----------------------------------------------------------------

Page 59: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 59

Element From Node 90

Element To Node 95

Element Type Flat

Description

Distance "FROM" to "TO" 0.04692 ft.

Inside Diameter 42.000 in.

Element Thickness 0.5630 in.

Internal Corrosion Allowance 0.1250 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.2500 in.

Design Internal Pressure 5.0000 psig

Design Temperature Internal Pressure 650 F

Design External Pressure 0.0000 psig

Design Temperature External Pressure 0 F

Effective Diameter Multiplier 1.2

Material Name SA515-70

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Flat Head Attachment Factor 0.30000001

Small diameter if Non-Circular 0.0000 in.

------------------------------------------------------------------

Element From Node 95

Element To Node 100

Element Type Cylinder

Description

Distance "FROM" to "TO" 15.375 ft.

Inside Diameter 53.270 in.

Element Thickness 0.9900 in.

Internal Corrosion Allowance 0.3125 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.2500 in.

Design Internal Pressure 100.00 psig

Design Temperature Internal Pressure 350 F

Design External Pressure 100.00 psig

Design Temperature External Pressure 350 F

Effective Diameter Multiplier 1.2

Material Name SA516-70

Allowable Stress, Ambient 17500. psi

Allowable Stress, Operating 17500. psi

Allowable Stress, Hydrotest 26250. psi

Material Density 0.2830 lb./cu.in.

P Number Thickness 1.2500 in.

UCS-66 Chart Curve Designation B

External Pressure Chart Name CS-2

UNS Number K02700

Product Form Plate

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Element From Node 95

Detail Type Nozzle

Detail ID DUPPS

Dist. from "FROM" Node / Offset dist 2.0000 ft.

Nozzle Diameter 24.0 in.

Nozzle Schedule None

Nozzle Class 150

Layout Angle 0.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Matl SA106-B

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014

INPUT VALUES, Nozzle Description: APP EX-7 From: 30

Pressure for Reinforcement Calculations P 1000.000 psig

Temperature for Internal Pressure Temp 150 F

Maximum Allowable Pressure New & Cold 10.48 psig

Shell Material SA516-55

Shell Allowable Stress at Temperature S 13800.00 psi

Shell Allowable Stress at Ambient Sa 13800.00 psi

Inside Diameter of Cylindrical Shell D 30.0000 in.

Shell Finished (Minimum) Thickness t 1.5000 in.

Shell Internal Corrosion Allowance c 0.0000 in.

Shell External Corrosion Allowance co 0.0000 in.

Distance from Cylinder/Cone Centerline L1 12.0000 in.

Distance from Bottom/Left Tangent 7.2500 ft.

User Entered Minimum Design Metal Temperature -20.00 F

Type of Element Connected to the Shell: Nozzle

Page 60: Pv Manual

Software Verification

60 PV Elite and CodeCalc Verification and Quality Assurance Manual

Material SA516-60

Material UNS Number K02100

Material Specification/Type Plate

Allowable Stress at Temperature Sn 15000.00 psi

Allowable Stress at Ambient Sna 15000.00 psi

Diameter Basis (for tr calc only) ID

Layout Angle 0.00 deg

Diameter 4.0000 in.

Corrosion Allowance can 0.0000 in.

Joint Efficiency of Shell Seam at Nozzle E1 1.00

Joint Efficiency of Nozzle Neck En 1.00

Outside Projection ho 4.0000 in.

Weld leg size between Nozzle and Pad/Shell Wo 0.5000 in.

Groove weld depth between Nozzle and Vessel Wgnv 1.5000 in.

Inside Projection h 0.0000 in.

Weld leg size, Inside Element ot Shell Wi 0.0000 in.

ASME Code Weld Type per UW-16 None

Class of attached Flange 150

Grade of attached Flange GR 1.1

The Pressure Design option was Design Pressure + static head.

Nozzle Sketch (may not represent actual weld type/configuration)

Insert Nozzle No Pad, no Inside projection

Note: Checking Nozzle 90 degrees to the Longitudinal axis.

Reinforcement CALCULATION, Description: APP EX-7

ASME Code, Section VIII, Division 1, 1998, A-98 UG-37 to UG-45

Actual Inside Diameter Used in Calculation 4.000 in.

Actual Thickness Used in Calculation 0.500 in.

Nozzle input data check completed without errors.

Reqd thk per UG-37(a) of Cylindrical Shell, TR [Int. Press]

= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (1000.00*15.0000)/(13800*1.00-0.6*1000.00)

= 1.1364 in.

Reqd thk per UG-37(a) of Cylindrical Shell, TR [Mapnc]

= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (10.48*15.0000)/(13800*1.00-0.6*10.48)

= 0.0114 in.

Reqd thk per UG-37(a) of Nozzle Wall, TRN [Int. Press]

= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (1000.00*2.00)/(15000*1.00-0.6*1000.00)

= 0.1389 in.

Reqd thk per UG-37(a) of Nozzle Wall, TRN [Mapnc]

= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (10.48*2.00)/(15000*1.00-0.6*10.48)

= 0.0014 in.

UG-40, Limits of Reinforcement: [Internal Pressure]

Parallel to Vessel Wall (Diameter Limit) D1 13.0950 in.

Parallel to Vessel Wall, opening length d 6.5473 in.

Normal to Vessel Wall (Thickness Limit), no pad Tlnp 1.2500 in.

UG-40, Limits of Reinforcement: [Mapnc]

Parallel to Vessel Wall (Diameter Limit) D1 13.0950 in.

Parallel to Vessel Wall, opening length d 6.5473 in.

Normal to Vessel Wall (Thickness Limit), no pad Tlnp 1.2500 in.

Results of Nozzle Reinforcement Area Calculations:

AREA AVAILABLE, A1 to A5 | Design | External | Mapnc |

Area Required Ar | 3.720 | NA | 0.037 sq.in. |

Area in Shell A1 | 6.101 | NA | 9.784 sq.in. |

Area in Nozzle Wall A2 | 1.135 | NA | 1.567 sq.in. |

Area in Inward Nozzle A3 | 0.000 | NA | 0.000 sq.in. |

Area in Welds A41+A42+A43| 0.250 | NA | 0.250 sq.in. |

Area in Element A5 | 0.000 | NA | 0.000 sq.in. |

TOTAL AREA AVAILABLE Atot | 7.486 | NA | 11.601 sq.in.|

The Internal Pressure Case Governs the Analysis.

Nozzle Angle Used in Area Calculations 37.66 Degs.

The area available without a pad is Sufficient.

Area Required [A]:

Page 61: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 61

= (d * tr*F + 2 * tn * tr*F * (1-fr1)) UG-37(c)

= (6.5473 * 1.1364*0.5 +2 * 0.5000 * 1.1364*0.5*(1-1.00))

= 3.720 sq.in.

Reinforcement Areas per Figure UG-37.1

Area Available in Shell [A1]:

= d(E1*t - F*tr) - 2 * tn( E1*t - F*tr) * (1 - fr1)

= 6.547 (1.00 * 1.5000 - 0.5 * 1.136) - 2 * 0.500(1.00 * 1.5000 - 0.5 * 1.1364) * (1 - 1.000)

= 6.101 sq.in.

Area Available in Nozzle Projecting Outward [A2]:

= (2 * tlnp) * (tn - trn) * fr2/sin(alpha3)

= (2 * 1.250) * (0.5000 - 0.1389) * 1.0000/sin(52.7)

= 1.135 sq.in.

See Appendix L, L-7.7.7(b) for more information.

Area Available in Inward Weld + Outward Weld [A41 + A43]:

= Wo^(2) * fr2 + (Wi-can/0.707)^(2) * fr2

= 0.5000^(2) * 1.0000 + (0.0000)^(2) * 1.0000

= 0.250 sq.in.

Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:

MDMT of the Nozzle Neck to Flange Weld, Curve: C

----------------------------------------------------------------------

Govrn. thk, tg = 0.500 , tr = 0.139 , c = 0.0000 in. , E* = 1.00

Stress Ratio = tr * (E*)/(tg - c) = 0.278 , Temp. Reduction = 110 F

Min Metal Temp. w/o impact per UCS-66 -36 F

Min Metal Temp. at Required thickness (UCS 66.1) -146 F

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)), Curve: C

----------------------------------------------------------------------

Govrn. thk, tg = 0.500 , tr = 0.139 , c = 0.0000 in. , E* = 1.00

Stress Ratio = tr * (E*)/(tg - c) = 0.278 , Temp. Reduction = 110 F

Min Metal Temp. w/o impact per UCS-66 -36 F

Min Metal Temp. at Required thickness (UCS 66.1) -146 F

Governing MDMT of all the sub-joints of this Junction: -146 F

ANSI Flange MDMT including Temperature reduction per UCS-66.1:

Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) -20 F

Flange MDMT with Temp reduction per UCS-66(b)(1)(b) -20 F

Flange MDMT with Temp reduction per UCS-66(b)(1)(c) -155 F

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is:

Design Pressure/Ambient Rating = 1000.00/285.00 = 3.509

Note: Use the minimum value from (b)(1)(b) and (b)(1)(c) above as the calculated nozzle flange MDMT.

Weld Size Calculations, Description: APP EX-7

Intermediate Calc. for nozzle/shell Welds Tmin 0.5000 in.

Results Per UW-16.1:

| Required Thickness | Actual Thickness

Nozzle Weld | 0.2500 = Min per Code | 0.3535 = 0.7 * Wo in.

Weld Strength and Weld Loads per UG-41.1, Sketch (a) or (b)

Weld Load [W]:

= (A-A1+2*tn*fr1*(E1*t-tr))*Sv

= (3.7201 - 6.1009 + 2 * 0.5000 * 1.0000 *(1.00 * 1.5000 - 0.5682)) * 13800

= 0.00 lb.

F is always set to 1.0 throughout the calculation.

Weld Load [W1]:

= (A2+A5+A4-(Wi-Can/.707)^(2)*fr2)*Sv

= (1.1350 + 0.0000 + 0.2500 - 0.0000 * 1.00) * 13800

= 19112.62 lb.

Weld Load [W2]:

= (A2 + A3 + A4 + (2 * tn * t * fr1)) * Sv

= (1.1350 + 0.0000 + 0.2500 + (1.5000)) * 13800

= 39812.62 lb.

Weld Load [W3]:

= (A2+A3+A4+A5+(2*tn*t*fr1))*S

= (1.1350 + 0.0000 + 0.2500 + 0.0000 + (1.5000)) * 13800

= 39812.62 lb.

Strength of Connection Elements for Failure Path Analysis

Shear, Outward Nozzle Weld [Sonw]:

= (pi/2) * Dlo * Wo * 0.49 * Snw

= (3.1416/2.0) * 8.1841 * 0.5000 * 0.49 * 13800

= 43465. lb.

Page 62: Pv Manual

Software Verification

62 PV Elite and CodeCalc Verification and Quality Assurance Manual

Shear, Nozzle Wall [Snw]:

= (pi *(Dlr + Dlo)/4) * (Thk - Can) * 0.7 * Sn

= (3.1416 * 3.6829) * (0.5000 - 0.0000) * 0.7 * 15000

= 60743. lb.

Tension, Shell Groove Weld [Tngw]:

= (pi/2) * Dlo * (Wgnvi-Cas) * 0.74 * Sng

= (3.1416/2.0) * 8.1841 * (1.5000 - 0.0000) * 0.74 * 15000

= 214045. lb.

Strength of Failure Paths:

PATH11 = (SONW + SNW) = (43464 + 60742) = 104207 lb.

PATH22 = (Sonw + Tpgw + Tngw + Sinw)

= (43464 + 0 + 214045 + 0)

= 257509 lb.

PATH33 = (Sonw + Tngw + Sinw)

= (43464 + 214045 + 0)

= 257509 lb.

Summary of Failure Path Calculations:

Path 1-1 = 104207 lb., must exceed W = 0 lb. or W1 = 19112 lb.

Path 2-2 = 257509 lb., must exceed W = 0 lb. or W2 = 39812 lb.

Path 3-3 = 257509 lb., must exceed W = 0 lb. or W3 = 39812 lb.

Maximum Allowable Pressure for this Nozzle at this Location:

Converged Max. Allow. Pressure in Operating case 1301.887 psig

The MAWP of this junction was limited by the parent Shell/Head.

Checking Nozzle in plane parallel to the vessel axis.

Reinforcement CALCULATION, Description: APP EX-7

ASME Code, Section VIII, Division 1, 1998, A-98 UG-37 to UG-45

Actual Inside Diameter Used in Calculation 4.000 in.

