16
Production Of Taro (Colocasia esculenta) Planting Material Enhanced By Bioreactor System. WORLD CONGRESS OF ROOT AND TUBER CROPS Ulamila D. Lutu and Valerie S. Tuia 19 th January, 2016

ProductionOfTaro( Colocasia(esculenta - GCP21 · ProductionOfTaro(Colocasia(esculenta) PlantingMaterialEnhancedByBioreactor* System.! WORLD CONGRESS OF ROOT AND TUBER CROPS UlamilaD.LutuandValerieS

  • Upload
    lamque

  • View
    225

  • Download
    1

Embed Size (px)

Citation preview

Production  Of  Taro  (Colocasia  esculenta)  Planting  Material  Enhanced  By  Bioreactor  

System.  WORLD CONGRESS OF ROOT AND TUBER CROPS

Ulamila  D.  Lutu  and  Valerie  S.  Tuia  19th  January,  2016  

Project  Context  •  Taro  is  a  staple  food  crop  throughout  the  Pacific  

Island  region.  Important:  Ø Culturally  Ø Dietary  Ø Economically  

•  Taro  was  a  major  export  of  Samoa  throughout  the  1980s  but  was  decimated  by  Phytophthora  colocasiae  leaf  blight  in  1993-­‐  Food  and  income  security.  

•  Focus  on  the  supply  chain  of  taro  in  Samoa:  Ø   adequate  supply  of  planOng  material  Ø   good  quality    Ø   market  preferred    To  supply  domesOc  and  export  markets.    

•  TIP  bred  some  5  varieOes  from  crosses  of  varieOes  from  Palau,  FSM  and  Philippines  and  Asian  materials.  

 

OBJECTIVE    Support  the  sustainable  growth  of  Samoa’s  taro  domes6c  and  export  market  by:  •  Improving  methods  for  mul6plying  plan6ng  material  

•  Developing  a  new  effec6ve  and  rapid  mass  propaga6on  system  using  modern  applica6on  of  biotechnology-­‐  

         “BIOREACTOR  SYSTEM”.  

 

•  2  varieOes:  v       Nuu  20    (BL/SM/201)  v       Talo  meamata  (BL/SM/202)  

•  All  plantlets  were  precultured  on  solid  MS  for            2-­‐3  weeks  prior  to  experiments.  •  10  replicates  per  variety  per  treatment    •  Culture  vessels  used:  

v  McCartney  glass  bo]les  (28  ml)  v  Cospak  glass  bo]les  (125  ml)  v  Bioreactor  bo]le  (2,700  cm2)  

•  Cultures  exposed  to:  v  Temperature:  25  oC  ±  2  OC  v  Light  intensity:  2668  lux  irradiance  v  18  hours  day  length  

     

   

METHODOLOGY  

5  METHODS  METHOD   1   2   3   4   5  STAGES    (Culture  Vessels)  

4:  All  glass  boCles:  1:  small  (28  ml)  2-­‐4:  big  (125  ml)  

2:  All  glass  boCles:  1:  small  (28  ml)  2:  big  (125  ml)  

2:  1:  125ml  glass  boCles  2:  Bioreactor  system  

2:  All  glass  boCles:    125  ml  glass  boCles      

3:  1-­‐2:  125ml  glass  

boCles  3:  Bioreactor  system  

TREATMENTS          

2:  1. MS  (control)  2.  Tuia  (1997)    

2:  1. MS  (control)  2. BAP  (1.0  mg/L)  +  NAA    

8:  1. MS  (control)  2.  TDZ  (0.5  mg/L)  3. BAP  (1.0  mg/L)  +  NAA  

4. BAP  (1.5  mg/L)  +  NAA  

5. BAP  (2.0  mg/L)  +  NAA  

6. BAP  (2.5  mg/L)  +  NAA  

7. BAP  (3.0  mg/L)  +  NAA  

8. BAP  (3.5  mg/L)  +  NAA  

8:  1. MS  (control)  2.  TDZ  (0.5  mg/L)  3. BAP  (1.0  mg/L)  +  NAA  

4. BAP  (1.5  mg/L)  +  NAA  

5. BAP  (2.0  mg/L)  +  NAA  

6. BAP  (2.5  mg/L)  +  NAA  

7. BAP  (3.0  mg/L)  +  NAA  

8. BAP  (3.5  mg/L)  +  NAA  

5:  1. MS  (control)  2. BAP  (5  mg/L)  3-­‐  BAP  (10  mg/L)    4-­‐  BAP  (15  mg/L)    5-­‐  BAP  (20  mg/L)    

TIME  IN  LAB  (weeks)  

16  weeks   8  weeks   12  weeks   8  weeks   12  weeks  

 *  All  NAA  concentra6on:  0.3  mg/L  

RESULTS  Op6mum  results  from  the  5  Methods    

Method (Treatment)   # Shoots  

Root length (mm)  

Plant height (mm)  

Duration cultured in lab

(weeks)  

Duration acclimatised in screen house

(weeks)  

Total duration to plant in field

(weeks)  

1   6.5   126.1   98.1   16 (4 months)   12 (3 months)   28 (7 months)  2   4.8   152.2   133.5   8 (2 months)   12 (3 months)   20 (5 months)  

