8
J Sci Food Agric 1997, 73, 349È356 Proximate, Fatt y Acid and Sterol Compositions of Aboriginal Peanut ( Arachis hypogaea Seeds L) from Bolivia Nelson R Grosso * CaŁtedra de QuiŁmica BioloŁ gica, Facultad de Ciencias Agropecuarias, Universidad Nacional de CoŁ rdoba, Av ValparaiŁso s/n, CC 509, 5000 CoŁ rdoba, Argentina Julio A Zygadlo, Alicia L Lamarque, Damia Ł n M Maestri and Carlos A Guzma Ł n CaŁtedra de QuiŁmica OrgaŁnica, Facultad de Ciencias Exactas FiŁsicas y Naturales, Universidad Nacional de CoŁ rdoba, IMBIV-CONICET, Av Velez SarsÐeld 299, 5000 CoŁ rdoba, Argentina (Received 23 August 1995 ; revised version received 3 July 1996 ; accepted 17 September 1996) Abstract : Oil, protein, ash, carbohydrate, iodine value, fatty acid and sterol com- positions were studied in 46 aboriginal Arachis hypogaea cultivars originating from Bolivia. The oil and protein contents varied between 440 and 547 g kg~1 and 242 and 547 g kg~1, respectively. Results showed a lower protein content in the variety hypogaea (264É4 g kg~1) than in the varieties fastigiata (299É7 g kg~1) and peruviana (294 g kg~1). The carbohydrate content ranged between 86 and 216 g kg~1. The principal fatty acids were oleic (358È536 g kg~1) and linoleic (250È462 g kg~1). The variety hypogaea exhibited higher concentrations of oleic acid (449É0 g kg~1). The sterol composition showed higher concentration of b- sitosterol (554È632 g kg~1) following by campesterol (139È180 g kg~1), stigma- sterol (82È130 g kg~1) and *5-avenasterol (86È138 g kg~1). Key words : Arachis hypogaea, oil, protein, ash, carbohydrate, fatty acids, sterols, seeds, peanut, groundnut. INTRODUCTION Numerous peanut cultivars and wild species are found and have been collected in South America. The prob- able centres of origin of Arachis species and A hypogaea were in the Gran Pantanal (Mato Grosso, Brazil) and on the eastern slopes of the Andes in Bolivia, respec- tively (Gregory et al 1973 ; Krapovickas and Gregory 1994). Peanuts are grown worldwide in the tropics and tem- perate zones primarily as an oilseed crop (Bansal et al 1993). Peanut seeds make an important contribution to the diet in many countries. They are a good source of protein, lipids and fatty acids for human nutrition. The fatty acid composition of the endogenous fats plays an * To whom correspondence should be addressed. important role in determining shelf-life, nutrition and Ñavor of food products (Gaydou et al 1983). The peanut has a relatively high protein content and is an important source of plant protein for human con- sumption (Tai and Young 1975). The peanut is a poten- tial source of food-grade protein as it is readily cultivated commercially and has attained widespread acceptability because of its economic value to industry and dietary interest by the consumer (Cherry 1977). The chemical composition of peanut seeds has been studied in relation to fatty acid composition (Worthington and Hammons 1971 ; Sekhon et al 1973 ; Treadwell et al 1983), protein levels (Young and Hammons 1973) and amino acid composition (Young et al 1973 ; Miller and Young 1977). However, chemical studies of aboriginal peanut genotypes originating from South America have not been undertaken. 349 J Sci Food Agric 0022-5142/97/$09.00 1997 SCI. Printed in Great Britain (

Proximate, Fatty Acid and Sterol Compositions of Aboriginal Peanut (Arachis hypogaea L) Seeds from Bolivia

Embed Size (px)

Citation preview

J Sci Food Agric 1997, 73, 349È356

Proximate, Fatty Acid and Sterol Compositions ofAboriginal Peanut (Arachis hypogaea SeedsL)from BoliviaNelson R Grosso*

Ca� tedra de Qui�mica Biolo� gica, Facultad de Ciencias Agropecuarias, Universidad Nacional de Co� rdoba,Av Valparai� so s/n, CC 509, 5000 Co� rdoba, Argentina

