50
Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 sw itching probability sw ap duration (ns) 10

Josephson qubits

  • Upload
    ronli

  • View
    69

  • Download
    0

Embed Size (px)

DESCRIPTION

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France ), Quantronics group. Introduction : Josephson circuits for quantum physics. From a fundamental question (25 years ago ) …. CAN MACROSCOPIC « MAN-MADE » ELECTRICAL CIRCUITS BEHAVE QUANTUM-MECHANICALLY ????. YES THEY CAN - PowerPoint PPT Presentation

Citation preview

Page 1: Josephson  qubits

Josephson qubits

P. Bertet

SPEC, CEA Saclay (France),Quantronics group

0 100 200 300 4000.0

0.2

0.4

0.6

0.8

1.0

11

00

01

switc

hing

pro

babi

lity

swap duration (ns)

10

Page 2: Josephson  qubits

Introduction : Josephson circuits for quantum physics

M.H. Devoret, J.M. Martinis and J. Clarke, PRL 85, 1908 (1985)

M.H. Devoret, J.M. Martinis and J. Clarke, PRL 85, 1543 (1985)YES THEY CAN

Discrete energy levels

… to genuine quantum information and quantum optics on a chip

CAN MACROSCOPIC « MAN-MADE » ELECTRICAL CIRCUITS BEHAVE QUANTUM-MECHANICALLY ????

From a fundamental question (25 years ago) ….

M. Hofheinz et al., Nature (2009)Q. state engineering and

Tomography M. Neeley et al., Nature (2011)3-qubit entanglement

… ANDMUCH MORE TO COME !!

Page 3: Josephson  qubits

Outline

Lecture 1: Basics of superconducting qubits

Lecture 2: Qubit readout and circuit quantum electrodynamics

Lecture 3: 2-qubit gates and quantum processor architectures

Page 4: Josephson  qubits

Outline

Lecture 1: Basics of superconducting qubits

Lecture 2: Qubit readout and circuit quantum electrodynamics

Lecture 3: 2-qubit gates and quantum processor architectures

1) Introduction: Hamiltonian of an electrical circuit

2) The Cooper-pair box3) Decoherence of superconducting qubits

Page 5: Josephson  qubits

Ene

rgy

(a.u

)

x (a.u.)

Real atoms

Hydrogen atom

2

0

( )4eV rr

2ˆˆ ˆ( )2pH V rm

quantization ˆ ˆ,r p i

|0>

|1>|2>

|3>

« two-level atom »

E01=E1-E0=hn01

I.1) Introduction

Page 6: Josephson  qubits

Real atoms

Hydrogen atom

2

0

( )4eV rr

2ˆˆ ˆ( )2pH V rm

ˆ ˆ,r p i

Frequency n (a.u)

n01

FWHMG/2

P(1

) (a.

u)

Spectroscopy (weak field)

laser( ) ( )IH t d E t

0( ) cos 2E t E tn

+ spontaneous emission G

OpticalBloch

equations

P(1

)

0

1

Time (a.u)

Rabi oscillations (short pulses, strong field at n=n01)

0R

d Ef

h

|0> |0>

|1>

1 0 12

I.1) Introduction

quantization

Page 7: Josephson  qubits

X,f

E

0|0>|1>

|2>|3>

|4>

Quantum regime ??

ˆ ˆ,x p i ˆ ˆ, iQ

Electrical harmonic oscillator

k

m

x

2 2

( , )2 2kx pH x p

m

+qf

-q

2 2

( , )2 2

H QQL C

0km

01LC

( ) ( ') 't

t V t dt

( ) ( ') '

tQ t i t dt

I.1) Introduction

Page 8: Josephson  qubits

LC oscillator in the quantum regime ?

