28
Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Embed Size (px)

Citation preview

Page 1: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Procedures of Finite Element AnalysisTwo-Dimensional Elasticity Problems

Professor M. H. Sadd

Page 2: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Two Dimensional Elasticity Element EquationOrthotropic Plane Strain/Stress Derivation Using Weak Form – Ritz/Galerin Scheme

Displacement Formulation Orthotropic Case

0

0

221266

661211

y

x

Fy

vC

x

uC

yx

v

y

uC

x

Fx

v

y

uC

yy

vC

x

uC

x

strain plane and stress plane)1(2

,strain plane

)2-)(1(1

E

stress plane1

strain plane)2-)(1(1

)-E(1

stress plane1

66

2

12

2

2211

EC

E

C

E

CC

Material Isotropic

xyxy

yxy

yxx

eC

eCeC

eCeC

66

2212

1211

Law sHooke'

Page 3: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Two Dimensional Elasticity Weak Form

0

0

2212662

6612111

dxdyFy

vC

x

uC

yx

v

y

uC

xwh

dxdyFx

v

y

uC

yy

vC

x

uC

xwh

e

e

ye

xe

Mulitply Each Field Equation by Test Function & Integrate Over Element

Use Divergence Theorem to Trade Differentiation On To Test Function

yxyyxx

yeyee

xexee

ny

vC

x

uCn

x

v

y

uCTn

x

v

y

uCn

y

vC

x

uCT

dsTwhdxdyFwhdxdyy

vC

x

uC

y

w

x

v

y

uC

x

wh

dsTwhdxdyFwhdxdyx

v

y

uC

y

w

y

vC

x

uC

x

wh

eee

eee

221166661211

2222122

662

11661

12111

,

(constant) icknesselement theh

Page 4: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Two Dimensional Elasticity Ritz-Galerkin Method

ee

ee

e

e

e

dsThdxdyFhFdsThdxdyFhF

dxdyyy

Cxx

ChK

dxdyxy

Cyx

ChKK

dxdyyy

Cxx

ChK

FUKF

F

v

u

KK

KK

yieyieixiexiei

jijieij

jijieijij

jijieij

T

21

226622

66122112

661111

2

1

2212

1211

,

where

}{}]{[}{

}{

}{

}{

][][

][][

formsin weak ,,Let 11

21

N

jjj

N

jjji vvuuww

Page 5: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Two Dimensional Elasticity Element EquationTriangular Element N = 3

23

13

22

12

21

11

3

3

2

2

1

1

)(66

)(56

)(55

)(46

)(45

)(44

)(36

)(35

)(34

)(33

)(26

)(25

)(24

)(23

)(22

)(16

)(15

)(14

)(13

)(12

)(11

23

13

22

12

21

11

3

3

2

2

1

1

2233

1233

1133

2223

2123

2222

1223

1123

1222

1122

2213

2113

2212

2112

2211

1213

1113

1212

1112

1211

1111

2

1

2212

1211

}{

}{

}{

}{

][][

][][

F

F

F

F

F

F

v

u

v

u

v

u

K

KK

KKK

KKKK

KKKKK

KKKKKK

F

F

F

F

F

F

v

u

v

u

v

u

K

KK

KKK

KKKK

KKKKK

KKKKKK

F

F

v

u

KK

KK

e

ee

eee

eeee

eeeee

eeeeee

T

12

3

e

(x1,y1)(x2,y2)

(x3,y3)

Page 6: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Two Dimensional Elasticity Element EquationPlane Strain/Stress Derivation Using Virtual Work Statement

dVuFdSuTdVe iV iS in

iijV ijeee

Statement Workrtual Vi

0)()(

)2(

ee

e

dxdyvFuFhdsvTuTh

dxdyeeeh

yxen

yn

xe

xyxyyyxxe

0

2

eee

dxdyF

F

v

uhds

T

T

v

uhdxdy

e

e

e

hy

xT

eny

nx

T

e

xy

y

x

T

xy

y

x

e

12

3

x

y

e

(Element Geometry)

e = 12 + 23 + 31

(x1,y1)(x2,y2)