Julio A Zygadlo, Alicia L Lamarque, Damia� n M Maestri and Carlos A Guzma� n

Ca� tedra de Qui�mica Orga� nica, Facultad de Ciencias Exactas Fi� sicas y Naturales, Universidad Nacional deCo� rdoba, IMBIV-CONICET, Av Velez SarsÐeld 299, 5000 Co� rdoba, Argentina

(Received 23 August 1995 ; revised version received 3 July 1996 ; accepted 17 September 1996)

Abstract : Oil, protein, ash, carbohydrate, iodine value, fatty acid and sterol com-positions were studied in 46 aboriginal Arachis hypogaea cultivars originatingfrom Bolivia. The oil and protein contents varied between 440 and 547 g kg~1and 242 and 547 g kg~1, respectively. Results showed a lower protein content inthe variety hypogaea (264É4 g kg~1) than in the varieties fastigiata (299É7 g kg~1)and peruviana (294 g kg~1). The carbohydrate content ranged between 86 and216 g kg~1. The principal fatty acids were oleic (358È536 g kg~1) and linoleic(250È462 g kg~1). The variety hypogaea exhibited higher concentrations of oleicacid (449É0 g kg~1). The sterol composition showed higher concentration of b-sitosterol (554È632 g kg~1) following by campesterol (139È180 g kg~1), stigma-sterol (82È130 g kg~1) and *5-avenasterol (86È138 g kg~1).

Key words : Arachis hypogaea, oil, protein, ash, carbohydrate, fatty acids, sterols,seeds, peanut, groundnut.

INTRODUCTION

Numerous peanut cultivars and wild species are foundand have been collected in South America. The prob-able centres of origin of Arachis species and A hypogaeawere in the Gran Pantanal (Mato Grosso, Brazil) andon the eastern slopes of the Andes in Bolivia, respec-tively (Gregory et al 1973 ; Krapovickas and Gregory1994).

Peanuts are grown worldwide in the tropics and tem-perate zones primarily as an oilseed crop (Bansal et al1993). Peanut seeds make an important contribution tothe diet in many countries. They are a good source ofprotein, lipids and fatty acids for human nutrition. Thefatty acid composition of the endogenous fats plays an

* To whom correspondence should be addressed.

important role in determining shelf-life, nutrition andÑavor of food products (Gaydou et al 1983).

The peanut has a relatively high protein content andis an important source of plant protein for human con-sumption (Tai and Young 1975). The peanut is a poten-tial source of food-grade protein as it is readilycultivated commercially and has attained widespreadacceptability because of its economic value to industryand dietary interest by the consumer (Cherry 1977).

The chemical composition of peanut seeds has beenstudied in relation to fatty acid composition(Worthington and Hammons 1971 ; Sekhon et al 1973 ;Treadwell et al 1983), protein levels (Young andHammons 1973) and amino acid composition (Young etal 1973 ; Miller and Young 1977). However, chemicalstudies of aboriginal peanut genotypes originating fromSouth America have not been undertaken.

349J Sci Food Agric 0022-5142/97/$09.00 1997 SCI. Printed in Great Britain(

350 N R Grosso et al

TABLE 1Collection data of Arachis hypogaea L originating from Bolivia

ClassiÐcation Cultivara RCMb Origin of sample

1. Subspecies hypogaeavar hypogaea

1 Bh 86/1945 Agua Clara (Santa Cruz)2 Bh 86/1954 Cochabamba3 Bh 86/1959 Mizque (Cochabamba)4 Bh 86/1961 Cochabamba5 Bh 86/1966 Lagunilla-Valle Grande (Santa Cruz)6 Bh 86/1975 Cochabambita-Valle Grande (Santa Cruz)7 Bh 86/1976 Cochabambita-Valle Grande (Santa Cruz)8 Bh 86/1985 Santa Cruz9 Bh 86/1987 Tarija

