66
Prospects for Superconducting Qubits David DiVincenzo 24.01.2013 QIP Beijing

Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Prospects for Superconducting Qubits

David DiVincenzo 24.01.2013 QIP Beijing

Page 2: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Prospects for Superconducting Qubits

David DiVincenzo 24.01.2013 QIP Beijing

Masters/PhD/postdocs available!

http://www.physik.rwth-aachen.de/

institute/institut-fuer-quanteninformation/

(G: IQI Aachen)

Page 3: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

• Basic physics of Josephson devices

• A short history of quantum effects in electric circuits

• A Moore’s law for quantum coherence

• Approaching fault tolerant fidelities (95%)

• Scaling up with cavities – towards a surface code architecture

• Will it work??

Outline

Prospects for Superconducting Qubits

Page 4: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Interesting claim:

Go direct from lumped electric circuit

To Schrodinger equation V

I

Page 5: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

f µ V dtòCurrent controlled by

Page 6: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

f µ V dtòCurrent controlled by

Some other history:

IBM had a large project (1975-85)

to make a Josephson junction

digital computer. “0” was the

zero-voltage state, “1” was the

finite-voltage state.

Very different from a quantum

computer.

Page 7: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

12

21sin cII

(Al or Nb)

(Al2O3)

Page 8: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short
Page 10: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Saclay Josephson junction qubit

Science 296, 886 (2002)

Oscillations show rotation of qubit at

constant rate, with noise.

Page 11: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Simple electric circuit…

small

L C

harmonic oscillator with resonant

frequency LC/10

Quantum mechanically, like a kind of atom (with harmonic potential):

x is any circuit variable

(capacitor charge/current/voltage,

Inductor flux/current/voltage)

That is to say, it is a

“macroscopic” variable that is

being quantized.

Page 12: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Textbook (classical) SQUID characteristic:

the “washboard”

small

Energy

Josephson phase φ

Junction capacitance C, plays role of particle mass

Energy φ Φ

1. Loop: inductance L, energy φ2/L

2. Josephson junction:

critical current Ic,

energy Ic cos φ

3. External bias energy

(flux quantization

effect): φΦ/L

Page 13: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Quantum SQUID characteristic:

small

Energy

Josephson phase φ

φ

Junction capacitance C, plays role of particle mass

Energy Φ

1. Loop: inductance L, energy φ2/L

2. Josephson junction:

critical current Ic,

energy Ic cos φ

3. External bias energy

(flux quantization

effect): φΦ/L

Quantum energy levels:

|0>, |1>, |2>, etc.

Page 14: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Burkard, Koch, DiVincenzo, Phys. Rev. B (2004)

DiVincenzo, Brito, and Koch, Phys. Rev. B (2006).

Effective potential is generally

multidimensional, complex

interplay

between anharmonic and

harmonic parts

William Kelly, BBN Co., 12/2009

Page 15: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

“Yale” Josephson junction qubit PRL 2005;

also Nature, 2004

Coherence time again c. 0.5 μs (in

Ramsey fringe experiment)

But fringe visibility > 90% !

Page 16: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short
Page 17: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

UCSB Josephson junction qubit (“phase”)

Page 18: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short
Page 19: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

T1=2.2µs

Rabi oscillations

Ramsey fringes

T2*=1.5-2.0µs

Time [µs]

Sig

nal [a

rb.

units]

IBM Experiments 2010

I0 I0

αI

0

Cs

50µm Cs/2 Cs/2

[1]

[1] M.Steffen et al., PRL, 105, 100502 (2010)

Capacitively Shunted Flux Qubit (CSFQ)

• Nine out of ten samples measured gave T1>1µs

• No device failure observed yet

• Energy loss likely dominated by dielectric surface loss

Page 20: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

2000 2005 2010 2015

1nsec

1μsec

T2

Reproducible T2

NB: anticipated gate time

approximately 30 nsec

tgate/T2≈ 5 x10-3

= noise threshold

of 2D surface

code scheme

Prospects: a Moore’s law for coherence time

Page 21: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

tgate/T2≈ 5 x10-3

= noise threshold

of 2D surface

code scheme

T2>75μsec

reported,

L. DiCarlo,

Oct. 2011

2000 2005 2010 2015 1nsec

1μsec

T2>95μsec

reported,

Rigetti et al.,

Mar. 2012

Reproducible T2

T2

Prospects: a Moore’s law for coherence NB: anticipated gate time

approximately 30 nsec 100μsec

T2≈150μsec rep.