2 conditions :

X,f

E

|0>|1>

|2>|3>

|4>0kT

Typic : L nH C pF 0 5GHzn

At T=30mK : 0 8hkTn

X,f

E

|0>|1>

|2>|3>

|4>1Q

OK if dissipation negligible

Superconductors at T<<Tc

I.1) Introduction

Page 9: Josephson  qubits

T<<Tc : dissipation negligble at GHz frequencies

Q=4 1010

at 51GHzand at 1K

Microwave superconducting resonators

Tc(Nb)=9.2K

S. Kuhr et al., APL 90, 164101 (2006)

Quantumregime

I.1) Introduction

Page 10: Josephson  qubits

Necessity of anharmonicity

How to prepare |1> ?

X,f

E

0|0>|1>

|2>|3>

|4>+qf

-q

Need non-linear and non dissipative element : Josephson junction

I.1) Introduction

Page 11: Josephson  qubits

Basics of the Josephson junction

The building block of superconducting qubits

Josephson AC relation : 2d QV

e dt C

Josephson DC relation : sinCI I

R L= mod(2 )=θ -θ 0,/2e

θ 2

N=Q/2e

RθLθ

( ) ( ') 't

t V t dt

( ) ( ') '

tQ t i t dt

B. Josephson, Phys. Lett. 1, 251 (1962)

P.W. Anderson & J.M. Rowell, Phys. Rev. 10, 230 (1963)

S. Shapiro, Phys. Rev. 11, 80 (1963)

I.1) Introduction

Page 12: Josephson  qubits

Basics of the Josephson junction

The building block of superconducting qubits

Classical variables ??

NON-LINEAR INDUCTANCE 2( )

2 1 /J

C C

L IeI I I

POTENTIAL ENERGY ( ) cos cos2C

J JIE Ee

Josephson AC relation : 2d QV

e dt C

Josephson DC relation : sinCI I

R L= mod(2 )=θ -θ 0,/2e

θ 2

N=Q/2e

RθLθ

( ) ( ') 't

t V t dt

( ) ( ') '

tQ t i t dt

I.1) Introduction

Page 13: Josephson  qubits

Hamiltonian of an arbitrary circuit

=

HAMILTONIAN ???

M. H. Devoret, p. 351 in Quantum fluctuations (Les Houches 1995)G. Burkard et al., Phys. Rev. B 69, 064503 (2004)

Correct procedure described in :

G. Wendin and V. Shumeiko, cond-mat/0508729

M.H. Devoret, lectures at Collège de France (2008) accessible online

=

Page 14: Josephson  qubits

Hamiltonian of an arbitrary circuit

=

HAMILTONIAN ???

=

1) Identify the relevant independent circuit variables

2) Write the circuit Lagrangian

3) Determine the canonical conjugate variables and the Hamiltonian

Page 15: Josephson  qubits

Hamiltonian of an arbitrary circuit

=

=

1) Choose reference node (ground)

branchnode

Identifying the relevant independent circuit variables

Page 16: Josephson  qubits

Hamiltonian of an arbitrary circuit

=

=

1) Choose reference node (ground)

2) Choose « spanning tree » (no loop)

Identifying the relevant independent circuit variables

Page 17: Josephson  qubits

Hamiltonian of an arbitrary circuit

=

=

1) Choose reference node (ground)

2) Choose « spanning tree » (no loop)

3) Define « tree branch fluxes »

a

c d

eb

( ) ( ') 't

i t V t dt

Identifying the relevant independent circuit variables

Page 18: Josephson  qubits

Hamiltonian of an arbitrary circuit

=

=

1) Choose reference node (ground)

2) Choose « spanning tree » (no loop)

3) Define « tree branch fluxes »

a

c d

eb

4) Define node fluxes = sum of branch fluxes from ground

4= b+ d

51

3 2

( ) ( ') 't

i t V t dt

Identifying the relevant independent circuit variables

Page 19: Josephson  qubits

Hamiltonian of an arbitrary circuit

=

=

Write Lagrangian ( , ) ( ) ( )i i el i pot iL L L

taking into account constraints imposed by external biases (fluxes or charges)