10 Bh 86/1992È93 Coroico-San Pablo (Nord Yungas)11 Bh 86/2001 Sucre12 Bh 86/2006 Lagunilla-Valle Grande (Santa Cruz)13 Bh 86/2008 Villa Montes (Tarija)14 Bh 86/2016È17 Cochabamba15 Bh 86/2019 Sucre16 Bh 86/2030 Mairana (Nanetti)17 Bh 86/2037 Mairana (Nanetti)18 Bh 86/2047 Villa Montes (Tarija)19 Bh 86/2098È99 Nanetti20 Bh 86/2100 Cochabamba21 Bh 86/2103 San Jose� de Chicaludo (N Yungas)22 Bh 86/2110 Yerba Buena (Santa Cruz)23 Bh 86/2114È15 Villa Victoria-Mairana (Santa Cruz)24 Bh 86/2148È55 Santa Cruz25 Bh 86/2159 Monteagudo (Mairana)26 Bh 86/2162 Entre Ri� os (Tarija)27 Bh 86/2163È65 Entre Ri� os (Tarija)28 Bh 86/2170 Carapari (Tarija)29 Bh 86/2227 Villa Montes (Tarija)30 Bh 86/2228È32 Sucre31 Bh 86/2234 Mairana (Nanetti)32 Bh 86/2248È49 Caiza (Tarija)33 Bh 86/2368È85 Entre Ri� os (Tarija)

2. Subspecies fastigiatavar fastigiata

34 Bf 86/2394È95 San Borja (Beni)35 Bf 86/2412 Santa Cruz36 Bf 86/2426 Villa Montes (Tarija)37 Bf 86/2433 Villa Montes (Tarija)38 Bf 86/2443 Puerto Margarita (Tarija)39 Bf 86/2452 Villa Montes (Tarija)40 Bf 86/2456 Magdalena (Beni)41 Bf 86/2464 EEA Saavedra (Santa Cruz)42 Bf 86/2515 Rurrenabaque (Beni)43 Bf 86/2518 Rurrenabaque (Beni)44 Bf 86/2519 Rurrenabaque (Beni)45 Bf 86/2523È24 Rurrenabaque (Beni)

var peruviana46 Bp 86/2533È34 Rurrenabaque (Beni)

a The cultivars were identiÐed with a number and letters. The letters indicate the country of originand variety. B, Bolivia, h, var hypogaea ; f, var fastigiata ; p, var peruviana.b RCM: Collection Registry Number of INTA of Manfredi, Co� rdoba, Argentina.

Proximate, fatty acid and sterol composition of Bolivian peanut 351

These materials contain new sources of germplasmthat can be used to increase the variability in the geneticbase of cultivated varieties (Norden et al 1982).

The objective of this study was to characterise somechemical properties of aboriginal peanut seeds fromBolivia.

EXPERIMENTAL

Plant material

Sound and mature seeds of 46 di†erent aboriginalpeanut cultivars from Bolivia were provided by INTAof Manfredi (Co� rdoba, Argentina). All cultivars used inthis work were cultivated in the same crop year, seasonand place. All seeds had the same conditions fordecreasing environment e†ects in the result expected.The identiÐcation of the material and collection dataare presented in Table 1. A detailed description of thetaxonomic classiÐcation of peanut is reported by Kra-povickas and Gregory (1994). Maturity of seed wasestablished when they showed maximum dry weightand maximum viability (Crookston and Hill 1978 ;Hanson 1986).

Oil, ash, protein, moisture and carbohydrate contents

Three samples each containing Ðve seeds from each cul-tivar were examined for oil, protein, ash and moisturecontents. These seed were selected at random. The sam-pling size was previously calculated (Cochran 1974) andit was proper to the statistical design.

Seeds were milled and oil was extracted for 16 h withpetroleum ether (boiling range 30È60¡C) in a Soxhletapparatus. The extracted oils were dried over anhy-drous sodium sulphate and the solvent removed underreduced pressure in a rotary Ðlm evaporator. Oil per-centages was determined by weight di†erence.

Ash was determined by incineration in a mufflefurnace at 525¡C (AOAC 1980). The nitrogen contentestimated by the Kjeldahl method (AOAC 1980) andwas converted to protein content by using the conver-sion factor 5É46 (Young and Hammons 1973).

Fatty acid composition

Fatty acid methyl esters were prepared by trans-methylation with a 3% solution of sulphuric acid inmethanol, as previously described (Jellum and Wor-thington 1966). The fatty acid methyl esters of totallipids were analysed on a Shimadzu GC-R1A gas chro-matograph equipped with a Ñame ionisation detector(FID). AT-WAX superox II capillary column(30 m ] 0É25 mm id) was used. Column temperaturewas programmed from 180¡C (held for 10 min) to 240¡C(4¡C min~1). Injector temperature was 250¡C. The

carrier (nitrogen) had a Ñow rate of 1 ml min~1. A stan-dard fatty acid methyl ester mixture (Sigma ChemicalCo, St Louis, MO, USA) was run in order to use reten-tion times in identifying sample peaks. Fatty acid levelswere estimated on the basis of peak areas of knownconcentrations of the standards. Iodine values were cal-culated from fatty acid composition (Hashim et al 1993)using the following formula :

