51
PREPARATION OF SILICA-BASED POROUS MATERIALS FROM STARCH- DERIVED LOW MOLECULAR WEIGHT ORGANIC GELATOR TEMPLATE JUAN BIN MATMIN UNIVERSITI TEKNOLOGI MALAYSIA

PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

PREPARATION OF SILICA-BASED POROUS MATERIALS FROM STARCH-

DERIVED LOW MOLECULAR WEIGHT ORGANIC GELATOR TEMPLATE

JUAN BIN MATMIN

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

PREPARATION OF SILICA-BASED POROUS MATERIALS FROM STARCH-

DERIVED LOW MOLECULAR WEIGHT ORGANIC GELATOR TEMPLATE

JUAN BIN MATMIN

A thesis submitted in fulfillment of the

requirements for the award of the degree of

Master of Science (Chemistry)

Faculty of Science

Universiti Teknologi Malaysia

AUGUST 2011

Page 3: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

iii

Alhamdulillah… Thanks ALLAH SWT for everything..

“..Especially for;

My Beloved Mum, Mesiah bt Karjan (1941-2009),

This will always be dedicated to you…I really miss your presence…

My Dad, Matmin bin Kromo,

You’re my hero from the day one….

My Beloved Wife, Rozita..,

Thank you for being there when everyone not..,

Many thanks for the support and understanding…

Brothers and sisters, thank you for the unconditional love…

abg jain sekeluarga, abg jai, abg zul, adi, et..Thank a lot…

Friends & families…

To all Ikhwan….

Thanks for the ukhuwwah…

Thank you for everything..”

Page 4: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

iv

ACKNOWLEDGEMENT

“In the name of Allah, the most gracious and the most merciful”

First and foremost, I would like to acknowledge the lessons, support and guidance

of my supervisor, Prof. Dr. Salasiah Endud. Her continuous commitments to research

studies ensure not only constant results but also have granted her the respect of all her

students. I thank her for giving me the opportunity to carry out this research in the field of

mesoporous molecular sieves and zeolites.

My words of gratitude also go to all the lecturers, laboratory officers and research

officers from the Department of Chemistry and Ibnu Sina Institute for Fundamental

Science Studies, Universiti Teknologi Malaysia. I am also indebted to the Ministry of

Science, Technology and Innovation (MOSTI) for its financial support through Project

No. 03-01-06-SF0107 (vot 78073) and National Science Fellowship (NSF).

My sincere appreciation also extends to my parents, brothers and sisters for their

support, encouragement, care and love. Last but not least, for anyone I’ve forgotten that

has involved directly or indirectly in completing this project, THANK YOU.

Page 5: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

v

ABSTRACT

Starch, as readily available biomass source, low in cost and renewable biodegradable material, has not been paid enough attention by researchers as a promising candidate for developing sustainable materials. Starch is also referred to as a polysaccharide, mainly composed of two homopolymers of D-glucose, amylose and amylopectin building unit. The present study reports on the chemical modification of starches derived from locally-grown rice and sago to low molecular weight organic gelators (LMWOGs) for application in template-assisted synthesis of porous materials. Both rice and sago starches were modified chemically via acid hydrolysis in aqueous solutions (pH < 2) in order to break down the long branched chain of polysaccharides into much smaller monosaccharide chains of ß-D-glucose. The presence of ß-D-glucose was confirmed by Benedict’s test, FTIR and NMR spectroscopy. The starch derived either from rice or sago showed similar chemical characteristics but exhibited significant differences in their granular arrangements. The rice starch granules were polygonal in shape while those of sago starch were oval shaped as revealed by FESEM micrographs. Synthesis of mesoporous silica-based materials with high surface areas (756 m2 g-1) were performed by employing ß-D-glucose, as organic gelator template and tetraethyl orthosilicate (TEOS) as silica precursor, in a typical HCl-catalyzed sol-gel process. The nature of interaction between silica and LMWOGs was investigated. The results show that LMWOGs act as template for the structuration of silica and the electrostatic interactions at the template-silica interface contribute to the porosity of the materials. The template removal by water as an extraction solvent and followed by calcination at 400°C were evaluated as the best template removal method. Based on the nitrogen adsorption-desorption isotherms, the pore parameters of the mesoporous silica depend primarily on the amount ratio of modified starch to silica precursor (in % v/v). At low amount of template used (< 40 % v/v) materials with micropores dominant were formed. As the template concentration is increased in medium amount ranging from 45 to 65 %v/v, the relative contribution from mesopores becomes dominant while the presence of excess amount of template resulted in low pressure hysteresis, suggesting the presence of ultramicropores. The mesoporous silica material was inserted with different titanium loadings (1, 3 and 5 wt.%) to generate titanium-silicate catalysts for the oxidation of 1-naphtol to 1,4-naphtoquinone. The catalyst containing 1 wt.% titanium which possessed the highest amount of tetrahedral titanium species as active sites exhibited the highest conversion (44 %) of 1-naphtol towards 1,4-naphtoquinone.