Actual Thickness Used in Calculation 0.500 in.

Nozzle input data check completed without errors.

Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press]

= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (1000.00*15.0000)/(13800*1.00-0.6*1000.00)

= 1.1364 in.

Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Mapnc]

= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (10.48*15.0000)/(13800*1.00-0.6*10.48)

= 0.0114 in.

Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press]

= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (1000.00*2.00)/(15000*1.00-0.6*1000.00)

= 0.1389 in.

Reqd thk per UG-37(a)of Nozzle Wall, Trn [Mapnc]

= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (10.48*2.00)/(15000*1.00-0.6*10.48)

= 0.0014 in.

UG-40, Limits of Reinforcement : [Internal Pressure]

Parallel to Vessel Wall (Diameter Limit) Dl 8.0000 in.

Parallel to Vessel Wall Rn+tn+t 4.0000 in.

Normal to Vessel Wall (Thickness Limit), no pad Tlnp 1.2500 in.

UG-40, Limits of Reinforcement : [Mapnc]

Parallel to Vessel Wall (Diameter Limit) Dl 8.0000 in.

Parallel to Vessel Wall Rn+tn+t 4.0000 in.

Normal to Vessel Wall (Thickness Limit), no pad Tlnp 1.2500 in.

Results of Nozzle Reinforcement Area Calculations:

AREA AVAILABLE, A1 to A5 | Design | External | Mapnc

Area Required Ar | 4.545 | NA | 0.046 sq.in.

Area in Shell A1 | 1.455 | NA | 5.954 sq.in.

Area in Nozzle Wall A2 | 0.903 | NA | 1.247 sq.in.

Area in Inward Nozzle A3 | 0.000 | NA | 0.000 sq.in.

Area in Welds A41+A42+A43 | .250 | NA | 0.250 sq.in.

Area in Element A5 | 0.000 | NA | 0.000 sq.in.

TOTAL AREA AVAILABLE Atot | 2.607 | NA | 7.451 sq.in.

The Internal Pressure Case Governs the Analysis.

Nozzle Angle Used in Area Calculations 90.00 Degs.

The area available without a pad is Insufficient.

RECOMMENDATION: Add a Reinforcing Pad.

Page 63: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 63

SELECTION OF POSSIBLE REINFORCING PADS: Diameter Thickness

Based on the Estimated Diameter Limit: 7.9375 0.6875 in.

Area Required [A]:

= (d * tr*F + 2 * tn * tr*F * (1-fr1)) UG-37(c)

= (4.0000*1.1364*1.0+2*0.5000*1.1364*1.0*(1-1.00))

= 4.545 sq.in.

Reinforcement Areas per Figure UG-37.1

Area Available in Shell [A1]:

= d(E1*t - F*tr) - 2 * tn(E1*t - F*tr) * (1 - fr1)

= 4.000 (1.00 * 1.5000 - 1.0 * 1.136) - 2 * 0.500(1.00 * 1.5000 - 1.0 * 1.1364) * (1 - 1.000)

= 1.455 sq.in.

Area Available in Nozzle Projecting Outward [A2]:

= (2 * tlnp) * (tn - trn) * fr2

= (2 * 1.250) * (0.5000 - 0.1389) * 1.0000

= 0.903 sq.in.

Area Available in Inward Weld + Outward Weld [A41 + A43]:

= Wo^(2) * fr2 + (Wi-can/0.707)^(2) * fr2

= 0.5000^(2) * 1.0000 + (0.0000)^(2) * 1.0000

= 0.250 sq.in.

UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.]

Wall Thickness for Internal/External pressures ta = 0.1389 in.

Wall Thickness per UG16(b), tr16b = 0.0625 in.

Wall Thickness, shell/head, internal pressure trb1 = 1.1364 in.

Wall Thickness tb1 = max(trb1, tr16b) = 1.1364 in.

Wall Thickness tb2 = max(trb2, tr16b) = 0.0625 in.

Wall Thickness per table UG-45 tb3 = 0.2256 in.

Determine Nozzle Thickness candidate [tb]:

= min[tb3, max(tb1,tb2)]

= min[0.226 , max(1.136 , 0.063)]

= 0.2256 in.

Minimum Wall Thickness of Nozzle Necks [tUG-45]:

= max(ta, tb)

= max(0.1389 , 0.2256)

= 0.2256 in.

Available Nozzle Neck Thickness = 0.5000 in. --> OK

Weld Size Calculations, Description: APP EX-7

Intermediate Calc. for nozzle/shell Welds Tmin 0.5000 in.

Results Per UW-16.1:

Required Thickness Actual Thickness

Nozzle Weld 0.2500 = Min per Code 0.3535 = 0.7 * Wo in.

Weld Strength and Weld Loads per UG-41.1, Sketch (a) or (b)

Weld Load [W]:

= (A-A1+2*tn*fr1*(E1*t-tr))*Sv

= (4.5455 - 1.4545 + 2 * 0.5000 * 1.0000 *(1.00 * 1.5000 - 1.1364)) * 13800

= 47672.73 lb.

F is always set to 1.0 throughout the calculation.

Weld Load [W1]:

= (A2+A5+A4-(Wi-Can/.707)^(2)*fr2)*Sv

= (0.9028 + 0.0000 + 0.2500 - 0.0000 * 1.00) * 13800

= 15908.33 lb.

Weld Load [W2]:

= (A2 + A3 + A4 + (2 * tn * t * fr1)) * Sv

= (0.9028 + 0.0000 + 0.2500 + (1.5000)) * 13800

= 36608.33 lb.

Weld Load [W3]:

= (A2+A3+A4+A5+(2*tn*t*fr1))*S

= (0.9028 + 0.0000 + 0.2500 + 0.0000 + (1.5000)) * 13800

= 36608.33 lb.

Strength of Connection Elements for Failure Path Analysis

Shear, Outward Nozzle Weld [Sonw]:

= (pi/2) * Dlo * Wo * 0.49 * Snw

= (3.1416/2.0) * 5.0000 * 0.5000 * 0.49 * 13800

= 26554. lb.

Shear, Nozzle Wall [Snw]:

= (pi *(Dlr + Dlo)/4) * (Thk - Can) * 0.7 * Sn

= (3.1416 * 2.2500) * (0.5000 - 0.0000) * 0.7 * 15000

= 37110. lb.

Page 64: Pv Manual

Software Verification

64 PV Elite and CodeCalc Verification and Quality Assurance Manual

Tension, Shell Groove Weld [Tngw]:

= (pi/2) * Dlo * (Wgnvi-Cas) * 0.74 * Sng

= (3.1416/2.0) * 5.0000 * (1.5000 - 0.0000) * 0.74 * 15000

= 130769. lb.

Strength of Failure Paths:

PATH11 = (SONW + SNW) = (26554 + 37110) = 63664 lb.

PATH22 = (Sonw + Tpgw + Tngw + Sinw)

= (26554 + 0 + 130768 + 0) = 157323 lb.

PATH33 = (Sonw + Tngw + Sinw)

= (26554 + 130768 + 0) = 157323 lb.

Summary of Failure Path Calculations:

Path 1-1 = 63664 lb., must exceed W = 47672 lb. or W1 = 15908 lb.

Path 2-2 = 157323 lb., must exceed W = 47672 lb. or W2 = 36608 lb.

Path 3-3 = 157323 lb., must exceed W = 47672 lb. or W3 = 36608 lb.

Maximum Allowable Pressure for this Nozzle at this Location:

Converged Max. Allow. Pressure in Operating case 801.776 psig

Approximate M.A.P.(NC) for given geometry 830.279 psig

The Drop for this Nozzle is : 5.1594 in.

The Cut Length for this Nozzle is, Drop + Ho + H + T : 11.4842 in.

Percent Elongation Calculations:

Percent Elongation per UCS-79 (50*tnom/Rf)*(1-Rf/Ro) 11.111 %

Please Check Requirements of UCS-79 as Elongation is > 5%.

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014

Page 65: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 65

Problem 4 - Vessel under Internal and External Pressure on Legs

This example, known as cmpwisd.pvi, is a comparison between another program (CompressTM

ver. 4.4) and PV Elite. Several items are tested such as basic results for internal and external pressure, nozzle reinforcement, natural frequency and leg design are compared. The results all compare within acceptable limits.

Page 66: Pv Manual

Software Verification

66 PV Elite and CodeCalc Verification and Quality Assurance Manual

PV Elite® Vessel Analysis Program: Input Data

Design Internal Pressure (for Hydrotest) 150.00 psig

Design Internal Temperature 275 F

Type of Hydrotest UG99-b

Hydrotest Position Horizontal

Projection of Nozzle from Vessel Top 0.0000 in.

Projection of Nozzle from Vessel Bottom 0.0000 in.

Minimum Design Metal Temperature -20 F

Type of Construction Welded

Special Service None

Degree of Radiography RT 1

Miscellaneous Weight Percent 0.0

Use Higher Longitudinal Stresses (Flag) Y

Select t for Internal Pressure (Flag) N

Select t for External Pressure (Flag) N

Select t for Axial Stress (Flag) N

Select Location for Stiff. Rings (Flag) N

Consider Vortex Shedding

Perform a Corroded Hydrotest N

Is this a Heat Exchanger N

User Defined Hydro. Press. (Used if > 0) 0.0000 psig

User defined MAWP 0.0000 psig

User defined MAPnc 0.0000 psig

Load Case 1 NP+EW+WI+BW

Load Case 2 NP+EW+EQ+BS

Load Case 3 NP+OW+WI+BW

Load Case 4 NP+OW+EQ+BS

Load Case 5 NP+HW+HI

Load Case 6 NP+HW+HE

Load Case 7 IP+OW+WI+BW

Load Case 8 IP+OW+EQ+BS

Load Case 9 EP+OW+WI+BW

Load Case 10 EP+OW+EQ+BS

Load Case 11 HP+HW+HI

Load Case 12 HP+HW+HE

Wind Design Code ASCE-7 93

Basic Wind Speed [V] 85.000 mile/hr

Surface Roughness Category C: Open Terrain

Importance Factor 1.0

Type of Surface Moderately Smooth

Base Elevation 2.5000 ft.

Percent Wind for Hydrotest 33.0

Using User defined Wind Press. Vs Elev. N

Damping Factor (Beta) for Wind (Ope) 0.0000

Damping Factor (Beta) for Wind (Empty) 0.0000

Damping Factor (Beta) for Wind (Filled) 0.0000

Seismic Design Code ASCE 7-88

Seismic Zone 0.000

Importance Factor 1.000

Soil Type S1

Horizontal Force Factor 2.000

Percent Seismic for Hydrotest 0.000

Design Nozzle for M.A.W.P. (maximum) Y

Consider MAP New and Cold in Noz. Design

Consider External Loads for Nozzle Des. N

Use ASME VIII-1 Appendix 1-9 N

Material Database Year 1997

Configuration Directives:

Do not use Nozzle MDMT Interpretation VIII-1 01-37 No

Use Table G instead of exact equation for "A" No

Shell Head Joints are Tapered No

Compute "K" in corroded condition No

Use Code Case 2286 No

Use the MAWP to compute the MDMT No

Using Metric Material Databases, ASME II D No

Complete Listing of Vessel Elements and Details:

Page 67: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 67

Element From Node 10

Element To Node 20

Element Type Elliptical

Description

Distance "FROM" to "TO" 0.1667 ft.

Inside Diameter 48.000 in.

Element Thickness 0.4375 in.

Internal Corrosion Allowance 0.1250 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 150.00 psig

Design Temperature Internal Pressure 275 F

Design External Pressure 15.000 psig

Design Temperature External Pressure 300 F

Effective Diameter Multiplier 1.178

Material Name SA516-60

Allowable Stress, Ambient 15000. psi

Allowable Stress, Operating 15000. psi

Allowable Stress, Hydrotest 22500. psi

Material Density 0.2830 lb./cu.in.

P Number Thickness 1.2500 in.

UCS-66 Chart Curve Designation D

External Pressure Chart Name CS-2

UNS Number K02100

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Elliptical Head Factor 2.0

Element From Node 10

Detail Type Liquid

Detail ID LIQUID BOTTOM

Dist. from "FROM" Node/Offset dist -1.0000 ft.

Height/Length of Liquid 1.1667 ft.

Liquid Density 54.28 lb./cu.ft.

Element From Node 10

Detail Type Nozzle

Detail ID N3 4"S/120

Dist. from "FROM" Node / Offset dist 0.0000 in.

Nozzle Diameter 4.0000 in.