(x3,y3)

he = thickness

eee hV

eee hS

Page 7: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Two Dimensional Elasticity Element EquationInterpolation Scheme

iii

iii

yxvyxv

yxuyxu

),(),(

),(),(}]{[ d

v

u

}]{[}]{[

//

/0

0/

//

/0

0/

2

}{ dBde

xy

y

x

v

u

xy

y

x

e

e

e

xy

y

x

}]{][[}]{[}{ dBCeC

66

2212

1211

00

0

0

][

C

CC

CC

C

Material cOrthotropi General

strain plane and stress plane)1(2

strain plane)2-)(1(1

E

stress plane1

strain plane)2-)(1(1

)-E(1

stress plane1

66

2

12

2

2211

EC

E

C

E

CC

Material Isotropic

Page 8: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Two Dimensional Elasticity Element Equation

eee

dsT

Thdxdy

F

Fhdxdyh n

y

nxTT

ey

xTTe

TTe ][}{][}{}]){][[]([}{ ψδdψδddBCBδd

Statement Workirtual V

}{}{}]{[ QFdK Equation Element

VectorLoading][}{

VectorForceBody][}{

MatrixStiffness]][[][][

e

e

e

dsT

Th

dxdyF

Fh

dxdyh

ny

nxT

e

y

xTe

Te

ψQ

ψF

BCBK

Page 9: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Triangular Element With Linear Approximation

1

2

3

1

1

1

2

3

1

2

1

2

3

13

Lagrange Interpolation Functions

x

y

(x1,y1)

(x2,y2)

(x3,y3)

u1

u2

1

2

3u3

v1

v2

v3

ycxccyxu 321),(

33321333

23221222

13121111

),(

),(

),(

ycxccuyxu

ycxccuyxu

ycxccuyxu

3

1332211 ),(),(),(),(),(

iii yxuyxuyxuyxuyxu

)(2

1),( yx

Ayx iii

ei

jkkji yxyx kji yy jki xx

1,),(3

1

i

iijjji yx

Page 10: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Triangular Element With Linear Approximation

}]{[000

000

3

3

2

2

1

1

321

321 dψ

v

u

v

u

v

u

v

u

}]{[}]{[

//

/0

0/

//

/0

0/

2

}{

dBdψ

e

xy

y

x

v

u

xy

y

x

e

e

e

xy

y

x

332211

321

321

332211

321

321

000

000

2

1000

000

][eA

xyxyxy

yyy

xxx

B

]][[][][ BCBK Tee Ah

Matrix Stiffness

662322

23

66331233662311

23

6632223266321223662222

22

662312326632113266221222662211

22

66312231663112136621222166211212662122

21

6613123166311131661212216621112166111211662111

21

4][

CC

CCCC

CCCCCC

CCCCCCCC

CCCCCCCCCC

CCCCCCCCCCCC

A

h

e

eK

Page 11: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Loading Terms for Triangular Element With Uniform Distribution

12

3

x

y

e

(Element Geometry)

e = 12 + 23 + 31

(x1,y1)(x2,y2)

(x3,y3)

he = thickness

eee hV

eee hS

Tyxyxyx

ee FFFFFFAh

F }{3

}{

312312

][][][

][}{

dsT

Thds

T

Thds

T

Th

dsT

Th

ny

nxT

eny

nxT

eny

nxT

e

ny

nxT

e

ψψψ

ψQ

12

12

3

3

2

2

1

1

0

0

2][

1212

ny

nx

ny

nx

e

ny

nx

ny

nx

ny

nx

eny

nxT

eT

T

T

T

Lhds

T

T

T

T

T

T

hdsT

Th ψ

31

31

23

23

0

0

2][,

0

0

2][

3123

ny

nx

ny

nx

eny

nxT

e

ny

nx

ny

nxe

ny

nxT

e

T

T

T

T

Lhds

T

Th

T

T

T

TLhds

T

Th ψψ

Page 12: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Rectangular Element Interpolation

44332211

4321

),(),(),(),(

),(

uyxuyxuyxuyx

xycycxccyxu

onpproximatiBilinear A

b

y

a

xb

y

a

x

b

y

a

x

b

y

a

x

1

1

11

4

3

2

1

Functions ionInterpolat

1 2

34

a

b

x

y

Page 13: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Two Dimensional Elasticity Element EquationRectangular Element N = 4

}{

}{

}{

}{

][][

][][2

1

2212

1211

F

F

v

u

KK

KKT

(x3,y3)

1 2

3

e

(x1,y1) (x2,y2)

4 (x4,y4)