Page 6: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

vi

ABSTRAK

Kanji adalah sumber biojisim tersedia, murah dan bahan terbiodegradasi yang boleh diperbaharui, namun potensinya kurang diberi perhatian oleh penyelidik sebagai pilihan untuk membangunkan bahan mampan. Polisakarida kanji terdiri daripada dua homopolimer D-glukosa iaitu struktur kerangka unit amilosa dan amilopektin. Kajian ini melaporkan pengubsuaian kimia bagi kanji diperolehi daripada beras dan sagu tempatan sebagai “gelator organik bermolekul kecil” (LMWOGs) untuk sintesis bahan berliang dengan berbantukan templat. Kedua-dua beras dan sagu diubahsuaikan secara kimia melalui hidrolisis berasid dalam larutan akues (pH<2) bertujuan memutuskan rantaian panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih pendek. Kehadiran ß-D-glukosa telah ditentusahkan oleh ujian Benedict, spektroskopi FTIR dan NMR. Kanji yang didapati daripada beras atau sagu menunjukkan ciri kimia serupa namun berbeza dalam susunan butirannya. Kanji dari beras berbentuk poligonal manakala butiran daripada kanji sagu adalah berbentuk butiran bujur telur seperti yang dirakam dalam mikrograf FESEM. Sintesis bahan berliang meso berasaskan silika dengan luas permukaan (756 m2 g-1) dilakukan dengan menggunakan ß-D-glukosa sebagai templat “gelator organik bermolekul kecil” (LMWOGs) dan tetraetilortoslilikat (TEOS) sebagai silika prekursor dalam proses sol gel lazim bermangkin HCl. Bentuk interaksi antara silika dan LMWOGs telah dikaji. Hasil kajian mendapati bahawa LMWOGs bertindak sebagai templat untuk penstrukturan silika dan interaksi elektrostatik pada antara-muka silika dan templat menyumbang kepada sifat keliangan bahan tersebut. Penyingkiran templat menggunakan air sebagai pelarut pengekstrakkan diikuti pengkalsinan pada suhu 400°C dinilai sebagai kaedah penyingkiran templat terbaik. Berasaskan analisa isoterma penjerapan-nyahjerapan nitrogen didapati bahawa parameter liang sangat berkaitan dengan nisbah jumlah kanji terubah suai terhadap silika prekursor (TEOS) (dalam v/v %). Penggunaan templat yang sedikit (<40%) menghasilkan bahan yang mempunyai liang mikro yang dominan. Apabila penggunaan templat bertambah (dari 45%v/v hingga 65%v/v) menghasilkan liang meso yang dominan, manakala dalam kehadiran templat berlebihan histerisis bertekanan rendah berlaku kemungkinan kerana kehadiran liang ultramikro. Bahan silika berliang meso kemudiannya diselitkan dengan pelbagai muatan titanium (1 wt. %, 3 wt. %, dan 5 wt. %) secara pasca-sintesis untuk menghasilkan mangkin titanium silikat untuk pengoksidaan naphtol kepada 1,4-naphtokuinon. Mangkin dengan muatan % Ti 1 wt. yang juga mempunyai kehadiran paling banyak titanium tetrahedral menunjukkan penukaran paling banyak 44% hasil 1,4-naphtokuinon.