Nozzle Schedule 120

Nozzle Class 150

Layout Angle 0.0

Blind Flange (Y/N) N

Weight of Nozzle (Used if > 0) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Matl SA106-B

Element From Node 10

Detail Type Leg

Detail ID LEGS

Dist. from "FROM" Node/Offset dist 0.1666 ft.

Diameter at Leg Centerline 50.000 in.

Leg Orientation 2

Number of Legs 4

Section Identifier W4X13

Length of Legs 3.1670 ft.

----------------------------------------------------------------

Element From Node 20

Element To Node 30

Element Type Cylinder

Description

Distance "FROM" to "TO" 13.667 ft.

Inside Diameter 48.000 in.

Element Thickness 0.5000 in.

Internal Corrosion Allowance 0.1250 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 150.00 psig

Design Temperature Internal Pressure 275 F

Design External Pressure 15.000 psig

Design Temperature External Pressure 300 F

Effective Diameter Multiplier 1.178

Material Name SA516-60

Efficiency, Longitudinal Seam 0.85

Efficiency, Circumferential Seam 0.8

Element From Node 20

Detail Type Liquid

Detail ID LIQUID CYL

Dist. from "FROM" Node / Offset dist 0.0000 ft.

Height/Length of Liquid 13.667 ft.

Liquid Density 54.288 lb./cu.ft.

Page 68: Pv Manual

Software Verification

68 PV Elite and CodeCalc Verification and Quality Assurance Manual

Element From Node 20

Detail Type Nozzle

Detail ID M-1(20"X-STG)

Dist. from "FROM" Node / Offset dist 2.5000 ft.

Nozzle Diameter 20.0 in.

Nozzle Schedule XS

Nozzle Class 150

Layout Angle 270.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Matl SA106-B

Element From Node 20

Detail Type Nozzle

Detail ID N6 3"S/160

Dist. from "FROM" Node / Offset dist 3.0000 ft.

Nozzle Diameter 3.0 in.

Nozzle Schedule 160

Nozzle Class 150

Layout Angle 0.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Matl SA106-B

---------------------------------------------------------------

Element From Node 30

Element To Node 40

Element Type Elliptical

Description

Distance "FROM" to "TO" 0.1667 ft.

Inside Diameter 48.000 in.

Element Thickness 0.4375 in.

Internal Corrosion Allowance 0.1250 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 150.00 psig

Design Temperature Internal Pressure 275 F

Design External Pressure 15.000 psig

Design Temperature External Pressure 300 F

Effective Diameter Multiplier 1.178

Material Name SA516-60

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

Elliptical Head Factor 2.0

Element From Node 30

Detail Type Liquid

Detail ID LIQUID TOP

Dist. from "FROM" Node / Offset dist 0.0000 ft.

Height/Length of Liquid 0.1667 ft.

Liquid Density 54.288 lb./cu.ft.

Element From Node 30

Detail Type Nozzle

Detail ID N1 8"S/80

Dist. from "FROM" Node / Offset dist 0.0000 in.

Nozzle Diameter 8.0 in.

Nozzle Schedule 80

Nozzle Class 150

Layout Angle 0.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Matl SA106-B

Element From Node 30

Detail Type Nozzle

Detail ID N2 6"S/80

Dist. from "FROM" Node / Offset dist 15.000 in.

Nozzle Diameter 6.0 in.

Nozzle Schedule 80

Nozzle Class 150

Layout Angle 0.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Matl SA106-B

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014

Element Thickness, Pressure, Diameter, and Allowable Stress:

Page 69: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 69

| | Int. Press | Nominal | Total Corr | Element | Allowable |

From| To | + Liq. Hd | Thickness | Allowance | Diameter | Stress(SE)|

| | psig | in. | in. | in. | psi |

------------------------------------------------------------------------

10 | 20 | 155.655 | | 0.12500 | 48.0000 | 15000.0 |

20 | 30 | 155.215 | | 0.12500 | 48.0000 | 12750.0 |

30 | 40 | 150.063 | | 0.12500 | 48.0000 | 15000.0 |

Element Required Thickness and MAWP:

| | Design | M.A.W.P. | M.A.P. | Minimum | Required |

From| To | Pressure | Corroded | New & Cold | Thickness | Thickness |

| | psig | psig | psig | in. | in. |

---------------------------------------------------------------------

10 | 20 | 150.000 | 187.524 | 272.940 | 0.43750 | 0.37561 |

20 | 30 | 150.000 | 191.140 | 262.346 | 0.50000 | 0.42085 |

30 | 40 | 150.000 | 192.802 | 272.940 | 0.43750 | 0.36649 |

Minimum 187.524 262.345

MAWP: 187.524 psig, limited by: Elliptical Head.

Internal Pressure Calculation Results:

ASME Code, Section VIII, Division 1, 1998 Code A-98 Addenda

Elliptical Head From 10 To 20 SA516-60 , UCS-66 Crv. D at 275 F

Required Thickness Due to Internal Pressure [tr]:

= (P*D*K)/(2*S*E-0.2*P) Appendix 1-4(c)

= (155.655*48.2500*1.000)/(2*15000.00*1.00-0.2*155.655)

= 0.2506 + 0.1250 = 0.3756 in.

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:

Less Operating Hydrostatic Head Pressure of 5.655 psig

= (2*S*E*t)/(K*D+0.2*t) per Appendix 1-4 (c)

= (2*15000.00*1.00*0.3125)/(1.000*48.2500+0.2*0.3125)

= 194.049 - 5.655

= 188.394 psig

Maximum Allowable Pressure, New and Cold [MAPNC]:

= (2*S*E*t)/(K*D+0.2*t) per Appendix 1-4 (c)

= (2*15000.00*1.00*0.4375)/(1.000*48.0000+0.2*0.4375)

= 272.940 psig

Actual stress at given pressure and thickness, corroded [Sact]:

= (P*(K*D+0.2*t))/(2*E*t)

= (155.655*(1.000*48.2500+0.2*0.3125))/(2*1.00*0.3125)

= 12032.133 psi

Straight Flange Required Thickness:

= (P*R)/(S*E-0.6*P) + c per UG-27 (c)(1)

= (155.655*24.1250)/(15000.00*1.00-0.6*155.655)+0.125

= 0.377 in.

Straight Flange Maximum Allowable Working Pressure:

Less Operating Hydrostatic Head Pressure of 5.278 psig

= (S*E*t)/(R+0.6*t) per UG-27 (c)(1)

= (15000.00 * 1.00 * 0.3125)/(24.1250 + 0.6 * 0.3125)

= 192.802 - 5.278

= 187.524 psig

Percent Elong. per UCS-79, VIII-1-01-57 (75*tnom/Rf)*(1-Rf/Ro) 3.916%

MDMT Calculations in the Knuckle Portion:

Govrn. thk, tg = 0.438 , tr = 0.251 , c = 0.1250 in. , E* = 1.00

Stress Ratio = tr * (E*)/(tg - c) = 0.802, Temp. Reduction = 20 F

Minimum Metal Temp. w/o impact per UCS-66 -55 F

MDMT Calculations in the Head Straight Flange:

Govrn. thk, tg = 0.438 , tr = 0.252 , c = 0.1250 in. , E* = 1.00

Stress Ratio = tr * (E*)/(tg - c) = 0.806, Temp. Reduction = 19 F

Min Metal Temp. w/o impact per UCS-66 -55 F

Cylindrical Shell From 20 To 30 SA516-60 , UCS-66 Crv. D at 275 F

Material UNS Number: K02100

Required Thickness due to Internal Pressure [tr]:

= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

= (155.215*24.1250)/(15000.00*0.85-0.6*155.215)

= 0.2959 + 0.1250

= 0.4209 in.

Page 70: Pv Manual

Software Verification

70 PV Elite and CodeCalc Verification and Quality Assurance Manual

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:

Less Operating Hydrostatic Head Pressure of 5.215 psig

= (S*E*t)/(R+0.6*t) per UG-27 (c)(1)

= (15000.00*0.85*0.3750)/(24.1250+0.6*0.3750)

= 196.355 - 5.215

= 191.140 psig

Maximum Allowable Pressure, New and Cold [MAPNC]:

= (S*E*t)/(R+0.6*t) per UG-27 (c)(1)

= (15000.00*0.85*0.5000)/(24.0000+0.6*0.5000)

= 262.346 psig

Actual stress at given pressure and thickness, corroded [Sact]:

= (P*(R+0.6*t))/(E*t)

= (155.215*(24.1250+0.6*0.3750))/(0.85*0.3750)

= 11857.222 psi

Percent Elongation per UCS-79 (50*tnom/Rf)*(1-Rf/Ro) 1.031 %

Minimum Design Metal Temperature Results:

Govrn. thk, tg = 0.500, tr = 0.296, c = 0.1250 in., E* = 0.85

Stress Ratio = tr * (E*)/(tg - c) = 0.671 , Temp. Reduction = 33 F

Minimum Metal Temp. w/o impact per UCS-66 -55 F

Elliptical Head From 30 To 40 SA516-60 , UCS-66 Crv. D at 275 F

Material UNS Number: K02100

Required Thickness due to Internal Pressure [tr]:

= (P*D*K)/(2*S*E-0.2*P) Appendix 1-4(c)

= (150.000*48.2500*1.000)/(2*15000.00*1.00-0.2*150.000)

= 0.2415 + 0.1250

= 0.3665 in.

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:

Less Operating Hydrostatic Head Pressure of 0.000 psig

= (2*S*E*t)/(K*D+0.2*t) per Appendix 1-4 (c)

= (2*15000.00*1.00*0.3125)/(1.000*48.2500+0.2*0.3125)

= 194.049 - 0.000

= 194.049 psig

Maximum Allowable Pressure, New and Cold [MAPNC]:

= (2*S*E*t)/(K*D+0.2*t) per Appendix 1-4 (c)

= (2*15000.00*1.00*0.4375)/(1.000*48.0000+0.2*0.4375)

= 272.940 psig

Actual stress at given pressure and thickness, corroded [Sact]:

= (P*(K*D+0.2*t))/(2*E*t)

= (150.000*(1.000*48.2500+0.2*0.3125))/(2*1.00*0.3125)

= 11595.000 psi

Straight Flange Required Thickness:

= (P*R)/(S*E-0.6*P) + c per UG-27 (c)(1)

= (150.000*24.1250)/(15000.00*1.00-0.6*150.000)+0.125

= 0.368 in.

Straight Flange Maximum Allowable Working Pressure:

Less Operating Hydrostatic Head Pressure of 0.000 psig

= (S*E*t)/(R+0.6*t) per UG-27 (c)(1)

= (15000.00 * 1.00 * 0.3125)/(24.1250 + 0.6 * 0.3125)

= 192.802 - 0.000

= 192.802 psig

Percent Elong. per UCS-79, VIII-1-01-57 (75*tnom/Rf)*(1-Rf/Ro) 3.916 %

MDMT Calculations in the Knuckle Portion:

Govrn. thk, tg = 0.438, tr = 0.241, c = 0.1250 in., E* = 1.00

Stress Ratio = tr * (E*)/(tg - c) = 0.777 Temp. Reduction = 22 G

Minimum Metal Temp. w/o impact per UCS-66 -55 F

MDMT Calculations in the Head Straight Flange:

Govrn. thk, tg = 0.438 , tr = 0.243 , c = 0.1250 in. , E* = 1.00

Stress Ratio = tr * (E*)/(tg - c) = 0.777 , Temp. Reduction = 22 F

Min Metal Temp. w/o impact per UCS-66 -55 F

Heads and Shells Exempted to -20F (-29C) by paragraph UG-20F.

Hydrostatic Test Pressure Results:

Page 71: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 71

Pressure per UG99b = 1.5 * M.A.W.P. * Sa/S 281.286 psig

Pressure per UG99b[34] = 1.5 * Design Pres * Sa/S 225.000 psig

Pressure per UG99c = 1.5 * M.A.P. - Head(Hyd) 391.784 psig

Pressure per UG100 = 1.25 * M.A.W.P. * Sa/S 234.405 psig

Pressure per PED = 1.43 * MAWP 268.159 psig

UG-99(b), Test Pressure Calculation:

= Test Factor * MAWP * Stress Ratio

= 1.5 * 187.524 * 1.000

= 281.286 psig

Horizontal Test performed per: UG-99b

Please note that Nozzle, Shell, Head, Flange, etc. MAWPs are all considered when determining the hydrotest pressure for

those test types that are based on the MAWP of the vessel.