IV \ (% oleic] 0É8601)

] (% linoleic] 1É7321)

] (% eicosenoic] 0É7854)

Sterol composition

Sterols of the unsaponiÐable matter from 5 g of oil(after saponiÐcation with alcoholic 1 M potassiumhydroxide) were puriÐed by preparative thin-layer chro-matography (TLC). TLC was performed on silica gel60 G (20 ] 20 cm, 0É5 mm layer thickness) plates usingchloroform/diethyl ether (9 : 1, v/v) as the developingsolvent. The approximate relative values of the 4-Rfdesmethylsterols fraction was 0É27. The unsaponiÐablematter was dissolved in chloroform (5%) and 150 kl wasdeposited as a streak of 15 cm in length on the plate.Cholesterol, used as standard, was spotted on the left-and right-hand sides of the plate. The correspondingband of 4-desmethylsterols was scraped o† the plateand extracted with chloroform (Gaydou et al 1983).PuriÐed sterols were analysed on a Shimadzu, GC-R1Agas chromatograph equipped with FID. ShimadzuCBP1 capillary column (25 m] 0É25 mm id) was used.Column temperature was programmed from 200 to300¡C (4¡C min~1). Injector temperature was 320¡C.The carrier (nitrogen) had a Ñow rate of 1 ml min~1.Standard sterols (Sigma Chemical Co) were run in orderto use retention times in identifying sample peaks.Sterol levels were estimated on the basis of peak areasof known concentrations of the standards.

Statistical analysis

The data of 46 peanut cultivars from Bolivia are meanvalues of triplicate analysis. SigniÐcant di†erencesamong mean values from varieties of peanut were evalu-ated using a t-test (Branch et al 1990). The variety peru-viana is represented by one genotype and was notincluded in the statistical analysis.

RESULTS AND DISCUSSION

Moisture, oil, protein, ash and carbohydrate contentsand iodine value are shown in Table 2. These resultswere similar to peanut cultivars reported by Ahmed andYoung (1982), except that the iodine value was higher in

352 N R Grosso et al

TABLE 2Moisture, oil, protein, ash and carbohydrate contents (g kg~1) and iodine value of peanut cultivars from Bolivia

Cultivar Moisture Oila Proteina Asha Carbohydrate Iodine value

Var hypogaea1 Bh 58 501 277 27 137 982 Bh 57 547 254 29 113 1043 Bh 57 482 265 27 169 944 Bh 61 474 255 28 182 955 Bh 58 498 259 27 158 1026 Bh 58 477 266 28 171 997 Bh 58 508 258 26 150 968 Bh 60 510 266 26 138 1039 Bh 56 541 242 26 135 101

10 Bh 54 483 260 27 176 10211 Bh 55 525 270 27 123 9112 Bh 57 532 272 28 111 9913 Bh 57 506 258 24 155 10614 Bh 58 501 262 26 153 10215 Bh 58 482 277 28 155 10516 Bh 58 504 254 28 156 10617 Bh 56 534 264 26 120 9918 Bh 55 527 254 27 137 10619 Bh 58 499 273 24 146 10220 Bh 57 527 266 25 125 9921 Bh 55 527 276 25 117 9922 Bh 57 497 279 25 142 9823 Bh 58 500 287 26 129 9924 Bh 59 496 277 28 140 10625 Bh 55 488 264 26 167 10026 Bh 59 440 261 23 217 10227 Bh 60 490 267 24 159 10428 Bh 55 458 245 26 216 10229 Bh 57 481 265 26 171 10130 Bh 56 482 261 24 177 10231 Bh 59 492 263 26 187 10432 Bh 58 522 274 28 118 10033 Bh 58 477 255 27 183 104

Mb 57É3a 500É2a 264É4a 26É3a 152É5a 100É9aSD (n \ 33) ^1É63 ^24É13 ^9É91 ^1É47 ^27É32 ^3É61