Page 7: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION

DEDICATION

ACKNOWLEDGEMENT

ABSTRACT

ABSTRAK

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

LIST OF APPENDICES

ii

iii

iv

v

vi

vii

xiii

xv

xx

xxi

1 INTRODUCTION

1.1 General Introduction

1.2 Research Objectives

1.3 Problem Statement

1.4 Research Objectives

1.5 Significant Output from the Research

1.6 Scope of the Study

1.7 Outline of Study

1

2

3

4

4

5

6

Page 8: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

viii

2 LITERATURE REVIEW

2.1 Porous Material

2.1.1 Mesoporous Materials

2.2 Synthesis of Mesoporous Materials by

Templating Techniques

2.2.1 Complex Template

2.2.2 Hard Template

2.2.3 Soft Template

2.3 Starches of Organic Biopolymer Materials as

Soft Templates

2.3.1 Starch

2.3.2 Amylose and Amylopectin in Starch

2.4 Synthesis of Silica Based Mesoporous

Molecular Sieves

2.4.1 Sol-Gel Chemistry

2.4.2 Silica Precursor

2.5 Low Molecular Weight Organic Gelators

(LMWOGs) Template

2.6 The Role of ß-D-Glucose as LMWOGs

Template in Generating Mesoporous Silica

2.7 Catalyst

2.8 Post Introduction Titanium to Mesoporous

Silica

2.8.1 Titanium Active Species

2.9 Oxidation of 1-Naphtol to 1, 4-Naphtoquinone

7

9

10

11

11

12

13

14

16

19

21

25

27

30

32

33

34

35

Page 9: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

ix

3 METHODOLOGY

3.1 Starches Solubility and Gelation Test in

Various Solvents

3.2 Starch Modification by Acidic Water

Hydrolysis

3.3 Synthesis of Mesoporous Silica Using

LMWOGs Template

3.3.1 Template Removal Procedure

3.4 Post Insertion of Titanium on Mesoporous

Silica Materials

3.4.1 Catalytic Testing

3.5 Characterization Techniques

3.5.1 Fourier Transform Infrared (FTIR)

Spectroscopy

3.5.1.1 Experimental Procedure

3.5.2 Field Emission Scanning Electron

Microscopy (FESEM)

3.5.2.1 Experimental Procedure

3.5.3 Nuclear Magnetic Resonance (NMR)

Spectroscopy

3.5.3.1 Experimental Procedure

3.5.4 Thermal Gravimetric Analysis

(TGA)

3.5.4.1 Experimental Procedure

3.5.5 X-Ray Diffraction (XRD)

3.5.5.1 Experimental Procedure

3.5.6 Nitrogen Adsorption-Desorption

Isotherm

36

37

39

40

41

43

44

44

45

46

47

47

48

48

49

49

51

52

Page 10: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

x

3.5.6.1 Classification of Adsorption

Isoterm

3.5.6.2 Brunauer-Emmett-Teller (BET)

Method

3.5.6.3 The αs- Method

3.5.6.4 Experimental Procedure

3.5.7 Transmission Electron Microscopy

(TEM)

3.5.7.1 Experimental Procedure

3.5.8 UV-Vis Diffuse Reflectance

Spectrometry (UV-Vis DR)

3.5.8.1 Experimental Procedure

3.5.8.2 Gas Chromatography (GC) and

Gas Chromatography-Mass

Spectrometer (GC-MSD)