Schoelkopf et al.,

June 2012

Page 22: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

3D cavity –

Setting for new, long coherence times

Nigg et al., “Black box quantization”, arXiv1204.0587

Page 23: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Nature 460, 240-244 (2009)

Fidelity above 90% for two qubit gates

Like early NMR experiments, but in

scalable system!

Page 24: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

• Qubits (green) coupled via

high-Q superconducting

resonators (gray)

• “skew-square” layout of

qubits and resonators is one

way to achieve abstract

square

• Every qubit has a number of

controller and sensor lines to

be connected to the outside

world (gold pads)

Regular square lattice of coupled qubits make an

effective architecture for fault tolerance

DP. DiVincenzo,

“Fault tolerant

architectures for

superconducting

qubits,”

Phys. Scr. T 137

(2009) 014020.

Page 25: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Q Q

Q Q Q

Q

Q

Q Q

Q

Q

Q Q

Q Q

Q

Q Q

Q

Q Q

Q Q

Q Q

Q Q

Q Q Q Q

Q

Q

Q Q

Surface code error correction: skew-square cavity arrangement is

topologically equivalent to this:

Page 26: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Fault tolerant algorithms with surface code • Do repetitive pattern in large patches, except for holes where

nothing is done

• Holes define qubits; algorithm

performed by braiding holes

• measurements give error correction info

• theoretical threshold is 0.75%

space

tim

e

Fowler, Stephens, Groszkowski,

“High-threshold universal

quantum computation on the

surface code,” Phys. Rev. A 80,

052312 (2009); private

communication.

Page 27: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

IBM (Feb. 2012) – 3 qubit structure, start of scalability?

Page 28: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

IBM (Feb. 2013) – a year of hard work

Page 29: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Gambetta summary of IBM results

Page 30: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

• Basic physics of Josephson devices

• A short history of quantum effects in electric circuits

• A Moore’s law for quantum coherence

• Approaching fault tolerant fidelities (95%)

• Scaling up with cavities – towards a surface code architecture

• Will it work??

Outline

Prospects for Superconducting Qubits

Page 31: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Prospects for Superconducting Qubits

David DiVincenzo 24.01.2013 QIP Beijing

Masters/PhD/postdocs available!

http://www.physik.rwth-aachen.de/

institute/institut-fuer-quanteninformation/

(G: IQI Aachen)

Page 32: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

• Superconducting qubits: a quantum Moore’s law

• Error correction – using massive redundancy

• Using the surface code

• The architecture of a large quantum computer – road map

• Going “off road”:

• New error correction ideas

• Direct multiqubit parity measurements

Outline

Prospects for Superconducting Qubits

Page 33: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

A development of 1996-7:

X

X

X

X

Z Z

Z Z

Stabilizer generators XXXX, ZZZZ; Stars and plaquettes of interesting 2D lattice Hamiltonian model

In Quantum Communication, Comput- ing, and Measurement, O. Hirota et al., Eds. (Ple- num, New York, 1997).

Page 34: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Q Q

Q Q Q

Q

Q

Q Q

Q

Q

Q Q

Q Q

Q

Q Q

Q

Q Q

Q Q

Q Q

Q Q

Q Q Q Q

Q

Q

Q Q

Surface code error correction: qubits (abstract) in fixed 2D square

arrangement (“sea of qubits”), only nearest-neighbor coupling are possible

Page 35: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Q Q

Q Q

Q

Q

Q Q

Q

Q

Q Q

Q Q

Q

Q Q

Q

Q Q Q Q Q

Q Q

|0

|0 |0 |0

|0 |0

Surface code

Initialize Z syndrome

qubits to

Q Q Q

Implementing the “surface code”: -- in any given patch, independent of

the quantum algorithm to be done:

Colorized thanks to

Jay Gambetta and John Smolin

Page 36: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Q Q

Q Q Q

Q

Q

Q Q

Q

Q

Q Q

Q Q

Q

Q Q

Q

Q Q

Q Q

Q Q Q

Q Q

Surface code

CNOT left array

Page 37: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Q Q

Q Q Q

Q

Q

Q Q

Q

Q

Q Q

Q Q

Q

Q Q

Q

Q Q

Q Q

Q Q Q

Q Q

Surface code

CNOT down array

Page 38: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Q Q

Q Q Q

Q

Q

Q Q

Q

Q

Q Q

Q Q

Q

Q Q

Q

Q Q

Q Q

Q Q Q

Q Q

Surface code

CNOT right array

Page 39: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Q Q

Q Q Q

Q

Q

Q Q

Q

Q

Q Q

Q Q

Q

Q Q

Q

Q Q

Q Q

Q Q Q

Q Q

Surface code fabric

CNOT up array

Page 40: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Q Q

Q Q Q

Q

Q

Q Q

Q

Q

Q Q

Q Q

Q

Q Q

Q

Q Q

Q Q

Q Q Q

Q Q

|+

0/1

|+ |+

|+

|+

|+ |+

|+

0/1 0/1

0/1 0/1 0/1

-- prepare 0+1 state

Surface code fabric

-- measure in 0/1 basis 0/1

Page 41: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Q Q

Q Q Q

Q

Q

Q Q

Q

Q

Q Q

Q Q

Q

Q Q

Q

Q Q

Q Q

Q Q Q

Q Q

Surface code

Shifted CNOT right array

Page 42: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Q Q

Q Q Q

Q

Q

Q Q

Q

Q

Q Q

Q Q

Q

Q Q

Q

Q Q

Q Q

Q Q Q

Q Q

Surface code

Shifted CNOT down array

Page 43: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Q Q

Q Q Q

Q

Q

Q Q

Q

Q

Q Q

Q Q

Q

Q Q

Q

Q Q

Q Q

Q Q Q

Q Q

Surface code

Shifted CNOT left array

Page 44: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Q Q

Q Q Q

Q

Q

Q Q

Q

Q

Q Q

Q Q

Q

Q Q

Q

Q Q

Q Q

Q Q Q

Q Q

Surface code

Shifted CNOT up array

Page 45: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Q Q

Q Q Q

Q

Q

Q Q

Q

Q

Q Q

Q Q

Q

Q Q

Q Q

Q Q

Q Q Q

Q Q

|+

0/1

|+ |+

|+ |+

0/1 0/1

0/1 0/1

|0

+/-

|0

|0 |0

|0 |0

+/- +/- +/- +/-

+/- +/-

Surface code fabric

Repeat over and over....

+/-

Page 46: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

• Qubits (green) coupled via

high-Q superconducting

resonators (gray)

• “skew-square” layout of

qubits and resonators is one

way to achieve abstract

square

• Every qubit has a number of

controller and sensor lines to

be connected to the outside

world (gold pads)

Regular square lattice of coupled qubits make an

effective architecture for fault tolerance

DP. DiVincenzo,

“Fault tolerant

architectures for

superconducting

qubits,”

Phys. Scr. T 137

(2009) 014020.

Page 47: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Error correction: apply matching-algorithm

to data in this space-time volume

Page 48: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

A different notional architecture:

optically controlled quantum dots

(NOT my preferred embodiment!)

Some interesting

numbers

NC Jones et al., “Layered Architecture

For Quantum Computing,” Phys Rev X

2, 031007 (2012)

Page 49: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

• Superconducting qubits: a quantum Moore’s law

• Error correction – using massive redundancy

• Using the surface code

• The architecture of a large quantum computer – road map

• Going “off road”:

• New error correction ideas

• Direct multiqubit parity measurements

Outline

Prospects for Superconducting Qubits

Page 50: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

A development of 1996-7:

X

X

X

X

Z Z

Z Z

Stabilizer generators XXXX, ZZZZ; Stars and plaquettes of interesting 2D lattice Hamiltonian model

In Quantum Communication, Comput- ing, and Measurement, O. Hirota et al., Eds. (Ple- num, New York, 1997).

Page 51: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

1207.1443

Messages:

• ZZZ rather than ZZZZ

• threshold almost unchanged (1%)

• ZZZ specifies a joint measurement,

not necessarily a circuit – can be

done directly?

Page 52: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

• No gate action among the three qubits

• Three qubits coupled dispersively to each of two nearly

degenerate resonant modes

• Measurement by reflectometry: tone in at + port, detect phase of

tone out at – port

• Designed as quantum eraser: measures only ZZZ (parity)

arXiv:1205.1910

Page 53: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

arg(r(ω)) for different qubit states

θ is the same for all even states (mod 2π)

θ is the same for all odd states (mod 2π)

θeven≠θodd

Page 54: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

• Qubits (green) coupled via

high-Q superconducting

resonators (gray)

• “skew-square” layout of

qubits and resonators is one

way to achieve abstract

square

• Every qubit has a number of

controller and sensor lines to

be connected to the outside

world (gold pads)

Regular square lattice of coupled qubits make an

effective architecture for fault tolerance

DP. DiVincenzo,

“Fault tolerant

architectures for

superconducting

qubits,”

Phys. Scr. T 137

(2009) 014020.