Stresses on Elements due to Hydrostatic Test Pressure:

From| To | Stress | Allowable | Ratio | Pressure |

10 | 20 | 15553.9| 22500.0 | 0.691 | 283.02 |

20 | 30 | 16182.1| 22500.0 | 0.719 | 283.02 |

30 | 40 | 15553.9| 22500.0 | 0.691 | 283.02 |

Elements Suitable for Internal Pressure

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

External Pressure Calculation Results:

ASME Code, Section VIII, Division 1, 1998 Code A-98 Addenda

Elliptical Head From 10 To 20 Ext. Chart: CS-2 at 300 F

Results for Maximum Allowable External Pressure (MAEP):

TCA OD D/t Factor A B

0.312 48.88 156.40 0.0008880 11829.65

EMAP = B/(K0*D/t) = 11829.6465/(0.9000 * 156.4000) = 84.0413 psig

Results for Required Thickness (Tca):

TCA OD D/t Factor A B

0.127 48.88 386.22 0.0003596 5214.29

EMAP = B/(K0*D/t) = 5214.2939/(0.9000 * 386.2247) = 15.0008 psig

Check the requirements of UG-33(a)(1) using P = 1.67 * External Design pressure for this head.

Material UNS Number: K02100

Required Thickness due to Internal Pressure [tr]:

= (P*D*K)/(2*S*E-0.2*P) Appendix 1-4(c)

= (25.050*48.2500*1.000)/(2*15000.00*1.00-0.2*25.050)

= 0.0403 + 0.1250 = 0.1653 in.

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:

= ((2*S*E*t)/(K*D+0.2*t))/1.67 per Appendix 1-4 (c)

= ((2*15000.00*1.00*0.3125)/(1.000*48.2500+0.2*0.3125))/1.67

= 116.197 psig

Maximum Allowable External Pressure [MAEP]:

= min(MAEP, MAWP)

= min(84.04 , 116.1971)

= 84.041 psig

Thickness requirements per UG-33(a)(1) do not govern the required thickness of this head.

Cylindrical Shell From 20 To 30 External Chart: CS-2 at 300 F

Elastic Modulus from Chart: CS-2 at 300 F: 0.290E + 08 psi

Results for Maximum Allowable External Pressure (MAEP):

TCA OD SLEN D/t L/D Factor A B

0.375 49.00 176.00 130.67 3.5918 0.0002450 3552.49

EMAP = (4*B)/(3*(D/t)) = (4 * 3552.4888)/(3* 130.6667) = 36.2499 psig

Results for Required Thickness (Tca):

TCA OD SLEN D/t L/D Factor A B

0.264 49.00 176.00 185.84 3.5918 0.0001442 2090.75

EMAP = (4*B)/(3*(D/t)) = (4 * 2090.7549)/(3* 185.8376) = 15.0006 psig

Results for Maximum Stiffened Length (Slen):

TCA OD SLEN D/t L/D Factor A B

0.375 49.00 422.26 130.67 8.6175 0.0001015 1471.20

EMAP = (4*B)/(3*(D/t)) = (4 * 1471.2010)/(3* 130.6667) = 15.0123 psig

Elliptical Head From 30 To 40 Ext. Chart: CS-2 at 300 F

Elastic Modulus from Chart: CS-2 at 300F: 0.290E + 08 psi

Page 72: Pv Manual

Software Verification

72 PV Elite and CodeCalc Verification and Quality Assurance Manual

Results for Maximum Allowable External Pressure (MAEP):

TCA OD D/t Factor A B

0.312 48.88 156.40 0.0008880 11829.65

EMAP = B/(K0*D/t) = 11829.6465/(0.9000 * 156.4000) = 84.0413 psig

Results for Required Thickness (Tca):

TCA OD D/t Factor A B

0.127 48.88 386.22 0.0003596 5214.29

EMAP = B/(K0*D/t) = 5214.2939/(0.9000 * 386.2247) = 15.0008 psig

Check the requirements of UG-33(a)(1) using P = 1.67 * External Design pressure for this head.

Material UNS Number: K02100

Required Thickness due to Internal Pressure [tr]:

= (P*D*K)/(2*S*E-0.2*P) Appendix 1-4(c)

= (25.050*48.2500*1.000)/(2*15000.00*1.00-0.2*25.050)

= 0.0403 + 0.1250 = 0.1653 in.

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:

= ((2*S*E*t)/(K*D+0.2*t))/1.67 per Appendix 1-4 (c)

= ((2*15000.00*1.00*0.3125)/(1.000*48.2500+0.2*0.3125))/1.67

= 116.197 psig

Maximum Allowable External Pressure [MAEP]:

= min(MAEP, MAWP)

= min(84.04 , 116.1971)

= 84.041 psig

Thickness requirements per UG-33(a)(1) do not govern the required thickness of this head.

External Pressure Calculations

| | Section | Outside | Corroded | Factor | Factor |

From| To | Length | Diameter | Thickness | A | B |

| | ft. | in. | in. | | psi |

-------------------------------------------------------------------

10 | 20 | No Calc | 48.8750 | 0.31250 | 0.00088804 | 11829.6 |

20 | 30 | 14.6667 | 49.0000 | 0.37500 | 0.00024500 | 3552.49 |

30 | 40 | No Calc | 48.8750 | 0.31250 | 0.00088804 | 11829.6 |

External Pressure Calculations

| | External | External | External | External |

From| To | Actual T. | Required T.| Des. Press.| M.A.W.P. |

| | in. | in. | psig | psig |

-----------------------------------------------------------

10 | 20 | 0.43750 | 0.25155 | 15.0000 | 84.0413 |

20 | 30 | 0.50000 | 0.38867 | 15.0000 | 36.2499 |

30 | 40 | 0.43750 | 0.25155 | 15.0000 | 84.0413 |

Minimum 36.250

External Pressure Calculations

| | Actual Len. | Allow. Len. | Ring Inertia | Ring Inertia |

From| To | Bet. Stiff. | Bet. Stiff. | Required | Available |

| | ft. | ft. | in**4 | in**4 |

--------------------------------------------------------------------

10 | 20 | No Calc | No Calc | No Calc | No Calc |

20 | 30 | 14.6667 | 35.1881 | No Calc | No Calc |

30 | 40 | No Calc | No Calc | No Calc | No Calc |

Elements Suitable for External Pressure

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014

RESULTS FOR LEGS: Operating Case Description: LEGS

Legs attached to: node 10

Section Properties: I Beam W4X13

USA AISC 1989 Steel Table

Overall Leg Length 3.167 ft.

Effective Leg Length Leglen 3.167 ft.

Distance Leg Up Side of Vessel 0.167 ft.

Number of Legs Nleg 4

Cross Sectional Area for W4X13 Aleg 3.830 sq.in

Section Inertia (strong axis) 11.300 in4

Section Inertia (weak axis) 3.860 in4

Section Modulus (strong axis) 5.460 in.3

Section Modulus (weak axis) 1.900 in.3

Radius of Gyration (strong axis) 1.720 in.

Radius of Gyration (weak axis) 1.000 in.

Leg Orientation - Weak Axis

Page 73: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 73

Overturning Moment at top of Legs 5525.9 ft.lb.

Total Weight Load at top of Legs W 14706.1 lb.

Total Shear force at top of Legs 804.0 lb.

Additional force in Leg due to Bracing Fadd 0.0 lb.

Occasional Load Factor Occfac 1.330

Effective Leg End Condition Factor k 1.500

The Legs are Not Cross Braced

The Leg Shear Force includes Wind and Seismic Effects

Maximum Shear at top of one Leg [Vleg]:

= (Max(Wind, Seismic) + Fadd) * (Imax/Itot)

= (804.0 + 0.0) * (11.3/30.32)

= 300.44 lb.

Axial Compression, Leg furthest from N.A. [Sma]

= ((W/Nleg)+(Mleg/(Nlegm*Rn)))/Aleg)

= ((14706/4) + (66310/(2 * 2.08)))/3.830)

= 1306.20 psi

Axial Compression, Leg closest to the N.A. [Sva]

= (W/Nleg)/Aleg

= (14706/4)/3.830

= 959.93 psi

Allowable Comp. for the Selected Leg (KL/r < Cc) [Sa]:

= Occfac * (1-(kl/r)²/(2*Cc²))*Fy/(5/3+3*(Kl/r)/(8*Cc)-(Kl/r³)/(8*Cc³)

= 1.33 * (1-( 57.01)²/(2 * 134.58²)) * 32150/(5/3+3*(57.01)/(8* 134.58)-(57.01³)/(8* 134.58³)

= 21433.56 psi

Bending at the Bottom of the Leg closest to the N.A. [S]:

= (Vleg * Leglen * 12/Smdwa)

= (300.44 * 3.17 * 12/1.90)

= 6009.50 psi

Allowable Bending Stress[Sb]:

= (0.6 * Fy * Occfac)

= (0.6 * 32150 * 1.33)

= 25655.70 psi

AISC Unity Check [Sc](must be < or = to 1.00):

= (Sma/Sa)+(0.85*S)/((1-Sma/Spex)*Sb)

= (1306/21433)+(0.85 *6009.499)/((1 -1306/62170) *25655)

= 0.2643

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014

Nozzle Calculation Summary:

Description | MAWP | Ext | APNC | UG45 | [tr] | Weld | Areas or

| psig | | psig | | Path | Stresses

-------------------------------------------------------------------

N3 4"S/120 | 187.52 | OK | ... | OK | 0.332 | OK | Passed

M-1(20"X-STG) | 191.14 | OK | ... | OK | 0.438 | OK | Passed

N6 3"S/160 | 191.14 | OK | ... | OK | 0.314 | OK | Passed

N1 8"S/80 | 192.80 | OK | ... | OK | 0.435 | OK | Passed

N2 6"S/80 | 157.16 | OK | ... | Failed | 0.432 | OK | Passed

N2 6"S/80 | 157.16 | OK | ... | Failed | 0.432 | OK | Passed

--------------------------------------------------------------------

Min. - Nozzles 157.16 N2 6"S/80

Min. Shell&Flgs 187.52 10 20 262.34

Computed Vessel M.A.W.P. 157.16 psig

Warning: A Nozzle Reinforcement is governing the MAWP of this Vessel.

Check the Spatial Relationship between the Nozzles

From | Node | Nozzle Description | Y Coordinate | Layout Angle | Dia. Limit

| 10 | N3 4"S/120 | 0.000 | 0.000 | 7.748

| 20 | M-1(20"X-STG) | 32.000 | 270.000 | 38.500

| 20 | N6 3"S/160 | 38.000 | 0.000 | 5.748

| 30 | N1 8"S/80 | 0.000 | 0.000 | 16.000

| 30 | N2 6"S/80 | 0.000 | 0.000 | 12.272

The nozzle spacing is computed by the following:

= Sqrt(ll² + lc²) where

ll - Arc length along the inside vessel surface in the long. direction

lc - Arc length along the inside vessel surface in the circ. direction

If any interferences/violations are found, they will be noted below.

No interference violations have been detected!

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014

Page 74: Pv Manual

Software Verification

74 PV Elite and CodeCalc Verification and Quality Assurance Manual

Problem 5 - Vertical Vessel with Wind and Seismic Loads

This sample problem is called t101 and tests the wind load and seismic calculations performed by PV Elite Math Cad was used to generate and test the programs wind generation routines, as well as the seismic response and loads. The loads from PV Elite are in perfect agreement with the Math Cad spreadsheet.

Page 75: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 75

PV Elite® Vessel Analysis Program: Input Data

Design Internal Pressure (for Hydrotest) 225.00 psig

Design Internal Temperature 350 F

Type of Hydrotest UG99-b Note 34

Hydrotest Position Vertical

Projection of Nozzle from Vessel Top 0.0000 in.

Projection of Nozzle from Vessel Bottom 0.0000 in.

Minimum Design Metal Temperature -20 F

Type of Construction Welded

Special Service Air/Water/Steam

Degree of Radiography RT 1

Miscellaneous Weight Percent 0.0

Use Higher Longitudinal Stresses (Flag) Y

Select t for Internal Pressure (Flag) Y

Select t for External Pressure (Flag) N

Select t for Axial Stress (Flag) N

Select Location for Stiff. Rings (Flag) N

Consider Vortex Shedding N

Perform a Corroded Hydrotest N

Is this a Heat Exchanger N

User Defined Hydro. Press. (Used if > 0) 0.0000 psig

User defined MAWP 0.0000 psig

User defined MAPnc 0.0000 psig

Load Case 1 NP+EW+WI

Load Case 2 NP+EW+EQ

Load Case 3 NP+OW+WI

Load Case 4 NP+OW+EQ

Load Case 5 NP+HW+HI

Load Case 6 NP+HW+HE

Load Case 7 IP+OW+WI

Load Case 8 IP+OW+EQ

Load Case 9 EP+OW+WI

Load Case 10 EP+OW+EQ

Load Case 11 HP+HW+HI

Load Case 12 HP+HW+HE

Wind Design Code ASCE-7 93

Basic Wind Speed [V] 100.00 mile/hr

Surface Roughness Category C: Open Terrain

Importance Factor 1.05

Type of Surface Moderately Smooth

Base Elevation 0.0000 ft.