3.5.8.3 Experimental Procedure

52

54

55

56

57

57

58

58

59

60

4 RESULTS AND DISCUSSION

4.1 Physicochemical Properties, Solubility and

Gelation Behavior of Starch

4.1.1 FTIR Spectroscopy

4.1.2 SEM Micrograph of Starch Gel

4.1.3 FESEM Micrograph of Starch Granules

4.1.4 TGA

4.2 Modification of Starch by Hydrolysis

4.2.1 Benedict’s Test

4.2.2 FTIR Spectroscopy

4.2.3 1H NMR

4.2.4 13C NMR

61

64

68

69

71

72

73

74

77

79

Page 11: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

xi

4.3 Porous Silica Based Material

4.3.1 Template Removal and Thermal

Stability

4.3.2 FTIR Spectroscopy

4.3.3 TGA

4.3.4 XRD

4.3.5 Porosity Classification

4.3.6 Mesoporosity of Synthesized

Silica-Based Materials

4.3.7 Morphology of As-synthesized Silica-

Based Material to Template Materials

by FESEM and TEM

4.3.8 Morphology of Synthesized

Silica Based Mesoporous Materials

by FESEM

81

81

82

84

87

92

94

95

100

4.4 Mesoporous Titanium Silicates

4.4.1 XRD

4.4.2 FTIR Spectroscopy

4.4.3 UV-vis DR

4.4.4 Surface Area, Porosity and

Morphology

4.4.5 TGA- Thermal Stability

4.4.6 Catalytic Performance of TiO2-SiO2

on Oxidation of 1-Naphtol

4.4.7 Effect of Solvents

4.4.8 Effects of Temperature

103

103

105

107

109

112

113

117

118

5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

5.2 Recommendation

120

121

Page 12: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

xii

REFERENCES 122

APPENDICES (A-E) 146-150

Page 13: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

xiii

LIST OF TABLES

TABLE NO.

2.1

2.2

2.3

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

TITLE

Porosity classification and pore size distribution

Some important physicochemical characteristic of

amylose and amylopectin

Comparison between homogeneous and heterogeneous

catalyst

Assignment of infrared vibration modes siliceous

compound

Solubility and gelation behavior of rice starch

and sago starch upon heating from room temperature

to 100°C

Summary of significant FTIR characteristic spectra

bands of rice starch, starch, rice gel and sago gel

General guide to starch botanical origin from

microscopic granular shape

Summary of significant FTIR characteristic spectra

bands of hydrolyze starch

Peaks listing of 1H-NMR signals for modified starches

Summary of infrared vibrations at fingerprint region

for mesoporous silica based material

Summary of nitrogen adsorption-desorption analysis

on different titanium loadings on mesoporous silica

based materias surfaces

PAGE

9

19

32

45

63

66

69

77

78

91

97

Page 14: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

xiv

4.8

4.9

Summary of nitrogen adsorption-desorption analysis

on different titanium loadings on mesoporous silica

surfaces

Catalytic activity of mesoporous titanium silica on

product conversion and selectivity of naphtol oxidation

109

114

Page 15: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

xv

LIST OF FIGURES

FIGURE NO.

1.1

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

TITLE

Framework outline of study

A 2D sketch of a non-saturated porous material

Starch production world wide basis on raw material

Amylopectin and amylose in starch – storage

polysaccharides

Schematic diagram of radial structure of a starch

granule.(a), Single granule comprising concentric

rings, each containing stacks of amorphous and

crystalline lamellae;(b), amorphous and crystalline

lamellae; (c), chains of amylopectin arranged in a

cluster structure

Chemical structure of amylose

Chemical structure of amylopectin

The X-ray diffraction patterns and proposed

structures of MCM-41, MCM-48 and MCM-50

The growing colloidal size illustration of primary

particles

Gel classification

Various steps in the sol-gel process to control the

final morphology of the product

Schematic representation of the formation of a 3D-

network starting form dissolved gelator molecules

PAGE

6

8

15

16

17

18

18

20

22

23

24

28

Page 16: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

xvi

2.12

2.13

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

Schematic representation of LMWOGs act as

template assisted the formation of mesoporous

silica. (a). Self assembly formation of LMWOG

(b). Cationic charge presence of LMWOG fibrils

(c). Anionic formation of silica in acidic medium

(d). Electrostatic interaction where organogelator

“adsorpt” the silica precursor (e). Stable formation

of LMWOG -silica hybrid/composite materials (f).

Elimination of LMWOGs materials for mesoporous

silica.

Post-synthesis as grafting onto supports materials

Experimental “one-pot” set up for modification of

starches.

