35
ofessor N Cheung, U.C. Berkeley Lecture 18 EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor • NMOS - Generic NMOS Process Flow • CMOS - Generic CMOS Process Flow Self-aligned Techniques • LOCOS- self-aligned channel stop • Self-aligned Source/Drain • Lightly Doped Drain (LDD) • Self-aligned silicide (SALICIDE) • Self-aligned oxide gap Advance MOS Techniques Twin Well CMOS , Retrograde Wells , SOI CMOS

Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Embed Size (px)

Citation preview

Page 1: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

1

IC Process Integration

Example IC Process Flows• Simple resistor• NMOS - Generic NMOS Process Flow • CMOS - Generic CMOS Process Flow

Self-aligned Techniques• LOCOS- self-aligned channel stop• Self-aligned Source/Drain• Lightly Doped Drain (LDD)• Self-aligned silicide (SALICIDE)• Self-aligned oxide gap

Advance MOS Techniques• Twin Well CMOS , Retrograde Wells , SOI CMOS

Page 2: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

2

Self-aligned channel stop with Local Oxidation (LOCOS)

Si3N4 CVDpad oxide

Si

LOCOS Process Flow

Page 3: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

3

B+ channel stopimplant

Si

thermal oxidation(high temperature)

FOX

Self-alignedchannel stop

pp

B

dose~1013/cm2

Page 4: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

4

If poly or metal lines lie on top of the Field Oxide (FOX), they will form a parasitic MOS structure.If these lines carrying a high voltage, they may create an inversion layer of free carriers at the Si substrate and shorts out neighboring devices. The relatively highly doped Si underneath (the “channel stop”) raises the threshold voltage of this parasitic MOS. If this threshold voltage value is higher than the highest circuit voltage, inversion will not occur.

SiO2

p-Si

metal

Comment: Field Oxide Channel Inversion

InversionLayer

Device 1Device 2

Page 5: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

5

Comments : Non self-aligned alternative:

P.R.1

SiO2

P+ P+

SiP+ P+

SiO2

2B+

3

Disadvantages1 Two lithography steps2 Channel stop doping not FOX aligned

Page 6: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

6

Self-aligned Source and Drain

n+n+

poly-Si gateAs+

n+n+

As+

Off Alignment

Perfect Alignment

* The n+ S/D always follows gate

Page 7: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

7

Comment: Non self-aligned Alternative

.n+n+ 2

.n+n+

Solution: Use gate overlap to avoid offset error.

.n+n+ 1

Channel not linked to S/D

Straycapacitance

Disadvantages: Two lithography steps, excess gate overlap capacitance

Page 8: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

8

Lightly Doped Drain (LDD)

LDD(1E17-to 1E18/cm3)

Source/Drain(1E20-to 1E21/cm3)

Page 9: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

9

Lightly Doped Source/Drain MOSFET (LDD)

The n-pockets (LDD) doped to medium conc (~1E18) are used to smear out the strong E-field between the channel and heavily doped n+ S/D, in order to reduce hot-carrier generation.

n+ n+n nSiO2

CVD oxide spacer

p-sub

Page 10: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

10

n implantfor LDD

SiO2

CVD SiO2

CVD conformaldeposition SiO2

LDD Process Flow using Ion Implantation

Page 11: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

11

Spacer left when CVD SiO2 is just cleared on flat region.

nn

n+ n+

n+ implant

n n

Directional RIE of CVD Oxide

Page 12: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

RIE-based Stringers / Spacers

Leftover material must be removed by overetching

Page 13: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

13

Self-Aligned Silicide Process (SALICIDE) using Ion

Implantation and Metal-Si reaction

n+n+

TiSi2 (metal)poly-gate

Metal silicides are metallic.They lower the sheet resistance of S/D and the poly-gate

Page 14: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

14

n+n+

SiO2

oxide spacer

SALICIDE Process Flow

Page 15: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

15

n+n+

SiO2

Ti

Ti deposition

Si

TiTiSi2

TiTi

Selective etch to remove unreacted Ti only

.

2

)700(

2

2

SiOwithreactnotwillTi

TiSiSiTi

Ctreatmentheat o

Page 16: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

16

Salicide Gate and Source/Drain

Page 17: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

17

Self-aligned Oxide Gap

n+

poly-I

poly-II

small oxide spacing < 30nm

inversion charge layerpoly-I

substrate

Gate oxide

poly-IIMOSFET

MOSCapacitor

DRAM structure ( MOSFET with a capacitor)

V (plate)

For a small spacing between poly-I and poly-II, inversion charges between MOSFET and Capacitor are electrically linked. No need for a separate n+ island.