Percent Wind for Hydrotest 33.0

Using User defined Wind Press. Vs Elev. N

Damping Factor (Beta) for Wind (Ope) 0.0100

Damping Factor (Beta) for Wind (Empty) 0.0000

Damping Factor (Beta) for Wind (Filled) 0.0000

Seismic Design Code ASCE-7 93

UBC Seismic Zone (1=1,2=2a,3=2b,4=3,5=4) 5.000

UBC Importance Factor 1.250

UBC Soil Type S2

UBC Horizontal Force Factor 4.000

UBC Percent Seismic for Hydrotest 20.000

Design Nozzle for Des. Press. + St. Head Y

Consider MAP New and Cold in Noz. Design

Consider External Loads for Nozzle Des. N

Use ASME VIII-1 Appendix 1-9 N

Material Database Year 1997

Configuration Directives:

Do not use Nozzle MDMT Interpretation VIII-1 01-37 No

Use Table G instead of exact equation for "A" No

Shell Head Joints are Tapered No

Compute "K" in corroded condition No

Use Code Case 2286 No

Use the MAWP to compute the MDMT No

Using Metric Material Databases, ASME II D No

Complete Listing of Vessel Elements and Details:

Page 76: Pv Manual

Software Verification

76 PV Elite and CodeCalc Verification and Quality Assurance Manual

Element From Node 10

Element To Node 20

Element Type Skirt Sup.

Description

Distance "FROM" to "TO" 12.000 ft.

Skirt Inside Diameter 120.00 in.

Diameter of Skirt at Base 120.00 in.

Skirt Thickness 0.6250 in.

Internal Corrosion Allowance 0.0000 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Temperature Internal Pressure 0 F

Design Temperature External Pressure 0 F

Effective Diameter Multiplier 1.2

Material Name SA516-70

Allowable Stress, Ambient 17500. psi

Allowable Stress, Operating 17500. psi

Allowable Stress, Hydrotest 26250. psi

Material Density 0.2830 lb./in3

P Number Thickness 1.2500 in.

UCS-66 Chart Curve Designation B

External Pressure Chart Name CS-2

UNS Number Plate

Product Form

Efficiency, Longitudinal Seam 1.0

Efficiency, Head-to-Skirt or Circ. Seam 0.85

--------------------------------------------------------------------

Element From Node 20

Element To Node 30

Element Type Elliptical

Description

Distance "FROM" to "TO" 0.2500 ft.

Inside Diameter 120.00 in.

Element Thickness 0.9375 in.

Internal Corrosion Allowance 0.1250 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 225.00 psig

Design Temperature Internal Pressure 350 F

Design External Pressure 15.000 psig

Design Temperature External Pressure 350 F

Effective Diameter Multiplier 1.2

Material Name SA516-70

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 0.85

Elliptical Head Factor 2.0

Element From Node 20

Detail Type Liquid

Detail ID LIQUID 20

Dist. from "FROM" Node / Offset dist -2.5000 ft.

Height/Length of Liquid 2.7500 ft.

Liquid 56.160 b./ft³

Element From Node 20

Detail Type Nozzle

Detail ID NOZZLE F

Dist. from "FROM" Node / Offset dist 0.0000 in.

Nozzle Diameter 32.0 in.

Nozzle Schedule 80

Nozzle Class 300

Layout Angle 0.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Matl SA516-70

---------------------------------------------------------------------

Element From Node 30

Element To Node 40

Element Type Cylinder

Description

Distance "FROM" to "TO" 12.000 ft.

Inside Diameter 120.00 in.

Element Thickness 0.9375 in.

Internal Corrosion Allowance 0.1250 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 225.00 psig

Design Temperature Internal Pressure 350 F

Design External Pressure 15.000 psig

Design Temperature External Pressure 350 F

Effective Diameter Multiplier 1.2

Material Name SA516-70

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 0.85

Page 77: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 77

Element From Node 30

Detail Type Liquid

Detail ID LIQUID 30

Dist. from "FROM" Node / Offset dist 0.0000 ft.

Height/Length of Liquid 12.000 ft.

Liquid Density 56.160 lb./ft3

Element From Node 30

Detail Type Ring

Detail ID LARGE END

Dist. from "FROM" Node / Offset dist 11.950 ft.

Stiffening Ring Moment of Inertia 1.4100 in4

Distance from Shell Surface to Centr 2.4370 in.

Stiffening Ring Cross Sectional Area 2.2100 in2

Material Name SA-36

Stiffening Ring Section Name WT3X7.5

Height of Section Ring 0.0000 in.

Using Custom Stiffener Section No

Element From Node 30

Detail Type Nozzle

Detail ID NOZZLE D

Dist. from "FROM" Node / Offset dist 10.000 ft.

Nozzle Diameter 20.000 in.

Nozzle Schedule 80

Nozzle Class 300

Layout Angle 0.0

Blind Flange (Y/N) Y

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Matl SA106-C

------------------------------------------------------------------

Element From Node 40

Element To Node 50

Element Type Conical

Description

Distance "FROM" to "TO" 12.000 ft.

Inside Diameter 120.00 in.

Element Thickness 0.9375 in.

Internal Corrosion Allowance 0.1250 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 225.00 psig

Design Temperature Internal Pressure 350 F

Design External Pressure 15.000 psig

Design Temperature External Pressure 350 F

Effective Diameter Multiplier 1.2

Material Name SA516-70

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 0.85

Cone Diameter at "To" End 72.000 in.

Design Length of Cone 144.00 in.

Half Apex Angle of Cone 9.4623222

Toriconical (Y/N) N

Element From Node 40

Detail Type Nozzle

Detail ID NOZZLE C

Dist. from "FROM" Node / Offset dist 10.000 ft.

Nozzle Diameter 20.000 in.

Nozzle Schedule 80

Nozzle Class 300

Layout Angle 0.0

Blind Flange (Y/N) Y

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Matl SA106-C

-------------------------------------------------------------------------

Element From Node 50

Element To Node 60

Element Type Cylinder

Description

Distance "FROM" to "TO" 12.000 ft.

Inside Diameter 72.000 in.

Element Thickness 0.6250 in.

Internal Corrosion Allowance 0.1250 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 225.00 psig

Design Temperature Internal Pressure 350 F

Design External Pressure 15.000 psig

Design Temperature External Pressure 350 F

Effective Diameter Multiplier 1.2

Material Name SA516-70

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 0.85

Page 78: Pv Manual

Software Verification

78 PV Elite and CodeCalc Verification and Quality Assurance Manual

Element From Node 50

Detail Type Ring

Detail ID SMALL END

Dist. from "FROM" Node / Offset dist 0.09999 ft.

Stiffening Ring Moment of Inertia 0.7030 in4

Distance from Shell Surface to Centr 1.7830 in.

Stiffening Ring Cross Sectional Area 1.1900 in2

Material Name SA-36

Stiffening Ring Section Name L2.5X2.5X0.2500 [Hard Way]

Height of Section Ring 0.0000 in.

Using Custom Stiffener Section No

Element From Node 50

Detail Type Nozzle

Detail ID NOZZLE B

Dist. from "FROM" Node / Offset dist 10.000 ft.

Nozzle Diameter 20.0 in.

Nozzle Schedule 80

Nozzle Class 300

Layout Angle 0.0

Blind Flange (Y/N) Y

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Matl SA106-C

----------------------------------------------------------------------

Element From Node 60

Element To Node 70

Element Type Cylinder

Description

Distance "FROM" to "TO" 12.000 ft.

Inside Diameter 72.000 in.

Element Thickness 0.6250 in.

Internal Corrosion Allowance 0.1250 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 225.00 psig

Design Temperature Internal Pressure 350 F

Design External Pressure 15.000 psig

Design Temperature External Pressure 350 F

Effective Diameter Multiplier 1.2

Material Name SA516-70

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 0.85

Element From Node 60

Detail Type Nozzle

Detail ID NOZZLE A

Dist. from "FROM" Node / Offset dist 10.000 ft.

Nozzle Diameter 20.0 in.

Nozzle Schedule 80

Nozzle Class 300

Layout Angle 0.0

Blind Flange (Y/N) Y

Weight of Nozzle ( Used if > 0 ) 0.0000 lb.

Grade of Attached Flange GR 1.1

Nozzle Material Name SA106-C

----------------------------------------------------------------------

Element From Node 70

Element To Node 80

Element Type Elliptical

Description

Distance "FROM" to "TO" 0.2500 ft.

Inside Diameter 72.000 in.

Element Thickness 0.6250 in.

Internal Corrosion Allowance 0.1250 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 225.00 psig

Design Temperature Internal Pressure 350 F

Design External Pressure 15.000 psig

Design Temperature External Pressure 350 F

Effective Diameter Multiplier 1.2

Material Name SA516-70

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 0.85

Elliptical Head Factor 2.0

Element From Node 70

Detail Type Nozzle

Detail ID NOZZLE E

Dist. from "FROM" Node / Offset dist 0.0000 in.

Nozzle Diameter 18.000 in.

Nozzle Schedule 80

Nozzle Class 300

Layout Angle 0.0

Blind Flange (Y/N) N

Weight of Nozzle ( Used if > 0 ) 464.12 lb.

Grade of Attached Flange GR 1.1

Nozzle Matl SA106-C

Page 79: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 79

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014

Wind Analysis Results

User Entered Importance Factor is 1.050

ASCE-7 Gust Factor (Gh, Gbar) Dynamic 1.224

ASCE-7 Shape Factor (Cf) for the Vessel is 0.604

User Entered Basic Wind Speed 100.0 mile/hr

Exposure Category C

Table Lookup Value Alpha from Table C6 7.0000

Table Lookup Value Zg from Table C6 900.0000

Table Lookup Value Do from Table C6 0.0050

Wind Load Results per ASCE-7 93:

Sample Calculation for the First Element:

Roughness Factor = 1.000

Values [cf1] and [cf2]

Because RoughFact = 1 and DQZ > 2.5 and H/D > 7.0

Interpolating to find the final cf:

Because H / D < 25.0

CF = CF1 + (CF2-CF1) * (H/D - 7.0)/(25.0 - 7.0)

= 0.600 + (0.700 -0.600) * (7.756 - 7.0)/(25.0 - 7.0)

= 0.604

Value of Alpha, Zg is taken from Table C6-2 [Alpha, Zg]

For Exposure Category C:

Alpha = 7.000, Zg = 900.000 ft.

Height of Interest for First Element [z]

= Centroid Hgt + Base Height

= 6.000 + 0.000

= 6.000 ft.

but: z = Max(15.000 , 6.000) = 15.000 ft.

Because z < 15 feet, use 15 feet to compute kz.

Velocity Pressure Coefficient [kZ]:

= 2.58(z/zg)^(2/Alpha): z is Elevation of First Element

= 2.58(15.000/900)^(2/7.0)

= 0.801

Determine if Static or Dynamic Gust Factor Applies

Height to Diameter ratio:

= Maximum Height(length)^2/Sum of Area of the Elements

= 62.052(^2)/496.467

= 7.756

Vibration Frequency = 9.076 Hz

Because H/D > 5 Or Frequency < 1.0: Dynamic Analysis Implemented

Element O/Dia = 3 ft.

Vibration Damping Factor (Operating) Beta = 0.01000

For Terrain Category C

S = 1.000, Gamma = 0.230, Drag Coeff. = 0.005, Alpha = 7.000

Compute [fbar]

= 10.5 * Frequency(Hz) * Vessel Height(ft)/(S * Vr(mph))

= 10.5 * 9.076 (Hz) * 62.052 (ft)/S * 1.000 (mph)

= 59.134

Because FBAR > 40: FBAR = 40.000

Wind Pressure - (performed in Imperial Units) [qz]

Importance Factor: I = 1.050

Wind Speed = 100.000 mile/hr

qz = 0.00256 * kZ * (I * Vr)²

= 0.00256 * 0.801 *(1.050 * 100.000)² = 22.605 psf

Force on the First Element [Fz]

= qz * Gh * CF * Wind Area

= 22.605 * 1.224 * 0.604 * 20952.002

= 2433.031 lb.

Element | z | GH | Area | qz | Force

| ft. | | in² | psf | lb.