Photograph image of (a) white clowdy solution

indicating solubility of starch achieved (b) brownish

pale solution indicating complete hydrolysis of

starch achieved

Color changes via (a) red to (b) orange to (c) yellow

during reaction

Graphical representation of the Bragg equation. The

diffraction of X-rays is interpreted as the reflection

on a set of planes (h k l)

The IUPAC classification of adsorption isotherms

Types of hysteresis loops

The diagram of simple gas chromatography

Starch solubility test; photograph showing image of

(a) complete solubility (b) insoluble starch

Starch gelation test; photograph images of (a) non-

gel liquid solution (b) stable gel formation

FTIR spectra of (a) rice and sago starch, (b) rice

31

34

35

39

42

51

53

54

59

61

62

Page 17: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

xvii

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

and sago gel

Micrograph of interconnected networks of starch

gel from sago and rice at 250x magnification

FESEM micrograph of oval shape sago at 1000x

magnification

FESEM micrograh of polygonal shape rice at 1000x

magnification

TGA-DTA thermogram of starches from rice and

sago

The resulted color changes during the modification

steps undergo Benedict’s test; (a) pale brown

solution undergo complete starch modification

procedure (b) high intensity of brick reds formation

undergo Benedict’s test

FTIR spectra of starches transformation at (a) 3 h,

(b) 6 h,(c) 9 h, and (d) 12 h of modification

treatments 1H-NMR spectrum for modified starches

(D-glucose) 13C-NMR spectrum for modified starches (D-

glucose)

Templated silica paste material obtained after 24h

drying at 60°C

Templated silica paste materials obtained after 24h

drying at 110°C with different template to silica

ratio; (a). 80 v/v%, (b). 60 v/v %, (c). 40 v/v %, and

(d). 20 v/v%

FTIR spectra of (a) as-synthesized templated silica

(b) synthesized mesoporous silica by direct

calcination, and (c) synthesized mesoporous silica

by solvent extraction

67

68

70

70

71

73

76

78

80

81

81

83

Page 18: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

xviii

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

TGA thermogram analysis curves of (a) as-

synthesized,(b) calcined, (c) water extracted

(further calcined) samples of synthesized

mesoporous silica based material

XRD pattern of synthesized mesoporous silica

XRD pattern of mesoporous silica towards thermal

treatment (a) treated at 500 °C and (b) treated at

900 °C

FTIR spectrum for synthesized mesoporous silica

after ß-D-glucose (modified starches) LMWOGs

templates removal

N2 adsorption-desorption isotherms for mesoporous

silica with 30 % v/v templates

N2 adsorption-desorption isotherms for mesoporous

silica with 50 % v/v templates

N2 adsorption-desorption isotherms for mesoporous

silica with 70 % v/v templates

Alpha-s plot for synthesized mesoporous silica with

50 % v/v templates

A slit-shaped pore

Barret-Joyner-Halenda (BJH) Pore-Size distribution

plot for synthesized mesoporous silicate

FESEM micrograph of as-synthesized templated

silica

TEM micrograph of as-synthesized templated silica

based material morphology

FESEM micrograph of synthesized mesoporous

silica based material

Proposed mechanisme of ß-D-glucose LMWOGs

interactions to TEOS as templates for formation of

mesoporous silica base materials

85

87

89

90

93

93

94

95

95

96

99

100

101

102

Page 19: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

xix

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

XRD patterns of; (a) synthesized mesoporous

silicate and (b) post inserted

mesoporous titanium silicate (TiO2-SiO2)

Infrared spectra of titanium silica with difference

loadings relative to synthesized mesoporous silica;

(a) 1% Ti (b) 3%Ti (c) 5% Ti and (d) synthesized

mesoporous silica

UV-vis DR spectra of titanium silica with

difference loadings

FESEM micrograph of agregrated and agglomerate

particles titanium- silicate (TiO2-SiO2)

