35
Introduction Proposed Solution Evaluation Conclusions Ongoing Work Privacy-Oriented Virtual Network Embedding Leonardo Richter Bays Rodrigo Ruas Oliveira Luciana Salete Buriol Marinho Pilla Barcellos Luciano Paschoal Gaspary May 2015 Privacy-Oriented Virtual Network Embedding 1/20

Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Embed Size (px)

Citation preview

Page 1: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Privacy-Oriented Virtual Network Embedding

Leonardo Richter BaysRodrigo Ruas OliveiraLuciana Salete Buriol

Marinho Pilla BarcellosLuciano Paschoal Gaspary

May 2015

Privacy-Oriented Virtual Network Embedding 1/20

Page 2: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Overview

Introduction

Proposed Solution

Evaluation

Conclusions

Ongoing Work

Privacy-Oriented Virtual Network Embedding 2/20

Page 3: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Network Virtualization

• Enables the creation of virtual topologies on top of physicalsubstrates

• Has been embraced by academic researchers and the Industry

• Key concerns: efficient resource mapping and privacy

Privacy-Oriented Virtual Network Embedding 3/20

Page 4: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Privacy

• Recent discovery of pervasive electronic surveillance hashighlighted privacy concerns

• These concerns are even more exacerbated in networkvirtualization

• Security mechanisms must be considered in order to maintaina desired level of privacy

Privacy-Oriented Virtual Network Embedding 4/20

Page 5: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Related Work

• Different methods have been used to solve the embeddingproblem:◦ Optimization Models – [Chowdhury et al., 2011; Alkmim et al., 2013]◦ Relaxations – [Chowdhury et al., 2011; Alkmim et al., 2013]◦ Heuristic approaches – [Yu et al., 2008; Cheng et al., 2011]

• We are not aware of previous attempts to reconcile efficientresource mapping and the satisfaction of security requirements

Privacy-Oriented Virtual Network Embedding 5/20

Page 6: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Objectives

• Reconciling:◦ Efficient usage of physical resources◦ Fulfillment of different levels of confidentiality:• End-to-end cryptography• Point-to-point cryptography• Non-overlapping networks

• Considering precise costs of security mechanisms

Privacy-Oriented Virtual Network Embedding 6/20

Page 7: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Proposed Optimization Model

• Based on Integer Linear Programming• Inputs:◦ Physical and virtual topologies◦ Routers: throughput, cryptographic protocol support◦ Links: bandwidth◦ Locations◦ Costs related to cryptographic operations◦ Conflicting VNs◦ Previously embedded VNs

Privacy-Oriented Virtual Network Embedding 7/20

Page 8: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Proposed Optimization Model

Objective Function: Minimize overall bandwidth consumption:

min∑

(i,j)∈LP

∑r∈NV ,(k ,l)∈LV

BVr ,k ,lW

Lr AL

i,j,r ,k ,l

Constraints:• Fulfill capacity requirements• Ensure proper router and link mapping• Ensure desired level of confidentiality• Fulfill location requirements• Maintain previous mappings

Privacy-Oriented Virtual Network Embedding 8/20

Page 9: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Proposed Heuristic Algorithm

• Based on Simulated Annealing

• Same inputs and constraints as the optimization model

• Aims at minimizing overall bandwidth consumption

Privacy-Oriented Virtual Network Embedding 9/20

Page 10: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Proposed Heuristic Algorithm

• Generates an initial mapping and iteratively moves virtualrouters attempting to improve the solution

• Allows the generation of unfeasible solutions◦ Such solutions are penalized in order to encourage feasible ones

• Runs until the best found solution is close enough to optimalityor a maximum number of iterations has been reached

Privacy-Oriented Virtual Network Embedding 10/20

Page 11: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Proposed Heuristic Algorithm

Algorithm Proposed Heuristic Algorithm1:2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:

Privacy-Oriented Virtual Network Embedding 11/20

Page 12: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Proposed Heuristic Algorithm