a

c d

eb

4= b+ d

51

3 2

ext

1 2

21 22 1cos

2ext

pot JL EL

Page 20: Josephson  qubits

Hamiltonian of an arbitrary circuit

=

=

Conjugate variables : ii

LQ

Classical Hamiltonian ( , )i i i iH Q Q L

Quantum Hamiltonian ˆˆ( , )i iH Q With ˆˆ ,i iQ i

ˆ ˆ( , )i iH n ˆ ˆ,i in i or with

ˆˆ / 2i in Q eˆ ˆ (2 / )i i e

a

c d

eb

4= b+ d

51

3 2

Page 21: Josephson  qubits

Different types of qubits

Cooper-pair boxes Phase qubits

CJ EE /0.1 1 50

Flux qubits

50 410

Junctions sizes

.01 to 0.04 mm2 .04mm2 100mm2

NISTSanta Barbara

TU DelftMIT

BerkeleyNEC

SaclayChalmers

NECYale

ETH Zurich

ShapeOf the

PotentialEnergy

-1 0 1

Ep (

a.u)

/ (rad)-2 0 2

Ep

(a.u

)

m/

-2 0 2 4

Ep

(a.u

)

(rad)

Charge qubit/Quantronium/Transmon

I.2) Cooper-Pair Box

Page 22: Josephson  qubits

Different types of qubits

Cooper-pair boxes Phase qubits

CJ EE /0.1 1 50

Flux qubits

50 410

Junctions sizes

.01 to 0.04 mm2 .04mm2 100mm2

NISTSanta Barbara

TU DelftMIT

BerkeleyNEC

SaclayChalmers

NECYale

ETH Zurich

ShapeOf the

PotentialEnergy

-1 0 1

Ep (

a.u)

/ (rad)-2 0 2

Ep

(a.u

)

m/

-2 0 2 4

Ep

(a.u

)

(rad)

Charge qubit/Quantronium/Transmon

I.2) Cooper-Pair Box

Page 23: Josephson  qubits

Vg

The Cooper-Pair Box

1 degree of freedom1 knob

θ̂,N̂ i

ˆ ˆˆ cos2gC JEH = ( -E N N ) -

JCE ,E

2(2 )2ceEC

« charging energy »

Page 24: Josephson  qubits

Vg

20ˆ cosˆ

cosˆˆ ˆ

J2

gCH = ( -N ) -2

E E2L

N

1θ̂ , ˆ 1N i2 d° of freedom

JCE ,E1N

2N

2θ̂ , ˆ 2N i

θ1

θ2L

inductance

2 knobs

small

0

2

J

LE

2 11 2

ˆ ˆθ -θ ˆ ˆ ˆ2

,θ̂= =N N -N

ior

1 21 2

ˆ ˆˆˆ ˆ ˆ=θ +θ =2

, N +NK

i

θ

The split CPB

Page 25: Josephson  qubits

Vg

ˆ cos cosˆ ˆ2JgCH = (E N E-N ) -

2

θ̂,N̂ i1 d° of freedom

JCE ,E

N

2 knobs

0

δ=

tunable JE

The split CPB

Page 26: Josephson  qubits

Energy levels of the CPB

ˆ ( , ) ( )cosˆˆ C J2

g gH N = ( - EN ) -E N

Solve either in charge basis |N>

( , ), ( , )k g k gE N N

N ( ) ,k k NN

c N

ˆg

N

J2C

EE N N N N+1 NH = ( -N ) -2

N N+1

... ......

...

...

...

...

2

C Jg

2

C g

2

g

J J

CJ

N=-1 N=0 N=1

... ... ...

0 ...

... ...

... 0

... ... ..

...

E (-1- N )

E (0 - N )

-E /2

-E /2 -

E (1- N

E /2

-E

.

