3
L INEAR A LGEBRA Exercise Sheet 03: Vector Spaces Exercise 1. Show that the set P 3  of polynomials a 0  + a 1 x + a 2 x 2  + a 3 x 3  of degree three or less is a vector space (where  a 0 ,a 1 , a 2 a 3  are any real numbers and  x  is a variable). Show that the set  P (3) of polynomials,  a 0  +  a 1 x + a 2 x 2  + a 3 x 3 , a   =  0,  (i.e., of degree exactly three) is not a vector space. Note that in general the set of polynomials  P n  of degree equal to or less than  n,  n  ∈  N is a vector space. Exercise 2. For the vector space R 3 decide which of the following are subspaces: a)  {(x,0,z  ) :  x, z  ∈ R}  b)  {(x,y,z  ) :  x =  2y, x,y,z   ∈ R} c)  {(x,y,z  ) :  x =  2y + 5, x,y,z   ∈ R} Exercise 3. Show that the set C 3 of all ordered 3-tuples of complex numbers, with the ordinary algebraic operations of addition and multiplication by complex numbers, is a vector space. Exercise 4. Consider the three matrices in the vector space R 2×2 given by A =  1 0 0 0 , B =  1 0 0 1 , C =  1 0 1 1 Show that the set of linear combinations of  A, B, C is a subspace of R 2×2 . Exercise 5. Check whether or not the vector  ( 3,4,4) is in the span of the set of vectors  {(1,2,3), (1,0,2)} and, if it is, then nd the linear combination. Exercise 6.  Prove that the set of vectors  {(1,0,0), (0,1,0), (0,0,1), (1,2,3)}  is linearly dependent. Prove that the set of vectors  {(0,1,0), (0,0,1), (1,2,3)} is linearly indepen- dent. 1

Problems of Vector Spaces

  • Upload
    raul

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

7/25/2019 Problems of Vector Spaces

http://slidepdf.com/reader/full/problems-of-vector-spaces 1/3

LINEAR ALGEBRA

Exercise Sheet 03: Vector Spaces

Exercise 1. Show that the set P3 of polynomials a0 + a1x + a2x2 + a3x3 of degree threeor less is a vector space (where  a0, a1, a2a3 are any real numbers and x is a variable).Show that the set  P(3) of polynomials, a0 +  a1x +  a2x2 +  a3x3, a  =  0,  (i.e., of degreeexactly three) is not a vector space.

Note that in general the set of polynomials  Pn  of degree equal to or less than  n,  n  ∈  N is avector space.

Exercise 2. For the vector space R3 decide which of the following are subspaces:

a)   {(x ,0,z  ) :   x, z  ∈ R}

 b)   {(x ,y,z  ) :   x =  2y, x,y,z  ∈ R}

c)   {(x ,y,z  ) :   x =  2y + 5, x,y,z  ∈ R}

Exercise 3. Show that the setC3

of all ordered 3-tuples of complex numbers, with theordinary algebraic operations of addition and multiplication by complex numbers, isa vector space.

Exercise 4. Consider the three matrices in the vector space R2×2 given by

A =

  1 0

0 0

, B =

  1 0

0 1

, C =

  1 0

1 1

Show that the set of linear combinations of  A, B, C is a subspace of R2×2.

Exercise 5. Check whether or not the vector (3,4,4) is in the span of the set of vectors {(1,2,3), (−1,0,2)} and, if it is, then find the linear combination.

Exercise 6.  Prove that the set of vectors   {(1,0,0), (0,1,0), (0,0,1), (1,2,3)} is linearlydependent. Prove that the set of vectors {(0,1,0), (0,0,1), (1,2,3)} is linearly indepen-dent.

1

7/25/2019 Problems of Vector Spaces

http://slidepdf.com/reader/full/problems-of-vector-spaces 2/3

Exercise 7.  Decide whether the three polynomials  p1(x) =   1 −  x  +  x2;  p2(x) =   2 +

x;  p3(x) =   1 +  2x  −  x2 are linearly dependent or independent. If they are linearly

dependent then show one linear dependence.

Exercise 8. Prove that the set  B  =  {(1,1,0), (1,2,1), (2,1,0)} is a basis for R3. Find thecoordinates of vector v  = (3, −2, 1) with respect to B.

Exercise 9. Find a basis and the dimension for each of the sets below that are subspacesof R4 :

a)   {( y, 2y, y, 0) : y  ∈ R}

 b)   {( y, 2y, y, z ) : y, z  ∈R

}

c)   {( y, 2y, z, 1) : y, z  ∈ R}

d)   {( y, y + z,3y − 2z,z ) : y, z  ∈ R}

Exercise 10. Given vectors u   = ( u 1, u 2), v   = ( v1, v2)  ∈  R2 decide whether the follo-wing operations are inner products:

a)   u · v = −2u 1 v1 + 3u 2 v2

 b)   u · v =  2u 1 v1 + 3u 2 v2

c)   u · v =  u 1 v1 +  u 2

For each operation that is an inner product:

1) Find the length of vectors (1, 0) and (2, −1).

2) Find their inner product.

3) Find the angle between them.

Exercise 11. Consider the operation defined in the vector space of matrices of dimen-sion 2 × 2 with real entries, R2×2, by:

A · B =

  a11   a12

a21   a22

·

  b11   b12b21   b22

= a11b11 + a12b12 + a21b21 + a22b22

a) Prove that this operation is an inner product in R2×2.

2

7/25/2019 Problems of Vector Spaces

http://slidepdf.com/reader/full/problems-of-vector-spaces 3/3

 b) Prove that the matrices  A  =

  1 3

2   − 4

and B  =

  0 2

3 3

are orthogonal.

c) Consider the right-angled triangle with sides  A,  B and hypotenuse  H. Find  Hand confirm that the three sides verify the Pythagorean theorem.

d) Find the angles between A and  H  and  B and H. Do the angles of this triangleadd up to π ?

e) Find the orthogonal projection of matrix B and C  =

  1 3

2 4

on matrix A.

3