Algorithm Proposed Heuristic Algorithm1: s ← generateInitialSolution2: c ← evaluateSolution(s)3: sbest ← s; cbest ← c4:5:6:7:8:9:10:11:12:13:14:15:16:

Privacy-Oriented Virtual Network Embedding 11/20

Page 13: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Proposed Heuristic Algorithm

Algorithm Proposed Heuristic Algorithm1: s ← generateInitialSolution2: c ← evaluateSolution(s)3: sbest ← s; cbest ← c4: k ← 05: while k < kmax and c > cmax do6:7:8:9:10:11:12:13:14:15:16: end while

Privacy-Oriented Virtual Network Embedding 11/20

Page 14: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Proposed Heuristic Algorithm

Algorithm Proposed Heuristic Algorithm1: s ← generateInitialSolution2: c ← evaluateSolution(s)3: sbest ← s; cbest ← c4: k ← 05: while k < kmax and c > cmax do6: s′ ← generateNeighbor(s)7: c′ ← evaluateSolution(s′)8:9:10:11:12:13:14:15:16: end while

Privacy-Oriented Virtual Network Embedding 11/20

Page 15: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Proposed Heuristic Algorithm

Algorithm Proposed Heuristic Algorithm1: s ← generateInitialSolution2: c ← evaluateSolution(s)3: sbest ← s; cbest ← c4: k ← 05: while k < kmax and c > cmax do6: s′ ← generateNeighbor(s)7: c′ ← evaluateSolution(s′)8: t ← temperature(k , kmax )9: if probability(c, c′, t) > random[0, 1) then10: s ← s′; c ← c′

11: end if12:13:14:15:16: end while

Privacy-Oriented Virtual Network Embedding 11/20

Page 16: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Proposed Heuristic Algorithm

Algorithm Proposed Heuristic Algorithm1: s ← generateInitialSolution2: c ← evaluateSolution(s)3: sbest ← s; cbest ← c4: k ← 05: while k < kmax and c > cmax do6: s′ ← generateNeighbor(s)7: c′ ← evaluateSolution(s′)8: t ← temperature(k , kmax )9: if probability(c, c′, t) > random[0, 1) then10: s ← s′; c ← c′

11: end if12: if c < cbest and isFeasible(s) then13: sbest ← s; cbest ← c14: end if15: k ← k + 116: end while

Privacy-Oriented Virtual Network Embedding 11/20

Page 17: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Evaluation – Fixed Parameters

• General parameters:◦ 250 time slots◦ On average, 5 requests arrive per slot (Poisson)◦ Average duration of 5 slots (exponential)

• Heuristic algorithm parameters:◦ Maximum number of iterations: 5,000◦ Maximum overhead factor: 3◦ Penalty factor: 100

Privacy-Oriented Virtual Network Embedding 12/20

Page 18: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Evaluation – Fixed Parameters

• Physical network:◦ Routers: 10 Gbps throughput◦ Distributed among 16 locations◦ 95% support cryptographic protocols◦ Links: 1–10 Gbps

• Virtual networks:◦ Two routers with location constraints◦ 35% of VNs do not require cryptography◦ 35% of VNs require end-to-end cryptography◦ 30% of VNs require point-to-point cryptography◦ 5% of VNs conflict with a previously embedded VN

Privacy-Oriented Virtual Network Embedding 13/20

Page 19: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Evaluation – Variable Parameters

• Network sizes:◦ Physical network of size 100, VN sizes ranging from 2 to 5◦ Physical network of size 500, VN sizes ranging from 2 to 10

• Cryptographic Algorithms:◦ AES-128◦ AES-256

Privacy-Oriented Virtual Network Embedding 14/20

Page 20: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Results

0

2

4

6

8

10

12

50 100 150 200 250

Ave

rage

Sol

utio

n T

ime

(in s

econ

ds)

Time Slots

Opt. 100r AES−128Opt. 100r AES−256

Heur. 100r AES−128Heur. 100r AES−256

Opt. 500r AES−128Opt. 500r AES−256

Heur. 500r AES−128Heur. 500r AES−256

Figure: Time needed to find the accepted solution.