Var fastigiata34 Bf 57 480 293 27 143 10435 Bf 56 486 293 24 141 10336 Bf 58 489 283 25 145 10637 Bf 55 516 286 24 119 10738 Bf 58 483 306 27 126 10639 Bf 57 495 296 27 125 10640 Bf 59 483 306 28 122 10441 Bf 60 511 300 26 103 10642 Bf 58 500 295 25 122 10443 Bf 57 497 319 24 103 10544 Bf 56 533 300 24 87 10445 Bf 57 512 320 25 86 115

Mb 57É3a 498É9a 299É7b 25É5a 118É5b 105É8bSD (n \ 12) ^1É37 ^16É12 ^11É50 ^1É45 ^20É14 ^3É13

Var peruviana46 Bp 58 470 291 27 154 109

a Expressed on dry weight basis.b Mean values (M) and standard deviations (SD) for each variety. Means followed by the same letter within each column are notsigniÐcantly di†erent at P\ 0É05.

Proximate, fatty acid and sterol composition of Bolivian peanut 353

TABLE 3Fatty acid composition of peanut cultivars from Bolivia

Cultivar Fatty acids (g kg~1 of total fatty acids)

16 : 0 18 : 0 18 : 1 18 : 2 20 : 0 20 : 1 22 : 0 24 : 0 O/L

Var hypogaea1 Bh 111 22 448 335 14 20 36 11 1É332 Bh 119 22 398 396 13 15 27 8 1É003 Bh 111 23 481 300 15 20 36 14 1É604 Bh 108 22 466 319 15 22 35 13 1É465 Bh 104 19 443 360 13 21 29 11 1É236 Bh 118 16 430 353 12 21 32 19 1É227 Bh 104 21 522 288 14 20 22 7 1É818 Bh 110 17 424 376 12 23 27 12 1É139 Bh 106 17 434 360 12 22 35 14 1É20

10 Bh 124 16 386 385 13 28 36 11 1É0011 Bh 86 30 536 250 20 23 41 15 2É1412 Bh 104 20 429 351 17 25 41 13 1É2213 Bh 89 22 471 371 4 13 21 9 1É2714 Bh 98 20 448 359 15 22 28 10 1É2515 Bh 100 18 440 384 11 23 16 6 1É1516 Bh 98 23 450 382 11 23 10 5 1É1917 Bh 99 19 441 344 16 27 37 14 1É2818 Bh 91 18 391 400 14 34 31 17 0É9819 Bh 101 19 446 357 14 27 23 11 1É2520 Bh 103 18 427 351 14 27 40 19 1É2221 Bh 106 23 494 318 12 22 18 7 1É5522 Bh 99 23 452 335 17 23 36 13 1É3523 Bh 104 25 455 341 15 21 29 9 1É3324 Bh 97 21 442 379 11 25 13 9 1É1725 Bh 95 25 470 336 14 26 22 9 1É4026 Bh 90 24 456 347 16 34 19 13 1É3127 Bh 90 22 449 365 13 26 20 12 1É2328 Bh 111 21 448 355 13 23 22 7 1É2629 Bh 92 26 454 344 15 28 23 11 1É3230 Bh 95 25 481 339 13 26 14 8 1É4231 Bh 93 24 443 370 14 24 22 10 1É2032 Bh 93 25 441 349 15 26 34 15 1É2633 Bh 85 17 419 378 14 33 29 21 1É11

Ma 101É0a 21É3a 449É0a 350É8a 13É7a 24É0a 27É4a 11É6a 1É30aSD (n \ 33) ^9É60 ^3É28 ^31É43 ^31É12 ^2É58 ^4É53 ^8É57 ^3É85 ^0É23

Var fastigiata34 Bf 104 26 360 410 16 23 41 17 0É8835 Bf 103 26 370 400 16 28 38 17 0É9236 Bf 99 28 382 412 17 20 31 9 0É9337 Bf 98 25 368 424 16 22 33 12 0É8738 Bf 105 24 358 424 15 22 33 14 0É8439 Bf 104 28 382 413 15 19 28 11 0É9240 Bf 108 24 369 406 16 24 38 15 0É9141 Bf 99 26 366 417 15 27 34 15 0É8842 Bf 104 31 362 414 17 19 37 15 0É8743 Bf 97 30 364 413 17 22 36 15 0É8844 Bf 92 28 381 399 17 28 35 19 0É9545 Bf 97 22 389 462 5 12 08 5 0É84

Ma 100É8a 26É5b 370É9b 416É2b 15É2a 22É2a 32É7b 13É7a 0É89bSD (n \ 12) ^4É53 ^1É05 ^10É11 ^16É41 ^3É30 ^4É51 ^8É51 ^3É87 ^0É03

Var peruviana46 Bp 130 16 358 442 10 23 14 6 0É81

a Mean values (M) and standard deviations (SD) for each variety. Means followed by the same letter within each column are notsigniÐcantly di†erent at P\ 0É05.