Thermal Oxide grown conformal on poly-I

Page 18: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

Starting material: p-type wafer with NA = 1016 cm-3

Step 1: grow 500 nm of SiO2

Step 2: pattern oxide using the oxide mask (dark field)

Step 3: implant phosphorus and anneal to form an n-type layer with ND = 1020 cm-3 and depth 100 nm

Step 4: deposit oxide to a thickness of 500 nmStep 5: pattern deposited oxide using the contact mask (dark field)Step 6: deposit aluminum to a thickness of 1 mStep 7: pattern using the aluminum mask (clear field)

Starting material: p-type wafer with NA = 1016 cm-3

Step 1: grow 500 nm of SiO2

Step 2: pattern oxide using the oxide mask (dark field)

Step 3: implant phosphorus and anneal to form an n-type layer with ND = 1020 cm-3 and depth 100 nm

Step 4: deposit oxide to a thickness of 500 nmStep 5: pattern deposited oxide using the contact mask (dark field)

Oxide mask (dark field)

Contact mask (dark field)

Al mask (clear field)

Three-mask process:

Process Flow Example : Resistor

Layout:

A A

Starting material: p-type wafer with NA = 1016 cm-3

Step 1: grow 500 nm of SiO2

Step 2: pattern oxide using the oxide mask (dark field)

Page 19: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

p-type Si

Step 2:

Pattern oxide

Step 3: Implant & Anneal

oxide etchant

p-type Si

photoresist patterned using mask #1

phosphorus blocked by oxide

phosphorus implant:

A-A Cross-Section

SiO2

phosphorus ions

after anneal of phosphorus implant:

n+ layer

p-type Si

lateral diffusion of phosphorus under oxide during anneal

Page 20: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

n+ layer

p-type Si

Step 4: Deposit 500 nm oxide

n+ layer

p-type Si

Step 7:

Pattern metalAl

1st layer of SiO2

2nd layer of SiO2

Step 5:

Pattern oxide n+ layer

p-type Si

Open holes for metal contacts

Page 21: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

21

SubstrateBoron doped (100)SiResistivity= 20 -cm

Thermal Oxidation~100Å pad oxide

CVD Si3N4

~ 0.1 um

LithographyPattern Field OxideRegions

RIE removal of Nitride and pad oxide

Channel StopImplant: 3x1012 B/cm2

60keV

Thermal Oxidation to grow 0.45um oxide

Wet EtchNitrdie and pad oxide

Ion Implant forThresholdVoltage control8x1011 B/cm2 35keV

Thermal OxidationTo grow 250Å gate oxide

LPCVDPoly-Si~ 0.35um

Dope Poly-Si to n+with PhosphorusDiffusion source

Generic NMOS Process Flow Description

Page 22: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

22

LithographyPoly-Si Gate pattern

RIE Poly-Si gate

Source /Drain Implantation~ 1016 As/cm2 80keV

Thermal OxidationGrow ~0.1um oxide on poly-SiAnd source/drian

LPCVDSiO2~0.35um

LithographyContact Window pattern

RIE removal of CVD oxide and thermal oxide

Sputter DepositAl metal~0.7um

LithographyAl interconnect pattern

RIE etch of Al metallization

Sintering at ~400oC in H2 ambientto improve contact resistanceand to reduce oxide interface charge

Generic NMOS Process Flow Description (cont.)

Page 23: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

23

Generic NMOS Process Flow

activedevice

~5 m

p-Si <100> 500m

Boron-doped Si 20 -cm <100>

NMOS Structure

Page 24: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

24

P.R.

SiO2

Si

nitride

SiO2

P.R.

Si

~0.1m

keV

cmB

60

/103: 212

317 /103 cm

nitride

Page 25: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

25

Fox

p+ p+

keVcmB 35/105 211

Fox

p+p+

Page 26: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

26

Resist

n+n+

As+ 80keV, 1016/cm2

n+n+

Thermal oxide

Page 27: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

27

Al

CVD oxide

intermediate oxide

n+n+

Si/SiO2

H2 anneal ~ 400oC(forming gas is 10% H2 and 90% N2)

Al

InterfaceStates Passivation

n+ n+

Page 28: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

28

Basic Structure of CMOS Inverter

Page 29: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

29

A GenericCMOS Process

P-well CMOS

Page 30: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

30

Pattern mask openingFor p-well implant

Shallow implantation of boron

Diffusion drive-inTo form p-well in oxidizing ambient

Remove masking oxide

Page 31: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

31

Pad oxide growth and CVD Si3N4.Pattern field oxide regions

Blanket implant of Boron for p channel stop inside p-well

Protect p-well regions with photoresist.Implant Ph to form n channel stop outside p-well regions

LOCOS Oxidation

Thermal oxidation of gate SiO2

Page 32: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

32

Pattern poly-Si gates and poly lines

Protect ALL n-channel transistors with photoresist.

Boron implantation to form source/drain of p-channel transistors and contacts to p-well

CVD poly-Si

Page 33: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

33

Protect ALL p-channeltransistors with photoresist.

CVD SiO2 (Low-temperature oxide)

Pattern and etch contact openings to source/drain, well contact, and substrate contact.

Arsenic implantation to form source/drain of n-channel transistors and contacts to n-substrate

Page 34: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

34

Metal 1 deposition

Pattern and etch Metal 1 interconnects

CVD SiO2

Page 35: Professor N Cheung, U.C. Berkeley Lecture 18EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

35

Pattern and etch contact openings to Metal 1.

Metal 2 deposition.

Pattern, and etch Metal 2 interconnects.