Privacy-Oriented Virtual Network Embedding 15/20

Page 21: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Results

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250

Per

cent

age

of A

ccep

ted

Req

uest

s

Time Slots

Opt. 100r AES−128Opt. 100r AES−256

Heur. 100r AES−128

Heur. 100r AES−256Heur. 500r AES−128Heur. 500r AES−256

Figure: Acceptance rate in all completed experiments.

Privacy-Oriented Virtual Network Embedding 16/20

Page 22: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Results

1

1.5

2

2.5

50 100 150 200 250

Ave

rage

Ban

dwid

th O

verh

ead

Time Slots

No SecurityEnd−to−end Crypt.

Point−to−point Crypt.Conflicting Networks

(a) Opt. 100r AES-256

2

2.5

3

3.5

4

50 100 150 200 250

Ave

rage

Ban

dwid

th O

verh

ead

Time Slots

No SecurityEnd−to−end Crypt.

Point−to−point Crypt.Conflicting Networks

(b) Heur. 100r AES-256

Figure: Average bandwidth overhead needed to embed requests ofdifferent kinds.

Privacy-Oriented Virtual Network Embedding 17/20

Page 23: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Conclusions

• Optimization model produces adequate results in a timelymanner for networks of limited size

• Heuristic algorithm scales to larger networks without asignificant increase in solution time

• If desired, the heuristic algorithm may lead to more preciseresults through parameterization

Privacy-Oriented Virtual Network Embedding 18/20

Page 24: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Ongoing Work

• Further improvements to the heuristic algorithm◦ First-improvement-based local search◦ Multiple moves per temperature change◦ Logarithmic cooling schedule

• Analysis of the impact of topological factorson the VN embedding process

• SDN integration case study

Privacy-Oriented Virtual Network Embedding 19/20

Page 25: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Privacy-Oriented Virtual Network Embedding

Leonardo Richter BaysRodrigo Ruas OliveiraLuciana Salete Buriol

Marinho Pilla BarcellosLuciano Paschoal Gaspary

[email protected]://inf.ufrgs.br/~lrbays

Privacy-Oriented Virtual Network Embedding 20/20

Page 26: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

References

Gustavo P. Alkmim, Daniel M. Batista, and Nelson L. S. Fonseca. Mapping virtual networksonto substrate networks. Journal of Internet Services and Applications, 3(4), 2013.ISSN 1869-0238. doi: 10.1186/1869-0238-4-3.

Xiang Cheng, Sen Su, Zhongbao Zhang, Hanchi Wang, Fangchun Yang, Yan Luo, and JieWang. Virtual network embedding through topology-aware node ranking. SIGCOMMComputer Communication Review, 41(2), 2011. ISSN 0146-4833. doi:10.1145/1971162.1971168.

M. Chowdhury, M. R. Rahman, and R. Boutaba. Vineyard: Virtual network embeddingalgorithms with coordinated node and link mapping. IEEE/ACM Transactions onNetworking, PP(99), 2011. ISSN 1063-6692. doi: 10.1109/TNET.2011.2159308.

Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. Rethinking virtual networkembedding: substrate support for path splitting and migration. SIGCOMM ComputerCommunication Review, 38(2), 2008. ISSN 0146-4833. doi: 10.1145/1355734.1355737.

Privacy-Oriented Virtual Network Embedding 21/20

Page 27: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Constraints

Constraints C1 and C3: Fulfill capacity requirements:

∑r∈NV ,j∈RV

T Vr ,jW

Rr ,jA

Ri,r ,j ≤ T P

i ∀i ∈ RP (C1)

∑r∈NV ,(k,l)∈LV

BVr ,k,lW

Lr AL

i,j,r ,k,l ≤ BPi,j ∀(i , j) ∈ LP (C3)

Privacy-Oriented Virtual Network Embedding 22/20

Page 28: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Constraints

Constraints C2, C5, and C6: Ensure proper router and linkmapping:

∑j∈RV

ARi,r ,j ≤ 1 ∀i ∈ RP , r ∈ NV (C2)

∑i∈RP

ARi,r ,j = 1 ∀r ∈ NV , j ∈ RV (C5)