354 N R Grosso et al

TABLE 4Sterol composition of oils from Bolivian peanut cultivars

Cultivar Sterol compositiona (g kg~1 of total sterols)

Chol Camp Stig Sit *5-av *7-st *7-av

Var hypogaea1 Bh 8 167 106 567 118 17 72 Bh 15 179 94 607 97 9 103 Bh 12 148 99 632 101 12 tr4 Bh 9 146 106 611 106 20 125 Bh 19 177 109 596 99 tr tr6 Bh 8 166 107 554 92 17 67 Bh 10 161 119 598 99 13 tr8 Bh 13 141 96 620 104 18 79 Bh 18 162 82 608 109 10 11

10 Bh 15 149 109 571 124 23 911 Bh 21 171 103 611 120 18 612 Bh 22 155 109 602 103 9 tr13 Bh 9 158 109 583 113 19 814 Bh 14 173 101 586 104 13 915 Bh 24 168 107 594 94 17 616 Bh 10 168 95 598 117 12 tr17 Bh 21 180 90 592 91 17 918 Bh 13 168 103 587 98 20 1119 Bh 15 164 101 598 96 13 1020 Bh 14 160 120 597 90 9 tr21 Bh 12 151 130 570 111 16 1022 Bh 8 158 121 584 104 18 723 Bh 24 169 93 568 124 16 624 Bh 20 158 104 590 108 14 625 Bh 16 146 106 600 96 17 926 Bh 11 162 111 596 97 13 1027 Bh 16 169 116 583 109 7 tr28 Bh 13 154 93 613 99 16 1229 Bh 9 170 89 616 86 19 1130 Bh 6 158 111 586 114 18 731 Bh 18 151 120 576 114 12 732 Bh 21 157 108 581 111 16 633 Bh 13 170 97 590 97 21 11

Mb 14É4a 161É0a 104É7a 593É9a 104É7a 14É6a 7É0aSD (n \ 33) ^5É03 ^10É24 ^10É59 ^16É36 ^10É55 ^4É74 ^3É66

Var fastigiata34 Bf 8 147 98 602 128 8 935 Bf 9 159 86 589 134 16 736 Bf 14 171 99 572 115 13 637 Bf 21 166 112 563 121 17 tr38 Bf 20 139 123 567 128 13 1039 Bf 8 154 117 573 130 9 940 Bf 9 160 114 570 120 16 1141 Bf 10 155 107 563 138 20 742 Bf 17 157 86 593 120 21 643 Bf 12 174 118 572 107 9 744 Bf 20 169 107 580 109 13 tr45 Bf 14 154 121 577 118 17 tr

Mb 14É0a 159É8a 108É2a 574É4b 121É8b 14É9a 6É0aSD (n \ 12) ^4É86 ^9É91 ^12É95 ^9É72 ^9É84 ^3É94 ^3É58

Var peruviana46 Bp 8 166 94 584 121 17 10

a Abbreviations : Chol, cholesterol ; Camp, campesterol ; Stig, stigmasterol ; Sit, b-sitosterol ;*5-av, *5-avenasterol ; *7-st, *7-stigmasterol ; *7-av, *7-avenasterol, tr, value less than5 g kg~1.b Mean values (M) and standard deviations (SD) for each variety. Means followed by thesame letter within each column are not signiÐcantly di†erent at P\ 0É05.

Proximate, fatty acid and sterol composition of Bolivian peanut 355

this work. The variations of iodine values and oleic tolinoleic ratios (O/L) could be due to di†erences in cli-matic conditions, soil moisture and air temperatureduring maturation and temperatures during curing ofpeanut seed (Worthington and Hammons 1971 ;Holaday and Pearson 1974). The climatic conditions inthe area of cultivation were the following : mean ofannual temperature, 16É6¡C; precipitation, 744 mm perannum; soil, silt loam (Jarsun 1987). Peanuts are char-acterised by high oil and protein contents and low car-bohydrates and ash. Knowledge of these components isimportant in the end-products of the industry (Cherry1977 ; Ahmed and Young 1982). The variety hypogaeashowed a lower iodine value average than the othervarieties.