------------------------------------------------------

Node 10 to 20 | 6.0 | 1.224 | 20952.0 | 22.6 | 2433.0

Node 20 to 30 | 12.1 | 1.224 | 438.8 | 22.6 | 50.9

Node 30 to 40 | 18.2 | 1.224 | 21060.0 | 23.9 | 2586.5

Node 40 to 50 | 29.8 | 1.224 | 16912.8 | 27.5 | 2388.4

Node 50 to 60 | 42.2 | 1.224 | 12657.6 | 30.4 | 1975.9

Node 60 to 70 | 54.2 | 1.224 | 12657.6 | 32.6 | 2122.2

Node 70 to 80 | 61.0 | 1.224 | 1549.5 | 33.8 | 268.7

Wind Vibration Calculations

Page 80: Pv Manual

Software Verification

80 PV Elite and CodeCalc Verification and Quality Assurance Manual

This evaluation is based on work by Kanti Mahajan and Ed Zorilla.

Nomenclature

Cf - Correction factor for natural frequency

D - Average internal diameter of vessel ft.

Df - Damping Factor < 0.75 Unstable, > 0.95 Stable

Dr - Average internal diameter of top half of vessel ft.

f - Natural frequency of vibration (Hertz)

f1 - Natural frequency of bare vessel based on a unit value of (D/L²)(10^4)

L - Total height of structure ft.

Lc - Total length of conical section(s) of vessel ft.

tb - Uncorroded plate thickness at bottom of vessel in.

V30 - Design Wind Speed provided by user mile/hr

Vc - Critical wind velocity mile/hr

Vw - Maximum wind speed at top of structure mile/hr

W - Total corroded weight of structure lb.

Ws - Cor. vessel weight excl. weight of parts which do not effect stiff. lb

Z - Maximum amplitude of vibration at top of vessel in.

Dl - Logarithmic decrement (taken as 0.03 for Welded Structures)

Vp - Vib. Chance, <= 0.200E + 02 (High); 0.200E + 02 < 0.250E + 02 (Probable)

P30 - Wind pressure 30 feet above the base

Check other Conditions and Basic Assumptions:

#1 - Total Cone Length / Total Length < 0.5

12.000/60.500 = 0.198

#2 - (D / L²) * 10^(4) < 8.0 (English Units)

- (8.13/60.50²) * 10^(4) = 22.198 [Geometry Violation]

Compute the vibration possibility. If Vp > 0.250E+02 no chance. [Vp]:

= W/(L * Dr2)

= 117904/(60.50 * 6.4182)

= 0.47319E+02

Since Vp is > 25.0000 no further vibration analysis is required!

The Natural Frequency for the Vessel (Ope...) is 9.07597 Hz.

Wind Load Calculation

| | Wind | Wind | Wind | Height | Element |

From| To | Height | Diameter | Area | Factor | Wind Load |

| | ft. | ft. | in2 | psf | lb. |

----------------------------------------------------------------

10 | 20 | 6.00000 | 12.1250 | 20952.0 | 22.6045 | 2433.03 |

20 | 30 | 12.1250 | 12.1875 | 438.750 | 22.6045 | 50.9494 |

30 | 40 | 18.2500 | 12.1875 | 21060.0 | 23.9073 | 2586.52 |

40 | 50 | 29.7500 | 9.78750 | 16912.8 | 27.4894 | 2388.40 |

50 | 60 | 42.2500 | 7.32500 | 12657.6 | 30.3872 | 1975.92 |

60 | 70 | 54.2500 | 7.32500 | 12657.6 | 32.6371 | 2122.22 |

70 | 80 | 61.0253 | 7.32500 | 1549.50 | 33.7532 | 268.680 |

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014

Earthquake Analysis Results

The UBC Zone Factor for the Vessel is .............0.4000

The Importance Factor as Specified by the User is .1.250

The UBC Frequency and Soil Factor (C) is .........2.750

The UBC Force Factor as Specified by the User is ..4.000

The UBC Total Weight (W) for the Vessel is ........126210.5 lb.

The UBC Total Shear (V) for the Vessel is .........43384.9 lb.

The UBC Top Shear (Ft) for the Vessel is ..........0.0 lb.

The Natural Frequency for the Vessel (Ope...) is 9.07597 Hz.

Earthquake Load Calculation

| | Earthquake | Earthquake | Element | Element |

From| To | Height | Weight | Ope Load | Emp Load |

| | ft. | lb. | lb. | lb. |

----------------------------------------------------------

10 | 20 | 6.00000 | 12680.2 | 1220.39 | 1032.21 |

20 | 30 | 12.1250 | 14729.2 | 2864.71 | 1032.28 |

30 | 40 | 18.2500 | 68792.1 | 20138.3 | 3927.62 |

40 | 50 | 30.2500 | 12799.0 | 6210.44 | 5252.83 |

50 | 60 | 42.2500 | 6990.49 | 4737.57 | 4007.07 |

60 | 70 | 54.2500 | 6909.11 | 6012.43 | 5085.35 |

70 | 80 | 60.3750 | 1701.74 | 1648.05 | 1393.93 |

Top Load 62.00 0 0

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014

The following table is for the Operating Case.

Wind/Earthquake Shear, Bending

Page 81: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 81

| | Distance to | Cumulative | Earthquake | Wind | Earthquake |

From| To | Support | Wind Shear | Shear | Bending | Bending |

| | ft. | lb. | lb. | ft.lb. | ft.lb. |

-------------------------------------------------------------------------

10 | 20 | 6.00000 | 11825.7 | 42831.9 | 349678. | 1.224E+06 |

20 | 30 | 12.1250 | 9392.69 | 41611.5 | 222368. | 717696. |

30 | 40 | 18.2500 | 9341.74 | 38746.8 | 220026. | 707651. |

40 | 50 | 30.2500 | 6755.22 | 18608.5 | 123444. | 363520. |

50 | 60 | 42.2500 | 4366.82 | 12398.1 | 56712.1 | 177480. |

60 | 70 | 54.2500 | 2390.90 | 7660.48 | 16165.8 | 57129.0 |

70 | 80 | 60.3750 | 268.680 | 1648.05 | 208.320 | 1277.81 |

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014

Conical Reinforcement Calculations, ASME VIII Div. 1, App. 1

Conical Section From 40 To 50 SA516-70

Elastic Modulus Data from ASME Section II Part D at 350 F

Elastic Modulus for Cone Material 0.281E + 08 at 350 F

Elastic Modulus for Small Cylinder Material 0.281E + 08 at 350 F

Elastic Modulus for Large Cylinder Material 0.281E + 08 at 350 F

Elastic Modulus for Large End Reinforcement 0.281E + 08 at 350 F

Elastic Modulus for Small End Reinforcement 0.281E + 08 at 350 F

Axial Force on Small End of Cone 15601.45 lb.

Axial Force on Large End of Cone 28400.43 lb.

Moment on Small End of Cone 185709.89 ft.lb.

Moment on Large End of Cone 377508.22 ft.lb.

Both ends of the Cone are Lines of Support.

Maximum Centroid Reinforcement Distance Large End 1.7591 in.

Maximum Centroid Reinforcement Distance Small End 1.0698 in.

No ring was found close enough to the small end to be considered.

Reinforcement Calculations for Cone/Large Cylinder:

Required Area of Reinforcement for Large End Under Internal Pressure

Large end ratio of pressure to allowable stress 0.01286

Large end max. half apex angle w/o reinforcement 30.000 degrees

Large end actual half apex angle 9.462 degrees

Required Area of Reinforcement for Large End Under External Pressure

Large end ratio of pressure to allowable stress 0.00086

Large end max. half apex angle w/o reinforcement 2.143 degrees

Large end actual half apex angle 9.462 degrees

Intermediate Value [k]:

= max(Y/(Srl * Erl), 1)

= max(.49175E+12/(14500.0 * 28099998), 1)

= 1.2069

where [Y] is:

= Large End All. Stress * Large End Elastic Modulus (Ext. temp.)

= 17500.0 * 28099998

= 491749965824.0 psi^2

Allowable Stress of Large End Material (Ext. Temp) 17500.0 psi

Allowable Stress of Cone Material (Ext. Temp) 17500.0 psi

Area of Reinforcement Required in Large End Shell [Arl]:

= (k*Ql*Rl*tan(angle)/(Ss*E1))*(1-0.25*((P*Rl-Ql)/Ql)*(delta/alpha)

= (1.2069*926.1444*60.9375*0.167/(17500*1.00)) * (1-.25*((15.00*60.938-926.144)/926.144) * (2.143/9.462)

= 0.6492 in2

Area of Reinforcement Available in Large End Shell [Ael]:

= .55*(Dl*ts)^.5 * (ts + tc/Cos(alpha))

= .55 * (121.875 * 0.812)^.5 * (0.812 + 0.812/ 0.986)

= 8.9551 in2

Summary of Reinforcement Area, Large End, External Pressure:

Area of reinforcement required per App. 1-8(1) 0.6337 in2

Area of reinforcement in shell per App. 1-8(2) 8.9551 in2

Area of reinforcement in stiffening ring 2.2100 in2

Intermediate Results, Large End, External Pressure

Area Available in Cone, Shell, and Reinforcement 125.08 in2

Force per Unit Length on Shell / Cone Junction 2341.66 lb./in.

Actual Buckling Stress associated with this Force 1711.31 psi

Material Strain associated with this stress 0.000122

Required Moment of Inertia, Large End, External Pressure [I's]:

= A * Dl2 * Atl/10.9

= 0.000122 * 121.8750 * 121.8750 * 125.08/10.9

= 20.76 in.4

Page 82: Pv Manual

Software Verification

82 PV Elite and CodeCalc Verification and Quality Assurance Manual

Available Moment of Inertia, Large End, External Pressure:

| Area | Centroid | Ar*Ce | Dist | I | Ar*Di² |

Shl | 4.447 | 0.0000 | 0.000 | 0.3786 | 0.245 | 0.638 |

Con | 4.508 | -0.4561 | -2.056 | 0.8347 | 0.567 | 3.141 |

Sec | 2.210 | 2.8433 | 6.284 | -2.4646 | 1.410 | 13.424 |

TOT | 11.165 | | 4.227 | | 2.222 | 17.203 |

Centroid of Section 0.3786 Moment of Inertia 19.43

Summary of Large End Inertia Calculations

Available Moment of Inertia (Large End) * LOW * 19.425 in**4

Required Moment of Inertia (Large End) 20.448 in**4

Shape Name to Satisfy Area and Inertia Reqmts L4X4X0.7500

Reinforcement Calculations for Cone/Small Cylinder

Required Area of Reinforcement for Small End under Internal Pressure

Small end ratio of pressure to allowable stress 0.01286

Small end max. half apex angle w/o reinforcement 10.000 degrees

Small end actual half apex angle 9.462 degrees

Required Area of Reinforcement for Small End under External Pressure

Allowable Stress of Small End Material (Ext. Temp) 17500.0 psi

Allowable Stress of Cone Material (Ext. Temp) 17500.0 psi

Intermediate Value [k]:

= max(Y/(Srs * Ers), 1)

= max(.49175E+12/(17500.0 * 28099998), 1)

= 1.0000

where [Y] is:

= Small End All. Stress * Small End Elastic Modulus (Ext. temp.)

= 17500.0 * 28099998

= 491749965824.0 psi^2

Area of Reinforcement Required in Small End Shell [Ars]:

= k * Qs * Rs * tan(alpha)/(Ss * E1)

= (1.0000*881.0325*36.6250*0.1667/(17500*1.00))

= 0.3073 in2

Area of Reinforcement Available in Small End Shell [Aes]

= .55*(Ds*ts)½*[(ts-t)+(tc-tr)/cos(alpha))]

= .55*(73.250*0.500)½*[(0.500-0.416)+(0.812-0.290)/0.986)]

= 2.0432 in²

Summary of Reinforcement Area, Small End, External Pressure:

Area of reinforcement required per App. 1-8(3) 0.3073 in²

Area of reinforcement in shell per App. 1-8(4) 2.0432 in²

Area of reinforcement in stiffening ring 0.0000 in²

Intermediate Results, Small End, External Pressure:

Area Available in Cone, Shell, and Reinforcement 133.28 in2

Force per Unit Length on Shell / Cone Junction 3335.18 lb./in.