∑j∈RP

ALi,j,r ,k,l −

∑j∈RP

ALj,i,r ,k,l = AR

i,r ,k − ARi,r ,l ∀r ∈ NV , (k , l) ∈ LV , i ∈ RP

(C6)

Privacy-Oriented Virtual Network Embedding 23/20

Page 29: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Constraints

Constraints C4, C7, and C8: Ensure desired level of security:

K Vr ,jA

Ri,r ,j ≤ K P

i ∀i ∈ RP , r ∈ NV , j ∈ RV (C4)

∑q∈NV ,k∈RV

ARi,q,k +

∑r∈NV ,l∈RV

ARi,r ,l ≤ 1 ∀q, r ∈ X , i ∈ RP (C7)

⌈∑q∈NV ,(k,l)∈LV AL

i,j,q,k,l

|LP |

⌉+

⌈∑r∈NV ,(o,p)∈LV AL

i,j,r,o,p

|LP |

⌉≤ 1 ∀q, r ∈ X , (i , j) ∈ LP

(C8)

Privacy-Oriented Virtual Network Embedding 24/20

Page 30: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Constraints

Constraints C9, C10, and C11: Fulfill location requirements andmaintain previous mappings:

jARi,r ,k = lAR

i,r ,k ∀(i , j) ∈ SP , r ∈ NV , (k , l) ∈ SV (C9)

ARi,r ,j = ER

i,r ,j ∀(i , r , j) ∈ ER (C10)

ALi,j,r ,k,l = EL

i,j,r ,k,l ∀(i , j , r , k , l) ∈ EL (C11)

Privacy-Oriented Virtual Network Embedding 25/20

Page 31: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Constraints

Constraint C8: Linearization:

Yq,r ,i,j ≥∑

q∈NV ,(k,l)∈LV ALi,j,q,k,l

|LP |∀q, r ∈ X , (i , j) ∈ LP (C8.1)

Zq,r ,i,j ≥∑

r∈NV ,(o,p)∈LV ALi,j,r ,o,p

|LP |∀q, r ∈ X , (i , j) ∈ LP (C8.2)

Yq,r ,i,j + Zq,r ,i,j ≤ 1 ∀q, r ∈ X , (i , j) ∈ LP (C8.3)

Privacy-Oriented Virtual Network Embedding 26/20

Page 32: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Heuristic Algorithm

• Evaluation Function:◦ If all constraints are satisfied:∑

(i,j)∈LP

∑r∈NV ,(k,l)∈LV

BVr ,k,lW

Lr AL

i,j,r ,k,l

◦ If any constraints are not satisfied:

γ κ∑

(i,j)∈LP

∑r∈NV ,(k,l)∈LV

BVr ,k,lW

Lr AL

i,j,r ,k,l

γ – severity of the applied penaltyκ – number of unsatisfied constraints

Privacy-Oriented Virtual Network Embedding 27/20

Page 33: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Heuristic Algorithm

• Stop criteria:◦ Maximum number of iterations has been reached; or◦ Bandwidth consumption of the best found solution is sufficiently

close to optimality:

e ≤ β∑

r∈NV ,(k,l)∈LV

BVr ,k,lW

Lr

β – maximum bandwidth overhead

Privacy-Oriented Virtual Network Embedding 28/20

Page 34: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Heuristic Algorithm

• Probability of moving to a neighbor solution:◦ If it is better: 1.0◦ If it is worse:

exp(e/enew − 1temperature

)

temperature = 1− kkmax

Privacy-Oriented Virtual Network Embedding 29/20

Page 35: Privacy-Oriented Virtual Network Embedding SolutionEvaluationConclusionsOngoing Work Network Virtualization Enables the creation of virtual topologies on top of physical substrates

Introduction Proposed Solution Evaluation Conclusions Ongoing Work

Dijkstra’s Algorithm

Weight of a link (i , j):

1 +∑

r∈NV ,(k,l)∈LV

ELi,j,r ,k,l

Privacy-Oriented Virtual Network Embedding 30/20