SigniÐcant di†erences were found within the proteinlevels among varieties of peanut (Table 2). The cultivarsof the variety hypogaea (except 23 Bh) exhibited lowerprotein levels than the varieties fastigiata and peru-viana.

Palmitic (16 : 0), stearic (18 : 0), oleic (18 : 1), linoleic(18 : 2), arachidic (20 : 0), eicosenoic (20 : 1), behenic(22 : 0) and lignoceric (24 : 0) acids varied among geno-types (Table 3). The range of concentrations of the fattyacids was similar to the published data (Ahmed andYoung 1982 ; Treadwell et al 1983). SigniÐcant di†er-ences were found in the fatty acid levels (Table 3). Thesedi†erences are not due to climatic conditions, becauseall cultivars were cultivated in the same year, growingseason and locality.

Iodine value and oleic to linoleic ratio are both indi-cators of oil stability and shelf-life (Ahmed and Young1982 ; Branch et al 1990). Traditionally, in the USA,runner market types have been predominantly utilisedfor the peanut butter trade and oil composition(especially O/L ratio) likewise plays an important rolein the manufacturing of this end-use product (Branch etal 1990). Previous studies about fatty acid compositionof the cultivated runner-type peanut from Co� rdoba(Argentina) showed a low O/L ratio (approximately1É20) (Grosso et al 1994). The Argentinean industryprefers a high O/L ratio. The hypogaea genotypes fromBolivia (except 18 Bh) exhibited higher oleic acid con-tents and correspondingly higher O/L ratios. These cul-tivars could be useful, in Argentina, for the developmentof new cultivars with improved stability characteristicsand more desirable fatty acid composition.

With few exceptions, vegetable oils contain anaverage of 0É2È1É5% unsaponiÐable compounds. Thesterols are components of unsaponiÐable lipids and areimportant to identify blends of fats and oils (Belitz andGrosch 1987 ; Mariani et al 1994). Tocopherols andsterols are also of interest because of their antioxidantactivity (Dutta et al 1994). The total sterols in peanutare about 0É5% of oil (Formo et al 1979). The followingsterols were detected (Table 4) : cholesterol, campesterol,stigmasterol, b-sitosterol, *5-avenasterol, *7-

stigmasterol and *7-avenasterol. These results showsimilarity with peanut cultivars reported by Padley et al(1986). Some signiÐcant di†erences were found in sterols(Table 4). The variety fastigiata showed lower b-sitosterol and higher *5-avenasterol levels than hypo-gaea.

This study on chemical composition of A hypogaeaseeds from Bolivia contributes useful information tocharacterise germplasm bank materials. The varietyhypogaea was characterised for exhibiting lower proteinlevel, and iodine value and higher oleic acid content.Cultivars of this variety from Bolivia could be a pos-sible source of genotypes with high O/L ratio values inpeanut breeding programmes of Argentina.

ACKNOWLEDGEMENTS

This work was supported by CONICET, CONICOR,SECYT and CEPROCOR. Antonio Krapovickas andJose� R Pietrarelli identiÐcated the samples.

REFERENCES

Ahmed E H, Young C T 1982 Composition, nutrition andÑavor of peanut. In : Peanut Science and T echnology, edsPattee H E & Young C T. American Peanut Research andEducation Society Inc, Yoakum, TX, USA, pp 655È688.

AOAC 1980 Official Methods of Analysis (13th edn). Associ-ation of Official Analytical Chemists, Washington, DC,USA.

Bansal U K, Satija D R, Ahuja K L 1993 Oil composition ofdiverse groundnut (Arachis hypogaea L.) genotypes in rela-tion to di†erent environments. J. Sci Food Agric 63 17È19.

Belitz H D, Grosch W 1987 Food Chemistry. Springer Verlag,Berlin, Germany, pp 187È189.

Branch W D, Nakayama T, Chinnan M S 1990 Fatty acidvariation among US runner-type peanut cultivars. J Am OilChem Soc 67 591È593.

Cherry J P 1977 Potential sources of peanut seed proteins andoil in the genus Arachis. J Agric Food Chem 25 186È193.

Cochran W G 1974 de Muestreo. Compani� a Edito-T e� cnicasrial Continental, Mexico, pp 41È71.