24

14

23

13

22

12

21

11

4

4

3

3

2

2

1

1

2244

1244

1144

2234

2134

2233

1234

1134

1233

1133

2224

2124

2223

2123

2222

1224

1124

1223

1123

1222

1122

2214

2114

2213

2113

2212

2112

2211

1214

1114

1213

1113

1212

1112

1211

1111

F

F

F

F

F

F

F

F

v

u

v

u

v

u

v

u

K

KK

KKK

KKKK

KKKKK

KKKKKK

KKKKKKK

KKKKKKKK

Page 14: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Rectangular Element With BiLinear Approximation

}]{[0

0

000

000

4

4

3

3

2

2

1

1

4

4

321

321 dψ

v

u

vu

v

u

v

u

v

u

ab

y

a

x

bab

y

ab

x

b

y

aab

x

b

y

aa

x

b

a

x

bab

x

ab

x

a

x

b

ab

y

ab

y

b

y

ab

y

a

xyxyxyxy

yyyy

xxxx

xy

y

x

11

11

11

11

11

00011

0

00011

011

0000

0000

][

//

/0

0/

][

44332211

4321

4321

ψB

Page 15: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Two Dimensional Elasticity Rectangular Element Equation - Orthotropic Case

(x3,y3)

1 2

3

e

(x1,y1) (x2,y2)

4

(x4,y4)

24

14

23

13

22

12

21

11

4

4

3

3

2

2

1

1

2244

1244

1144

2234

2134

2233

1234

1134

1233

1133

2224

2124

2223

2123

2222

1224

1124

1223

1123

1222

1122

2214

2114

2213

2113

2212

2112

2211

66126611661266116612661166126611 4

12

6

1

4

1

6

1

4

12

6

1

4

1

3

1

F

F

F

F

F

F

F

F

v

u

v

u

v

u

v

u

K

KK

KKK

KKKK

KKKKK

KKKKKK

KKKKKKK

CCCb

aC

a

bCCCC

a

bCCC

b

aC

a

bCCC

b

aC

a

b

66

2212

1211

00

0

0

][

C

CC

CC

C

Material cOrthotropi General

]][[][][ BCBK Tee Ah

Matrix Stiffness

Page 16: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

FEA of Elastic 1x1 Plate Under Uniform Tension

x

T

3

21

y

4

33

2

2

11

1

2

)1(3

)1(3

)1(2

)1(2

)1(1

)1(1

)1(3

)1(3

)1(2

)1(2

)1(1

)1(1

2

1

02

1

12

1

2

32

1

2

1

2

3

02

1

2

1

2

1

2

10101

)1(2

y

x

y

x

y

x

T

T

T

T

T

T

v

u

v

u

v

u

E

Element 1: 1 = -1, 2 = 1, 3 = 0, 1 = 0, 2 = -1, 3 = 1, A1 = ½.

Element 2: 1 = 0, 2 = 1, 3 = -1, 1 = -1, 2 = 0, 3 = 1, A1 = ½

)2(3

)2(3

)2(2

)2(2

)2(1

)2(1

)2(3

)2(3

)2(2

)2(2

)2(1

)2(1

2

2

32

1

2

32

1

2

1

2

1101

1012

1

2

1

2

100

2

1

)1(2

y

x

y

x

y

x

T

T

T

T

T

T

v

u

v

u

v

u

E

Page 17: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

FEA of Elastic Plate

)2(3

)2(3

)2(2

)1(3

)2(2

)1(3

)1(2

)1(2

)2(1

)1(1

)2(1

)1(1

4

4

3

3

2

2

1

1

)2(66

)2(56

)2(55

)2(46

)2(45

)2(44

)1(66

)2(36

)2(35

)2(34

)1(56

)2(33

)1(55

)1(46

)1(45

)1(44

)1(36

)1(35

)1(34

)1(33

)1(26

)1(25

)2(24

)1(26

)2(23

)1(25

)1(24

)1(23

)2(22

)1(22

)1(16

)1(15

)2(14

)1(16

)2(13

)1(15

)1(14

)1(13

)2(12

)1(12

)2(11

)1(11

00

00

y

x

yy

xx

y

x

yy

xx

T

T

TT

TT

T

T

TT

TT

V

U

V

U

V

U

V

U

K

KK

KKKK

KKKKKK

KKK

KKKK

KKKKKKKKKK

KKKKKKKKKKKK

System Global Assembled

Boundary Conditions U1 = V1 = U4 = V4 = 0 0,2/,0,2/ )2(

2)1(

3)2(

2)1(

3)1(

2)1(

2 yyxxyx TTTTTTTT

Condtions Loading

0

2/

0

2/

3

3

2

2

)2(44

)1(66

)2(34

)1(56

)2(33

)1(55

)1(46

)1(45

)1(44

)1(36

)1(35

)1(34

)1(33

T

T

V

U

V

U

KK

KKKK

KKK

KKKK

System Reduced

T

3

21

4

33

2

2

1

1

2

1

Page 18: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

T

3

21

4

33

2

2

1

1

2

1

Solution of Elastic Plate Problem

mT

V

U

V

U

11

3

3

2

2

10

030.0

441.0

081.0

492.0

Choose Material Properties: E = 207GPa and v = 0.25

Note the lack of symmetry in the displacement solution

Page 19: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Axisymmetric Formulation