Actual Buckling Stress associated with this Force 1374.77 psi

Material Strain associated with this stress 0.000098

Required Moment of Inertia, Small End, External Pressure [I's]:

= A * Ds2 * Ats/10.9

= 0.000098 * 73.2500 * 73.2500 * 133.28/10.9

= 6.42 in.4

Available Moment of Inertia, Small End, External Pressure:

| Area | Centroid | Ar*Ce | Dist | I | Ar*Di² |

Shl | 1.664 | 0.0000 | 0.000 | 0.1726 | 0.035 | 0.0 |

Con | 2.742 | 0.2774 | 0.760 | -0.1048 | 0.225 | 0.0 |

Sec | 0.000 | 0.2500 | 0.000 | -0.0774 | 0.000 | 0.0 |

TOT | 4.406 | | 0.760 | 0.260 | 0.1 |

Centroid of Section 0.1726 Moment of Inertia 0.34

Summary of Small End Inertia Calculations

Available Moment of Inertia (Small End) *LOW* 0.340 in**4

Required Moment of Inertia (Small End) 6.419 in**4

Shape Name to Satisfy Area and Inertia Reqmts L4X4X0.3750

The following calculations are only required per 1-5(g)(1) and do include external loads due to wind or seismic.

These discontinuity stresses are computed at the shell/cone junction and do not include effects of local stiffening from

a junction ring.

Results for Discontinuity Stresses per Bednar p. 236 2nd Edition

Page 83: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 83

Stress Type | Stress | Allowable | Location

--------------------------------------------------------------

Tensile Stress | 24142.27 | 59500.00 | Small Cyl. Long.

Compres. Stress | -5902.10 | -59500.00 | Small Cyl. Long.

Membrane Stress | 22370.42 | 22312.50 | Small End Tang.

Tensile Stress | 11378.65 | 59500.00 | Cone Longitudinal

Compres. Stress | 0.00 | -59500.00 | Cone Longitudinal *

Tensile Stress | 16213.70 | 22312.50 | Cone Tangential

Tensile Stress | 23455.68 | 59500.00 | Large Cyl. Long.

Compres. Stress | -5908.25 | -59500.00 | Large Cyl. Long.

Membrane Stress | 9573.28 | -22312.50 | Large End Tang.

Tensile Stress | 23576.70 | 59500.00 | Cone Longitudinal

Compres. Stress | -5787.23 | -59500.00 | Cone Longitudinal

Compres Stress | 9804.50 | -22312.50 | Cone Tangential

An asterisk (*) denotes that this stress was not applicable for this combination of loads.

Cone Large End Not Adequately Reinforced!

Cone Small End Not Adequately Reinforced!

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014

Problem 6 - Comparison against CAESAR II

This example tests the forces and moments as well as the support reactions for a vertical vessel mounted on lug supports. The load on the vessel was a 1 g load applied in the "x" direction. The results between the two programs are perfect.

Page 84: Pv Manual

Software Verification

84 PV Elite and CodeCalc Verification and Quality Assurance Manual

PV Elite® Vessel Analysis Program: Input Data

Design Internal Pressure (for Hydrotest) 100.00 psig

Design Internal Temperature 200 F

Type of Hydrotest UG99-b

Hydrotest Position Horizontal

Projection of Nozzle from Vessel Top 0.0000 in.

Projection of Nozzle from Vessel Bottom 0.0000 in.

Minimum Design Metal Temperature -20 F

Type of Construction Welded

Special Service None

Degree of Radiography RT 1

Miscellaneous Weight Percent 0.0

Use Higher Longitudinal Stresses (Flag) Y

Select t for Internal Pressure (Flag) N

Select t for External Pressure (Flag) N

Select t for Axial Stress (Flag) N

Select Location for Stiff. Rings (Flag) N

Consider Vortex Shedding

Is this a Heat Exchanger Y

User Defined Hydro. Press. (Used if > 0) 0.0000 psig

User defined MAWP 0.0000 psig

User defined MAPnc 0.0000 psig

Load Case 1 NP+EW+WI+BW

Load Case 2 NP+EW+EQ+BS

Load Case 3 NP+OW+WI+BW

Load Case 4 NP+OW+EQ+BS

Load Case 5 NP+HW+HI

Load Case 6 NP+HW+HE

Load Case 7 IP+OW+WI+BW

Load Case 8 IP+OW+EQ+BS

Load Case 9 EP+OW+WI+BW

Load Case 10 EP+OW+EQ+BS

Load Case 11 HP+HW+HI

Load Case 12 HP+HW+HE

Wind Design Code ASCE-7 93

Basic Wind Speed [V] 70.000 mile/hr

Surface Roughness Category C: Open Terrain

Importance Factor 1.0

Type of Surface Moderately Smooth

Base Elevation 0.0000 ft.

Percent Wind for Hydrotest 33.0

Using User defined Wind Press. Vs Elev. N

Damping Factor (Beta) for Wind (Ope) 0.0000

Damping Factor (Beta) for Wind (Empty) 0.0000

Damping Factor (Beta) for Wind (Filled) 0.0000

Seismic Design Code ASCE-7 93

Seismic Coefficient Cc 1.000

Performance Factor 1.000

Amplification Factor 1.000

Seismic Coefficient Av 1.000

Design Nozzle for M.A.W.P. + Static Head Y

Consider MAP New and Cold in Noz. Design

Consider External Loads for Nozzle Des. N

Use ASME VIII-1 Appendix 1-9 N

Material Database Year 1999

Configuration Directives:

Do not use Nozzle MDMT Interpretation VIII-1 01-37 No

Use Table G instead of exact equation for "A" No

Shell Head Joints are Tapered No

Compute "K" in corroded condition No

Use Code Case 2286 No

Use the MAWP to compute the MDMT No

Using Metric Material Databases, ASME II D No

Complete Listing of Vessel Elements and Details:

Page 85: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 85

Element From Node 10

Element To Node 25

Element Type Cylinder

Description

Distance "FROM" to "TO" 10.000 ft.

Inside Diameter 23.250 in.

Element Thickness 0.3750 in.

Internal Corrosion Allowance 0.0000 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 10.000 psig

Design Temperature Internal Pressure 70 F

Design External Pressure 5.0000 psig

Design Temperature External Pressure 70 F

Effective Diameter Multiplier 1.2

Material Name SA516-70

Allowable Stress, Ambient 17500. psi

Allowable Stress, Operating 17500. psi

Allowable Stress, Hydrotest 26250. psi

Density of Material 0.2830 lb./cu.in.

P Number Thickness 1.2500 in.

UCS-66 Chart Curve Designation B

External Pressure Chart Name CS-2

UNS Number K02700

Product Form Plate

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

-----------------------------------------------------------------

Element From Node 25

Element To Node 30

Element Type Cylinder

Description

Distance "FROM" to "TO" 10.000 ft.

Inside Diameter 23.250 in.

Element Thickness 0.3750 in.

Internal Corrosion Allowance 0.0000 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 10.000 psig

Design Temperature Internal Pressure 70 F

Design External Pressure 5.0000 psig

Design Temperature External Pressure 70 F

Effective Diameter Multiplier 1.2

Material Name SA516-70

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

-----------------------------------------------------------------

Element From Node 30

Element To Node 40

Element Type Skirt Sup.

Description

Distance "FROM" to "TO" 5.0000 ft.

Skirt Inside Diameter 23.250 in.

Diameter of Skirt at Base 23.250 in.

Skirt Thickness 0.3750 in.

Internal Corrosion Allowance 0.0000 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Temperature Internal Pressure 70 F

Design Temperature External Pressure 70 F

Effective Diameter Multiplier 1.2

Material Name SA516-70

Efficiency, Longitudinal Seam 1.0

Efficiency, Head-to-Skirt or Circ. Seam 1.0

------------------------------------------------------------------

Element From Node 40

Element To Node 50

Element Type Cylinder

Description

Distance "FROM" to "TO" 10.000 ft.

Inside Diameter 23.250 in.

Element Thickness 0.3750 in.

Internal Corrosion Allowance 0.0000 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 10.000 psig

Design Temperature Internal Pressure 70 F

Design External Pressure 5.0000 psig

Design Temperature External Pressure 70 F

Effective Diameter Multiplier 1.2

Material Name SA516-70

Efficiency, Longitudinal Seam 1.0

Efficiency, Circumferential Seam 1.0

------------------------------------------------------------------

Page 86: Pv Manual

Software Verification

86 PV Elite and CodeCalc Verification and Quality Assurance Manual

Element From Node 50

Element To Node 60

Element Type Cylinder

Description

Distance "FROM" to "TO" 10.000 ft.

Inside Diameter 23.250 in.

Element Thickness 0.3750 in.

Internal Corrosion Allowance 0.0000 in.

Nominal Thickness 0.0000 in.

External Corrosion Allowance 0.0000 in.

Design Internal Pressure 10.000 psig

Design Temperature Internal Pressure 70 F

Design External Pressure 5.0000 psig

Design Temperature External Pressure 70 F

Effective Diameter Multiplier 1.2

Material Name SA516-70

Efficiency, Longitudinal Seam 1.0

Efficiency, circumferential Seam 1.0

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014

Earthquake Analysis Results

The ASCE-7 93 Factor Ac is .......................... 1.000

The ASCE-7 93 Factor Av is .......................... 1.000

The ASCE-7 93 Factor Cc is .......................... 1.000

The ASCE-7 93 Factor P is .......................... 1.000

The Element Mass Multiplier (Ac * Av * Cc * P) is . 1.000

The Natural Frequency for the Vessel (Ope...) is 4.43804 Hz.

Earthquake Load Calculation

| | Earthquake | Earthquake | Element | Element |

From| To | Height | Weight | Ope Load | Emp Load |

| | ft. | lb. | lb. | lb. |

----------------------------------------------------------

10 | 25 | 5.00000 | 945.193 | 945.193 | 945.193 |

25 | 30 | 15.0000 | 945.193 | 945.193 | 945.193 |

30 | 40 | 22.5000 | 472.597 | 472.597 | 472.597 |

40 | 50 | 25.0000 | 945.193 | 945.193 | 945.193 |

50 | 60 | 35.0000 | 945.193 | 945.193 | 9453193 |

PV Elite® is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2014

Problem 7 - ASME Section VIII Division 2 Sample Comparisons

These are example problems that compare PV Elite against ASME PTB-3-2010. Discrepancies are noted below the table. The ASME PTB-3 2010 results are per the edition of ASME VIII-2.

Problem E3.2 - MDMT Stress Reduction

Variable PV Elite ASME PTB-3-2010

tn 1.81250 in. 1.8125 in.

MDMT (from Figure 3.8) -19º F -19.1º F

D 150.250 in. 150.25 in.

tr 1.2035 in. 1.2035 in.

Rts 0.713 0.7132

Tr 29º F 28.3º F

MDMT (final) -47º F -47.4º F

Page 87: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 87

Problem E4.3.1 - Cylindrical Shell

Variable PV Elite ASME PTB-3-2010

D 90.250 in. 90.25 in.

tr 0.7229 in. 0.723 in.

tr + c 0.8479 in. 0.848 in.

Problem E4.3.2 - Conical Shell

Variable PV Elite ASME PTB-3-2010

Dc 150.250 in. 150.25 in.

a 21.038º 21.0375º

tr 1.2894 in. 1.289 in.

tr + c 1.4144 in. 1.414 in.

Problem E4.3.3 - Spherical Shell

Variable PV Elite ASME PTB-3-2010

tr 2.72979 in. 2.730 in.