/2 )

Diagonalize

I.2) Cooper-Pair Box

Page 27: Josephson  qubits

Energy levels of the CPB

ˆ ( , ) ( )cosˆˆ C J2

g gH N = ( - EN ) -E N

… or in phase basis |>

( , ), ( , )k g k gE N N

0,2 ( )2

0

( )k kd

ˆ ( , ) ( ) cos

2g gC JH N = ( -N ) -E1E

i

Solve Mathieu equation

( )cos

Jk kgC k k2 ( ) (( -N ) - =E)1 E

i(E )

I.2) Cooper-Pair Box

Page 28: Josephson  qubits

Two simple limits : (1) ( )J CE E

0 0.5 1 1.5 2 2.5 3

0

1

2

Ng

Ene

rgy

0 0.5 1 1.5 2 2.5 3

0

1

2E jE c 0

|N=0>

|N=1>

|N=2>

EJ/Ec=0

N

0 ( )c N

N

1( )c N3 2 1 0 1 2 3

1

3 2 1 0 1 2 3

1 0 0

0.5

0 0

0.5

20 ( )

21( )

(charge regime)

Page 29: Josephson  qubits

Two simple limits : (1) ( )J CE E

0 0.5 1 1.5 2 2.5 3

0

1

2

Ng

Ene

rgy

EJ/Ec=0.1

E0(Ng)E1(Ng)

E2(Ng)

3 2 1 0 1 2 3

1

3 2 1 0 1 2 3

1

0 ( )c N

1( )c N

0 0

0.52

0 ( )

21( )

0 0

0.5

Ng=0.01

(charge regime)

QUBIT

Page 30: Josephson  qubits

0 0

0.5

Two simple limits : (1) ( )J CE E

0 0.5 1 1.5 2 2.5 3

0

1

2

Ng

Ene

rgy

EJ/Ec=0.1

E0(Ng)

E1(Ng)

E2(Ng)

0 ( )c N

1( )c N

20 ( )

21( )

Ng=0.5

3 2 1 0 1 2 3

1

3 2 1 0 1 2 3

1

0 0

0.5

(charge regime)

QUBIT

Page 31: Josephson  qubits

0.0 0.2 0.4 0.6 0.8 1.0 1.0 0.5

0.00.51.01.52.0

From ( )J CE E to ( )J CE E E

nerg

y

Ng

EJ/Ec=0.5

0.0 0.2 0.4 0.6 0.8 1.0 2

1

0

1

2

3

Ng

EJ/Ec=2

0.0 0.2 0.4 0.6 0.8 1.0

4

2

0

2

Ene

rgy

Ng

EJ/Ec=5

0.0 0.2 0.4 0.6 0.8 1.0 8

6

4

2

0

2

Ng

EJ/Ec=10

STILL A QUBIT !

Page 32: Josephson  qubits

Two simple limits : (2) ( )J CE E

I.2) Cooper-Pair Box

(phase regime)

0.0 0.2 0.4 0.6 0.8 1.0 8

6

4

2

0

2

Ng

EJ/Ec=10

4 2 0 2 4 1.0 0.5

0.00.51.0

4 2 0 2 4 1.0 0.5

0 .00 .51 .0

0 ( )c N

1( )c N

0 0

0.5

0 0

0.5

20 ( )

21( )

J. Koch et al., PRA (2008)

Page 33: Josephson  qubits

Experimental spectrum of a transmon

J. Schreier et al., PRB (2008)

Page 34: Josephson  qubits

Ng(t)=DNgcost

One-qubit gates

TRANSMON QUBIT

ˆ ˆ ˆ( ) cost 2

C g JH = E N-N -E

ˆ ˆ ˆˆcos 2 gN D2C J CH = E N -E - E cos tN

transmon drive

01( )2 z

cosR xt Two-level

approximation

2 0 1R C gE N N DI.2) Cooper-Pair Box

Page 35: Josephson  qubits

I.2) Cooper-Pair Box

One-qubit gates

TRANSMON QUBIT

f0

Rotation : X

|0>

|1>

X

Z

Y

=01

Page 36: Josephson  qubits

I.2) Cooper-Pair Box

One-qubit gates

TRANSMON QUBIT

f0f0f

Rotation : Xf

|0>

|1>

X

Z

Y fXf

X

=01

Page 37: Josephson  qubits

I.2) Cooper-Pair Box

One-qubit gates

TRANSMON QUBIT

f0f0f

Rotation : Xf

|0>

|1>

X

Z

Y fXf

X

Z rotation

=01

All rotations on Bloch sphere

Fidelity ? 99%J.M. Chow et al., PRL 102, 090502 (2009)