}]{[0000

0000

0

01

0

0

01

0

2

}

4

4

3

3

2

2

1

1

4321

4321 dBe

v

u

v

u

v

u

v

u

NNNN

NNNN

rz

z

r

r

u

u

rz

z

r

r

e

e

e

e

z

r

rz

z

r

{

ntDisplaceme-Strain

constant plane

z

r

1 2

4 3

44332211

44332211

vNvNvNvNu

uNuNuNuNu

z

r

Element Quad

Page 20: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Axisymmetric Formulation

}]{][[}]{[

22

21000

01

01

01

)21)(1(} dBCeCσ

rz

z

r

rz

z

r

e

e

e

e

E{

Relations Strain-Stress

rdrdze

T

]][[][][ BCBK

Matrix Stiffness

}{}{}]{[ QFdK Equation Element

4

4

3

3

2

2

1

1

44332211

4321

4321

4321

0000

0000

0000

}]{[

2

}

v

u

v

u

v

u

v

u

r

N

z

N

r

N

z

N

r

N

z

N

r

N

z

Nz

N

z

N

z

N

z

Nr

N

r

N

r

N

r

Nr

N

r

N

r

N

r

N

e

e

e

e

rz

z

r

dBe{

ntDisplaceme-Strain

Page 21: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Two-Dimensional FEA Code MATLAB PDE Toolbox

- Simple Application Package For Two-Dimensional Analysis Initiated by Typing “pdetool” in Main MATLAB Window

- Includes a Graphical User Interface (GUI) to: - Select Problem Type - Select Material Constants - Draw Geometry - Input Boundary Conditions - Mesh Domain Under Study - Solve Problem - Output Selected Results

Page 22: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Two-Dimensional FEA ExampleUsing MATLAB PDE Toolbox

Cantilever Beam Problem

L = 2

g1=0

g2=1002c = 0.4

Mesh: 4864 Elements, 2537 Nodes

L/2c = 5

Page 23: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

FEA MATLAB PDE Toolbox ExampleCantilever Beam Problem

Stress Results

L = 2

g1=0

g2=100

E = 10x106 , v = 0.3

300012/)4.0)(1(

)2.0)(2)(40(3max

I

Mc

2c = 0.4

Contours of sx

FEA Result: smax = 3200

Page 24: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

FEA MATLAB PDE Toolbox ExampleCantilever Beam Problem

Displacement Results

L = 2

g1=0

g2=100

E = 10x106 , v = 0.3Contours of Vertical Displacement v

002.012/)4.0)(1)(10)(3(

)2)(40(

3 37

33

max EI

PLv

FEA Result: vmax = 0.00204

2c = 0.4

Page 25: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Two-Dimensional FEA ExampleUsing MATLAB PDE Toolbox

Plate With Circular Hole

Contours of Horizontal Stress x Stress Concentration Factor: K 2.7

Theoretical Value: K = 3

Page 26: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

Contours of Horizontal Stress x Stress Concentration Factor: K 3.5

Theoretical Value: K = 4

Two-Dimensional FEA ExampleUsing MATLAB PDE Toolbox

Plate With Circular Hole

Page 27: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

FEA MATLAB ExamplePlate with Elliptical Hole

(Finite Element Mesh: 3488 Elements, 1832 Nodes)

(Contours of Horizontal Stress x)

Stress Concentration Factor K 3.3

Theoretical Value: K = 5

Aspect Ratio b/a = 2

Page 28: Procedures of Finite Element Analysis Two-Dimensional Elasticity Problems Professor M. H. Sadd

FEA ExampleDiametrical Compression of Circular Disk

(FEM Mesh: 1112 Elements, 539 Nodes) (Contours of Max Shear Stress)

(FEM Mesh: 4448 Elements, 2297 Nodes) (Contours of Max Shear Stress)

Theoretical Contours of Maximum Shear Stress

Experimental Photoelasticity Isochromatic Contours