TEM micrograph of highly dispersed titanium into

the silica matrices

TGA thermogram curves of freshly prepared of

titanium silicate

The oxidation reaction of 1-naphtol to 1, 4-

naphtoquinone

The proposed mechanisme reactions oxidation of 1-

naphtol to 1, 4- napthoquinone by tetrahedral

titanium silicate

The effect of solvents used in conversion of

oxidation reaction

The effect of temperatures in conversion of

oxidation reaction

104

106

108

110

111

112

113

116

117

119

Page 20: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

xx

LIST OF ABBREVIATIONS

LMWOGs

CuKα

FESEM

FTIR

GC

GC-MS

h

min

IUPAC

nm

TEM

TGA

TON

TOF

UV-Vis DR

v/v

wt.%

XRD

λ

Bragg angle

Low molecular weight organic gelators

X-ray diffraction from copper Kα energy levels

Field Emission Scanning Electron Microscopy

Fourier Transform Infrared

Gas Chromatography

Gas Chromatography - Mass Spectrometry

hours

minutes

International Union of Pure and Applied Chemistry

Nanometer

Transmission Electron Microscopy

Thermogravimetric Analysis

Turnover number

Turnover frequency

Ultraviolet Visible Diffuse Reflectance

Volume/volume

Weight percents

X-ray diffraction

Wavelength

Page 21: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

xxi

LIST OF APPENDICES

APPENDIX

A

B

C

D

E

TITLE

Alpha-s data for mesoporous silica synthesized with 50 % v/v

template

Related equation for catalytic testing in analyzing

GC chromatogram

Chromatogram of the reaction mixture analyzed using gas

chromatography

Mass spectrum of 1, 4- naphtoquinone

Quantitative gas chromatography calibration

plot 1, 4 - naphtoquinone

PAGE

146

147

148

149

150

Page 22: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Porous materials created by nature or by defined synthetic routes have emerged as

being particularly important and have found great utility in diverse aspects of human

activity. The materials are important as advanced materials for adsorption, catalysis,

optoelectronic and medical applications. It is well known that the design, synthesis and

modification of porous material are in a way more challenging than the synthesis of dense

materials but the subject in designing, synthesis and modification of porous solids having

high surface area and variable pore diameters has always fascinated scientist and remains

a perpetual challenge to drive these materials to their limits.

Conventional chemicals for synthesis of porous materials such as mesoporous

materials rely on fossil resources. While fossil resources is finite, biomass materials are

long term solution as renewable resources for the preparation of advanced porous

materials. Therefore, new strategies and techniques are constantly being developed for

the synthesis and structure tailoring of nanoporous materials using locally available

biomass by “templating techniques”. “Templating” is commonly employed for the

controlled production of materials with ordered structure having desired properties

(Nidhin, 2008). Templating agents have been widely used in directing the formation of

porous inorganic structures. Mesoporous materials are produced after removal of the

Page 23: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

2

organic templating agents (Kresge, 1992; Sun, 2000). The study reports for the first time

on the synthesis of porous silicates materials obtained from the modification of starch as

organic templates and their capabilities to be used as catalytic materials.

1.2 Research Background

Effective utilization of natural renewable resources has attracted increasing

attention in recent years, and become an important aspect of green chemistry (Miao et al.,

2008). One of the great challenges that we face in the 21st century is to build up new

manufacturing industries based on renewable resources. Biomass – in the form of starch –

represents a real long-term solution. From the chemists’ point of view starch has many

appealing properties – it is abundant and sustainable, non-hazardous, and biodegradable –

properties that are becoming increasingly important in these environmentally-conscious

and sustainability-driven days (Clark, 2006).

Globally, starches are major commodities in the form of derived starch; maize,

cassava, sweet potato, potato and wheat. In many parts of the world, maize provides the

cheapest source of starch and supplies 77 percent of global starch needs. The estimates

indicate that Asia accounted for 40 percent of world starch production in the early 1990s.

While nearly two thirds of world starch production was derived from maize, maize

accounted for only 37 percent of starch production in Asia. In Malaysia, where the cost of

cassava production is relatively high, maize appears to be the cheapest source of starch at

the moment. It is found that Malaysia supply a total of 0.16 million metric tones of starch

per year (Fuglie, 1998).