3 (4)   4.5   46.5   382.0   12 (3 months)   8 (2 months)   20 (5 months)  4 (2)   4.1   55.9   66.1   8 (2 months)   12 (3 months)   20 (5 months)  5 (3)   8.2   197.0   278.0   12 (3 months)   8 (2 months)   20 (5 months)  

Comparison  of  results  between  the  2  systems  

Method   Av.  #  suckers  Av.  Root  length  

(mm)  Av.  Plant  height  

(mm)  

Glass jar system (1, 2 & 4) 4.1- 6.5 55.9 – 152.2 66.1 – 133.5

Bioreactor system (3 & 5) 4.5 – 8.2 46.5 – 197.0 278.0 – 382.0

Comparison  between  the  2  systems  

 *  Comparison  between  Method  3  (Bioreactor)  and  4  plant  (Glass  boCles)  height  a]er  growth  in  lab  

DISCUSSION    •  Method    5    (Treatment  3)  –  Combina6on  of  conven6onal  

sta6c  system  and  Bioreactor  system  is  the  best  protocol.    •  Plants  from  Bioreactor  system-­‐  ready  to  be  planted  out  within  

2  months  (Normal  nursery  strengthening:  3  months).  •  Plantlets  were  normal  when  exposed  to  higher  BAP  

concentra6on  at  a  shorter  6me  (2  weeks).  •  Longer  exposure  (4  weeks)  of  plantlets  to  higher  BAP  

concentra6on  had  an  adverse  impact  on  growth,  development  and  root  elonga6on  of  the  plantlets.  

•  Bioreactor  system  enhanced  quality,  vigour,  height,  root  growth  rates  of  taro  plantlets  than  those  produced  in  conven6onal  sta6c  (glass)  system.  

 

Plant  growth  in  screen  house  Plantlets generated via

bioreactor in vitro system, 100% survival

Plantlets generated via conventional semi-solid static (glass) in vitro system

94% survival

ProjecOon  of  producOon  based  on  results  of  the  research    

Original  stock  

MulOplicaOon  (Lab)  

STAGE  1  

Shoot  ElongaOon  (Lab)  

STAGE  2  

No  bioreactor/5  shoots  (Lab)  STAGE  3  

AcclimaOsaOon  (Screen  house)  

 

Plantlet  (s)  No  shoots  per  

plantlet  per  week   ElongaOon  #  Bioreactor  vessels  used   Screen  house  

 months>   1  month   1  month   2  months   2  months  1   64   64                                                  13     64  

                             100                                    6,400                                    6,400     1300                                  6,400    

                       1,000     64,000     64,000                                    13,000     64,000                        10,000                            640,000                            640,000     130,000                          640,000    

             100,000     6,400,000     6,400,000                          1,300,000     6,400,000    

Multiplication medium- MS+BAP 10 mg/L at stage 1 method (2 weeks) 8 shoots/explant in 2 weeks) using glass

 Realis6c  projec6on  based  on  resources  at  

CePaCT    POTENTIAL  PRODUCTION:    

•  1,000  stock  can  poten6ally  produces  64,000  plantlets  for  1  month  

•  64,000/mth  x  12  mths  =  768,000  plantlets/year  REALISTIC  PRODUCTION:  •  1,000  stock  can  produce  4,000  plantlets/mth  month  •  4,000/mth  x  12  months  =  48,000  plantlets/year  

Advantage  of  using  the  BIOREACTOR  over  the  NORMAL  CONVENTIONAL  staOc  SYSTEM  

•  Improves plant material quality •  Increases plant height and root

length •  Better aeration, enhances

growth •  Higher nutrient uptake –

nutrients in contact with roots •  Reduced manipulations and

labour •  Drastic reduction in work,

shelving area and number of containers used

 bioreactor    -­‐  6l6ng  system    

 normal  sta6c  system  

CONCLUSION:  •  Bioreactor  system  improved  the  

field-­‐plan6ng  readiness  of  taro  plantlets  by  20  weeks  in  contrast  to  28  weeks  using  the  conven6onal  method.    

•  The  bioreactor-­‐treated  plantlets  achieved  100%  survival  rate  as  compared  to  94%  for  glass-­‐treated  plantlets  in  the  screen  house  

•  Poten6al  produc6on  is:  v 768,000  plantlets/year  (combina6on  of  sta6c  and  bioreactor  treated  plants).  

v 48,000  plantlets/year  (conven6onal  sta6c  method).  

   

Acknowledgements  1.  Organisers  of  the  World  Congress  of  Root    and  Tuber  

Crops.  2.  Australian  Centre  for  Interna6onal  Agricultural  

Research,  Pacific  Agribusiness  Research  Development  Ini6a6ve.    

3.  Ministry  of  Agriculture,  Forestry  and  Fisheries,  Samoa  4.  Scien6fic  Research  Organisa6on  of  Samoa  5.  SPC  Pacific  Island  member  countries    6.  FAO  Treaty  Secretariat  and  the  Global  Crop  Diversity  

Trust.  7.  Samoa  farmers,  SPC  Food  and  Nutri6onal  Security  

Team    

THANK  YOU