Page 38: Josephson  qubits

Decoherence

d(t)

Ng+dNg(t)

Noise in Hamiltonian parameters

DECOHERENCE

MAJOR OBSTACLE TO QUANTUM COMPUTING

I.3) Decoherence

Page 39: Josephson  qubits

1

0

01

Relaxation(Spontaneous emission)

Decoherence in superconducting qubits(Ithier et al., PRB 72, 134519, 2005)

1 21 1 , 01( )

2T D S

G

environmental density ofmodes at qubit frequency

Pure dephasing

( )i te 0 1

1

0

01( )i

t

i(t)

1 12 2 2T

GG G

2, (0)zD S G

2( )( ) ti tf t e e

G

Low-frequencynoise

01,zD

,1 0 1HD

I.3) Decoherence

Page 40: Josephson  qubits

Decoherence

d(t)

Ng+dNg(t)

Noise in Hamiltonian parameters

DECOHERENCE

Origin of the noise ???

I.3) Decoherence

Page 41: Josephson  qubits

Decoherence

d(t)

Ng+dNg(t)

Noise in Hamiltonian parameters

DECOHERENCE

Origin of the noise ???

R

R

1) ELECTROMAGNETIC

Low-frequency : Johnson-Nyquist due to thermal noise

High-frequency : spontaneous emission (quantum noise)

Under control

I.3) Decoherence

Page 42: Josephson  qubits

Decoherence

d(t)

Ng+dNg(t)

Noise in Hamiltonian parameters

DECOHERENCE

Origin of the noise ???

R

R

2) MICROSCOPIC

e- Spin flips

Low-frequency noise well studied :

Charge noise3 2(10 )( )NgS

Flux noise6 2

010( )( )S

I.3) Decoherence

High-frequency (GHz)microscopic noise TOTALLY UNKNOWN !!

Page 43: Josephson  qubits

I.3) Decoherence

Decoherence

d(t)

Ng+dNg(t)

Noise in Hamiltonian parameters

DECOHERENCE

Origin of the noise ???

R

R

2) MICROSCOPIC

e- Spin flips

Low-frequency noise well studied :

Charge noise3 2(10 )( )NgS

Flux noise6 2

010( )( )S

High-frequency (GHz)microscopic noise TOTALLY UNKNOWN !!

CPB in charge regime 2 10 100T ns 2 1 100T sm

Transmon 2 1 10T ms 2 1 100T sm

Page 44: Josephson  qubits

State-of-the-art coherence times

T1=1-2ms

Schreier et al., PRB 77, 180502 (2008)

T2=1-3ms

I.3) Decoherence

Page 45: Josephson  qubits

Very recent breakthrough: transmon in 3D cavity

T1=60msT2=15ms

H. Paik et al., quant-ph (2011)

ULTIMATE LIMITS ON COHERENCE TIMES UNKNOWN YET

I.3) Decoherence

Page 46: Josephson  qubits

I.3) Decoherence

SiO2

PMMA-MAAPMMA

e-

O2Al/Al2O3/Al junctions

1) e-beam patterning2) development3) first evaporation4) oxidation5) second evap.6) lift-off7) electrical test

small junctions Multi angle shadow evaporation

Fabrication techniquessmall junctions e-beam lithography

Page 47: Josephson  qubits

I.3) Decoherence

gate 160 x160 nm

QUANTRONIUM (Saclay group)

Page 48: Josephson  qubits

FLUX-QUBIT (Delft group)

I.3) Decoherence

Page 49: Josephson  qubits

I.3) Decoherence

40mm

2mm

TRANSMON QUBIT (Saclay group)

Page 50: Josephson  qubits

END OF FIRST LECTURE