Problem E4.3.4 - Torispherical Head

Variable PV Elite ASME PTB-3-2010

MAWP 132.954 psi 133.0 psi

Problem E4.3.5 - Elliptical Head MAWP

Variable PV Elite ASME PTB-3-2010

MAWP 549.6555 psi 548.9 psi

Problem E4.3.6 - Combined Load Analysis

Page 88: Pv Manual

Software Verification

88 PV Elite and CodeCalc Verification and Quality Assurance Manual

Variable PV Elite ASME PTB-3-2013

Fxa 12799.03 psi 12799.0 psi

SE 22400 psi 22400 psi

Problem E4.3.7 - Cone Junction Analysis

Part of Vessel Variable PV Elite ASME PTB-3-2010

Large End Cylinder

Sigma_sm 7620.116 psi 7619.1179 psi

Sigma_sb -21779.057 psi -21773.7909 psi

Sigma_theta_m 3814.775 psi 3815.6850 psi

Sigma_theta_b -6533.718 psi -6532.1373 psi

Sigma_sm_allow 33600 psi 33600 psi

Sigma_theta_m_allow

33600 psi 33600 psi

Sps 67200 psi 67200 psi

Large End Cone

Sigma_sm 7089.908 psi 7088.54 psi

Sigma_sb -18878.637 psi -18874.0708 psi

Sigma_theta_m 3431.00 psi 3430.4012 psi

Sigma_theta_b -5663.591 psi -5662.2213 psi

Sigma_sm_allow 33600 psi 33600 psi

Sigma_theta_m_allow

33600 psi 33600 psi

Sps 67200 psi 67200 psi

Small End Junction

Sigma_sm 7086.030 psi 7084.4440 psi

Sigma_sb 16940.1504 psi 16934.4318 psi

Sigma_theta_m 20907.1934 psi 20900.5790 psi

Sigma_theta_b 5082.0454 psi 5080.3295 psi

Sigma_sm_allow 33600 psi 33600 psi

Page 89: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 89

Sigma_theta_m_allow

33600 psi 33600 psi

Sps 67200 psi 67200 psi

Small End Cone

Sigma_sm 3811.4343 psi 3810.5711 psi

Sigma_sb 5156.5737 psi 5154.8330 psi

Sigma_theta_m 19684.223 psi 19678.6968 psi

Sigma_theta_b 1546.9722 psi 1546.4499 psi

Sigma_sm_allow 33600 psi 33600 psi

Sigma_theta_m_allow

33600 psi 33600 psi

Sps 67200 psi 67200 psi

Problem E4.4.1 - External Pressure Analysis

Variable PV Elite ASME PTB-3-2010

MAEP 48.905 psi 48.5 psi

Problem E4.4.2 - External Pressure Analysis

Variable PV Elite ASME PTB-3-2010

MAEP 544.787 psi 548.5 psi

Problem E4.4.3 - Spherical Shell and Hemispherical Head

Variable PV Elite ASME PTB-3-2010

MAEP 1554.089 psi 1554.1 psi

Problem E4.4.4 - Torispherical Head

Variable PV Elite ASME PTB-3-2010

MAEP 94.383 psi 94.4 psi

Page 90: Pv Manual

Software Verification

90 PV Elite and CodeCalc Verification and Quality Assurance Manual

Problem E4.4.5 - Spherical Shell and Hemispherical Head

Variable PV Elite ASME PTB-3-2010

MAEP* 239.676 psi 240.1 psi

*PV Elite computes Ko based on the outside elliptical aspect ratio.

Problem E4.4.6 - Combined Loads and Allowable Compressive Stresses

Variable PV Elite ASME PTB-3-2013

Fxa 20155.97 psi 20155.9688 psi

Problem E4.5.1 - Radial Nozzle Analysis

Variable PV Elite ASME PTB-3-2010

MAWP 497.59 psi 497.5936 psi

PL* 16025.9023 psi 16025.9291 psi

S allow 33600 psi 33600 psi

Problem E4.5.2 - Nozzle Analysis

Variable PV Elite ASME PTB-3-2010

MAWP 497.59 psi 497.5936 psi

PL* 19839.0 psi 19565.2577 psi

S allow 33600 psi 33600 psi

Problem E4.5.3 - Nozzle Analysis

Variable PV Elite ASME PTB-3-2010

MAWP 550.2 psi 550.1982 psi

PL* 16174.3 psi 15881.5782 psi

S allow 33600 psi 33600 psi

* In 2011a of ASME VIII-2, there were a number of changes, especially in the area of nozzle reinforcement. Because of these changes, there will be slight differences in the results.

Problem E4.6.1 - Blind Flange, required thickness

Page 91: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 91

Variable PV Elite ASME PTB-3-2010

tr 1.652 in. 1.6523 in.

Problem E4.6.2 - Welded Flat, head required thickness

Variable PV Elite ASME PTB-3-2010

tr 0.69475 in. 0.6947 in.

Problem E4.15.1 - Horizontal Vessel Analysis

Variable PV Elite ASME PTB-3-2010

M1* -343345.4 in-lbs -356913.7 in-lbs

M2* 1438748.6 in-lbs 1672855.8 in-lbs

T 33947.5 lbf 33746.5 lbf

K1** 0.1114 0.0682

K*1** 0.2003 0.1265

K2** 1.1229 1.9648

K5 0.7492 0.7492

K6 = K7 0.0504 0.0504

Sigma1 11224.55 psi 11198.5 psi

Sigma2 11544.36 psi 11384.5 psi

Sigma*3 11726.94 psi 11961.1 psi

Sigma*4 11193.97 psi 11070.9 psi

* M1 and M2 are based on the head depth, h, per equation 4.15.3 and 4.15.4, respectively. In PV Elite, this measurement is taken from the inside length, which is where hydraulic pressure is measured. PTB-3-2010 measures the head depth from the outside length. ASME Section VIII, Div. 2 does not specify a preference.

** The K factors in PTB-3-2010 are based on Δ from the 2007 ASME Div. 2 Code. PV Elite uses the correct Δ value per Table 4.15.1 of 2010 Section VIII, Div. 2.

Problem E.4.15.2 - Skirt Analysis

Page 92: Pv Manual

Software Verification

92 PV Elite and CodeCalc Verification and Quality Assurance Manual

Variable PV Elite ASME PTB-3-2013

S compressive -2804 psi -2803.8 psi

Fxa 15144 psi 15143.9 psi

Problem E4.16.1 - Flange Analysis

Condition Variable PV Elite ASME PTB-3-2010

Operating

Sh 17777.62 psi 17777.9 psi

Sr 6160.27 psi 6155.4 psi

St 5525.20 psi 5547.0 psi

Sh_allow 26700 psi 26700 psi

Sr_allow 17800 psi 17800 psi

St_allow 17800 psi 17800 psi

J 0.832 0.8313

Gasket Seating

Sh 17889.25 psi 17888.8 psi

Sr 6198.96 psi 6193.8 psi

St 5559.90 psi 5581.5 psi

Sh_allow 36000 psi 36000 psi

Sr_allow 24000 psi 24000 psi

St_allow 24000 psi 24000 psi

J 0.740 0.7398

Problem E4.16.2 - Loose Flange Analysis

Condition Variable PV Elite ASME PTB-3-2010

Operating

Sh 3884 psi 3899.3 psi

Sr 4103 psi 4112.2 psi

St 17232 psi 17312.6 psi

Page 93: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 93

Sh_allow 26700 psi 26700 psi

Sr_allow 17800 psi 17800 psi

St_allow 17800 psi 17800 psi

J 1.637 1.6427

Gasket Seating

Sh 5326 psi 5204.1 psi

Sr 5626 psi 5204.1 psi

St 23630 psi 23106.3 psi

Sh_allow 36000 psi 36000 psi

Sr_allow 24000 psi 24000 psi

St_allow 24000 psi 24000 psi

J 1.985 1.9388

The G dimension in the ASME example problem did not account for the gasket outside diameter.

Module Variable PV Elite ASME PTB-3-2010

Top Head tr 1.5699 in. 1.5699 in.

tr + c 1.6949 in. 1.6949 in.

Cylindrical Shell

tr 3.2342 in. 3.2342 in.

tr + c 3.3592 in 3.3592 in.

P 1673.14 psig 1673.140 psig

Bottom Head tr 1.5923 in. 1.5923 in.

tr + c 1.7173 in. 1.7173 in.

P 1671.597 psig 1671.597 psig

Problem 8 - EN-13445 Nozzle Reinforcement

This example problem tests PV Elite EN-13445 nozzle calculations in accordance with the latest edition of the EN-13445 code at the time of this writing. The sample problem benchmarks were

Page 94: Pv Manual

Software Verification

94 PV Elite and CodeCalc Verification and Quality Assurance Manual

supplied by a third party European consultant. PV Elite automatically performs the nozzle calculation in both the hoop direction and the longitudinal direction. The results for areas required and available are in excellent agreement. This particular file ENNozzleTest.pvdb contains all of the EN-13445 nozzle reinforcement calculation examples shown below and is found in the <Installation Folder>\QA directory.

Example 01-A – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.093 1.09

Transverse Pmax (MPa) 2.435 2.43

Example 01-B – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.093 1.09

Transverse Pmax (MPa) 2.461 2.46

Example 01-C – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.266 1.27

Transverse Pmax (MPa) 2.823 2.82

Example 01-D – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.689 1.69

Transverse Pmax (MPa) 3.767 3.77

Example 01-E – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.689 1.69

Page 95: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 95

Transverse Pmax (MPa) 3.767 3.02

Example 01-F – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.617 1.62

Transverse Pmax (MPa) 3.385 3.39

Example 01-G – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.604 1.61

Transverse Pmax (MPa) 3.358 3.36

Example 01-H – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.789 1.79

Transverse Pmax (MPa) 3.741 3.75

Example 01-I – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.155 1.16

Transverse Pmax (MPa) 2.422 2.42

Example 01-J – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 0 0

Page 96: Pv Manual

Software Verification

96 PV Elite and CodeCalc Verification and Quality Assurance Manual

Transverse Pmax (MPa) 1.724 1.72

Example 01-K – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.168 1.17

Transverse Pmax (MPa) 2.449 2.45

Example 01-L – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.528 1.53

Transverse Pmax (MPa) 3.491 3.49

Example 02-A – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.269 1.27

Transverse Pmax (MPa) 2.435 2.43

Example 02-B – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.765 1.76

Transverse Pmax (MPa) 3.381 3.38

Example 02-C – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.472 1.47

Page 97: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 97

Transverse Pmax (MPa) 2.823 2.82

Example 02-D – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.967 1.97

Transverse Pmax (MPa) 3.767 3.77

Example 02-E – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.283 1.28

Transverse Pmax (MPa) 2.461 2.46

Example 02-F – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.779 1.78

Transverse Pmax (MPa) 3.408 3.41

Example 03-A – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 0.75 0.75

Transverse Pmax (MPa) 1.633 1.63

Example 03-B – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.112 1.21

Page 98: Pv Manual

Software Verification

98 PV Elite and CodeCalc Verification and Quality Assurance Manual

Transverse Pmax (MPa) 2.404 2.62

Example 03-C – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.333 1.33

Transverse Pmax (MPa) 2.631 2.64

Example 03-D – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 0.825 0.83

Transverse Pmax (MPa) 1.64 1.64

Example 03-E – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 0.99 0.99

Transverse Pmax (MPa) 2.449 2.45

Example 03-F – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.147 1.15

Transverse Pmax (MPa) 2.808 2.81

Example 03-G – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.528 1.53

Page 99: Pv Manual

Software Verification

PV Elite and CodeCalc Verification and Quality Assurance Manual 99

Transverse Pmax (MPa) 3.745 3.75

Example 03-H – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.79 1.53

Transverse Pmax (MPa) 2.553 2.55

Example 03-I – Longitudinal and Transverse Maximum Pressure

Module Variable PV Elite Benchmark

Nozzle Longitudinal Pmax (MPa) 1.619 1.37

Transverse Pmax (MPa) 2.272 2.27

Page 100: Pv Manual
Page 101: Pv Manual

PV Elite and CodeCalc Verification and Quality Assurance Manual 101

A Additional Manual Checks for Staff and

Beta Users • 15 ASME Tubesheets Checks • 36

B Base Ring Checks • 39 Beta Tests • 14

C CodeCalc QA Checks • 23 Cone Checks • 31 Corrective Action Standard • 20

D Distribution Control • 21

F Flange Checks • 28 Floating Heads Checks • 32

H Half-Pipe Check • 40 Horizontal Vessel Checks • 34

I Intellectual Property Statement • 9 Intergraph CAS Quality Assurance • 9 Introduction • 7, 23

L Large Opening Checks • 41 Leg and Lug • 34

M Management/Organization • 10

N Nozzle Checks • 26

P Pipe and Pad Checks • 39 Post-Development Procedures • 20 Pre-Shipping Procedures • 21 Problem 1 - Natural Frequency Calculation •

45 Problem 2 - Example of Stiffening Ring

Calculation • 49 Problem 3 - Nozzle Reinforcement, Weld

Strength, Weld Size • 52 Problem 4 - Vessel under Internal and

External Pressure on Legs • 65 Problem 5 - Vertical Vessel with Wind and

Seismic Loads • 74 Problem 6 - Comparison against CAESAR

II • 83 Problem 7 - ASME Section VIII Division 2

Sample Comparisons • 86 Problem 8 - EN-13445 Nozzle

Reinforcement • 93 Product Support • 11 PV Elite Development • 10 PV Elite Sample Benchmark Problem Sets •

45 PV Elite Test Jobs • 19

R Rectangular Vessel Checks • 42

S Shell and Head Checks • 24 Software Issue Tracking/Resolution • 11 Software Purpose • 9 Software Verification • 13

T TEMA Tubesheets Checks • 37 Test Control • 13

U User Documentation • 10

W WRC 107 Checks • 38

Index

Page 102: Pv Manual

Index

102 PV Elite and CodeCalc Verification and Quality Assurance Manual