Crookston R K, Hill D S 1978 A visual indicator of thephysiological maturity of soybean seed. Crop Science 18867È870.

Dutta P C, Helmersson S, Kebedu E, Alemaw G, AppelqvistL A 1994 Variation in lipid composition of Niger seed(Guizotia abyssinica Cass.) samples collected from di†erentregions in Ethiopia. J Am Oil Chem Soc 71 839È843.

Formo M W, Jungermann E, Norris F A, Sonntag N O V1979 BaileyÏs Industrial Oil and Fat Products (4th edn), edSwern D. John Wiley & Sons, New York, USA, pp 59È63.

Gaydou E M, Bianchini J P, Ratovogery J 1983 Triterpenealcohols, methyl sterols and fatty acids in Ðve Malagasylegume seed oils. J Agric Food Chem 31 833È836.

Gregory W C, Gregory M P, Krapovickas A, Smith B W,Yarbrough J A 1973 Structures and genetic resources ofpeanut. In : PeanutsÈCulture and Uses. American PeanutResearch and Education Association, Stillwater, OK, USA,pp 47È134.

Grosso N R, Lamarque A L, Maestri D M, Zygadlo J A,Guzma� n C A 1994 Fatty acids variation of runner peanut

356 N R Grosso et al

(Arachis hypogaea L.) among geographic localities fromCo� rdoba (Argentina). J Am Oil Chem Soc 71 541È542.

Hanson W 1986 Control of dry matter accumulation insoybean seeds. Crop Sci 26 1195È1200.

Hashim I B, Koehler P E, Eitenmiller R R, Kvien C K 1993Fatty acid composition and tocopherol content of droughtstressed Florunner peanuts. Peanut Sci 20 21È24.

Holaday C D, Pearson J L 1974 E†ects of genotype and pro-duction area on the fatty acid composition, total oil andtotal protein in peanuts. J Food Sci 39 1206È1209.

Jarsun B 1987 Cartas de Suelo de la Argentina. HojaRepu� blica3163-32-Oncativo. Instituto Nacional de Tecnologi� a Agro-pecuaria and Secretari� a Ministerio de Agricultura, Gana-deri� a y Recursos Renovables, Co� rdoba, Argentina, pp13È41.

Jellum M D, Worthington R E 1966 A rapid method of fattyacid analysis of oil from individual corn (Zea mays L.)kernels. Crop Sci 6 251È253.

Krapovickas A, Gregory W C 1994 Taxonomi� a del ge� neroArachis (Leguminosae). Bonplandia 8 1È186.

Mariani C, Venturini S, Fedeli F, Contarini G 1994 Detectionof reÐned animal and vegetable fats in adulteration of puremilkfat. J Am Oil Chem Soc 71 1381È1384.

Miller J, Young C T 1977 Protein nutritional quality of Flo-runner peanut meal as measured by rat. J Agric Food Chem25 653È657.

Norden A J, Smith O D, Gorbet D W 1982 Breeding of thecultivated peanut. In : Peanut Science and T echnology, edsPattee H E & Young C T. American Peanut Research andEducation Society Inc, Yoakum, TX, USA, pp 95È120.

Padley F B, Gunstone F D, Harwood J L 1986 Occurrenceand characteristics of oils and fats. In : T he L ipid Handbook,eds Gunstone F D, Harwood J L & Padley F B. Chapmanand Hall, London, UK, pp 49È170.

Sekhon K S, Ahuja K L, Jaswal S, Bhatia J S 1973 Variabilityin fatty acid composition on peanut II. Spreading group. JSci Food Agric 24 957È960.

Tai Y P, Young C T 1975 Genetic studies of peanut proteinsand oils. J Am Oil Chem Soc 52 377È385.

Treadwell K, Young C T, Wynne J C 1983 Evaluation of fattyacid content of forty peanut cultivars. 38 381ÈOle� agineux385.

Worthington R E, Hammons R O 1971 Genotypic variationin fatty acid composition and stability of Arachis hypogaeaL. oil. 26 695È700.Ole� agineux

Young C T, Hammons R O 1973 Variations in the proteinlevels of a wide range of peanut genotypes (Arachis hypo-gaea L.). 28 293È297.Ole� agineux

Young C T, Waller G R, Hammons R O 1973 Variations intotal amino acid content of peanut meal. J Am Oil ChemSoc 50 521È523.