Page 55: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

CDF detector,

Fermilab

Google data

center “No power is required

to perform computation.” CH Bennett

“Quantum computers can

operate autonomously.” N Margolus

2% US electricity consumption

Page 56: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

• Superconducting qubits: a quantum Moore’s law

• Error correction – using massive redundancy

• Using the surface code

• The architecture of a large quantum computer – road map

• Going “off road”:

• New error correction ideas

• Direct multiqubit parity measurements

Outline

Prospects for Superconducting Qubits

Page 57: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Prospects for Superconducting Qubits

David DiVincenzo 26.9.2012

ETHZ -- positions available!

-- 2-week lecture school,

Feb. 2013:

www.iff-springschool.de

Page 58: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Prospects for Superconducting Qubits

David DiVincenzo 7.10.2012

LCN -- 2-week lecture school,

Feb. 2013:

www.iff-springschool.de

Page 59: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Levin-Wen Models

p

p

v

v BQH

fmn

mns

elm

lms

dkl

kls

cjk

jks

bij

ijs

aninmlkjis

ijklmn FFFFFFabcdefB

nis

,

,p

i

j

k

v vQ ijk i

j

k

v

sBpf

a

b

d

c

m

j

k

l

n

i

e

p

nmlkji

nmlkjis

ijklmn abcdefB ,

,pf

a

b

d

c

m’

j’

k’

l’

n’

i’

e

p

2

10

1

pp

p

BBB

Vertex Operator

Plaquette Operator

Horrible 12 spin interaction!

Trivalent lattice: Qubits live on edges

0001010100

All other 1ijk

“Doubled Fibonacci” Model

Page 60: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

“Fibonacci” Levin-Wen Model

• Excitations are Fibonacci anyons: Universal

quantum computation can be carried out purely by

braiding.

• Active approach: Ground states of Fibonacci

Levin-Wen model can be used as a quantum code

(the Fibonacci code). Qv and Bp are stabilizers which

are measured to diagnose errors.

Question: How hard is it to measure Qv and Bp?

Koenig, Kuperberg, Reichardt, Ann. of Phys. (2010).

Page 61: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

3

4 5 6

1

2

9 10

11

12

7

8

X 0

a

c e

b

d

a

e b

d

c

c

e

a

b

a

b

a

e

b

d

c

a

e b

d

c

a

c e

b

d

a

e b

d

c

c

e

a

b

a

b

a

e

b

d

c

a

e b

d

c

p1 B

Quantum Circuit for Measuring Bp

6

1

2

4

3

12

9

10

11

7

8

5

p

82 Toffoli gates

43 CNOT gates

26 Single Qubit gates

or

20 n-qubit Toffoli gates

10 CNOT gates

24 Single Qubit gates

Page 62: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

• Original insights still

being played out

• Maybe a good

evolutionary path to

quantum computer

hardware

Conclusion:

quantum error

correction in

your future

Concept (IBM) of surface code fabric with

Superconducting qubits and coupling resonators

Page 63: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

S. Bravyi and A. Yu. Kitaev, “Quantum codes on a lattice with boundary,”

Quantum Computers and Computing 2, 43-48 (2001).

M. H. Freedman and D. A. Meyer,

“Projective plane and planar quantum codes,”

Found. Comp. Math. 1, 325 (2001)

With these 13 qubits, one gets a standard

code that will correct for one error:

Another view of the 2D Surface Code

4-qubit QND parity measurement:

Red diamond: the same in the

conjugate basis

Page 64: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Calculated fault tolerant threshold:

p ≈ 0.7%

Crosstalk assumed “very small”, not analyzed

Residual errors decrease exponentially with lattice size

Gates: CNOT only (can be CPHASE), no one qubit gates

If measurements slow: more ancilla qubits needed, no threshold penalty

Observations:

NB: Error threshold for 4-qubit

Parity QND measurement is

around

2% < p < 12%

Now p ≈ 1 %, according to Wang, Fowler,

Hollenberg, Phys. Rev. A 83,

020302(R) (2011)

Page 65: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

s1, s2, s3 are the states of the three qubits (0,1)

χi is dispersive shift parameter

Dispersive coupling is the same for each qubit

and the same on both resonators (a and b)

χ=g2/Δ

A two-resonator device for measuring the parity of three qubits:

Page 66: Prospects for Superconducting Qubits - Tsinghua Universityconference.iiis.tsinghua.edu.cn/QIP2013/wp-content/uploads/2012/01/... · • Basic physics of Josephson devices • A short

Wave impedance

“looking into” port A

(transmission line theory)

Reflection coefficient of full structure

NB

(Z0=50Ω)