Previously in 2003, several groups have successfully applied natural cellulose as a

template in preparation of inorganic materials (Clark, 2006). This is a significant

development towards practical application of biomaterials based on the above mentioned

Page 24: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

3

strategy. Native starch, as easily available, low-cost and environmentally benign

biomaterials, has not been paid enough attention to advanced material synthesis, probably

because starch did not possess amphiphilic charateristic as normal structures directing

agents or surfactants. Therefore, there is no doubt that developing new techniques to

process starch into ordered mesostructures and explore its utilization in porous material

synthesis is of significance

1.3 Problem Statement

Templating agents in order to generate porous silicate materials are commonly

found in the form of surfactant-type organic templates and colloidal-type templates which

conventionally rely on finite fossil resources. These types of templates require tedious

removal procedure and follows extreme operational work conditions. Such operational

condition gives high impact towards the stability of synthesized metal oxide porous

framework and affects the template reusability.

Faced with this challenge, the works report on manipulating our locally available

biomass sources in the forms of polysaccharides starch derived compounds to investigate

their capabilities as template in generating porous network of metal oxide. Local starches

namely sago and rice are closely studied for their performance as organic templates in the

process of generating silicate with pores in the mesopore range. The physiochemical

properties of synthesized mesoporous silicate were also investigated.

Page 25: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

4

1.4 Research Objectives

The objectives of this research are:

i. To synthesize porous silica based materials using organic templates modified

starch and characterize the physicochemical properties of the obtained porous

materials.

ii. To generate catalytic capabilities towards the porous silica based materials by

inserting titanium transitional metal active sites to the silicate matrix surface

for catalyst purposes.

1.5 Significant Output from the Research

The study is significant in utilizing our locally abundance biomass sources, in the

form of polysaccharides derived starch to be used as organic templates in the synthesis of

advance mesoporous metal oxide materials. The research is important in providing

scientific evidence and basis for local starch to be used in more sophisticated and higher

value added application.

Page 26: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

5

1.6 Scope of the Study

The research covers the following scopes:

i. Study on physicochemical properties of starches from rice and sago,

starches gelation and starches modification by water hydrolysis in acidic

medium.

ii. Study on synthesis and characterization of porous silicate by using organic

templates of hydrolyze starch.

iii. Study on incorporation and characterization of titanium transitional metal

active sites into mesoporous silicate obtained from modified starches

templates for oxidation catalyst.

Page 27: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

6

1.7 Outline of Study

Figure 1.1: Framework outline of study.

Starch powder

Rice Sago

Source A Source B

Characterization comparison

Water hydrolysis in acidic medium

Modification

Low Molecular Weight Organic Gelator- LMWOGs

No Yes

Silica Precursor

Silica composite/hybrid material

TEOS

Mesoporous silica materials

Calcinations

Titanium source Post insertion

Catalyst Ti-SiO2

Catalytic testing

Page 28: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

REFERENCES

Affandi, S., Setyawan, H., Winardi, S., Agus Purwanto, A. and Balgis, R. (2009). A

Facile Method for Production of High-Purity Silica Xerogels from Bagasse Ash.

Advanced Powder Technology, 20, 468–472.

Aguiar, H., Serra, J., Gonzales, P. and Leon, B. (2009). Structural Study of Sol-gel

Silicate by IR and Raman Spectroscopy. Journal of Non-crystalline Solid, 355(8),

475-480.

Allen, L. V. (2006). Compounding Gel. Secundum Artem. 4(5), 1-7.

Al-Oweini, R. and El-Rassy, H. (2009). Synthesis and Characterization by FTIR

Spectroscopy of Silica Aerogels Prepared Using Several Si(OR)4 and R′′Si(OR′)3

Precursors. Journal of Molecular Structure, 919(1-3), 140-145.

Anilkumar, P. and Jayakannan, M. (2010). A Novel Supramolecular Organogel

Template Approach for Conducting Nanomaterials. Journal of Physical

Chemistry, 114, 728-736.

Atwell, W. A., Hood, L. F., Lineback, D. R., Varrianomarston, E. and Zobel, H. F.

(1988). The Terminology and Methodology Associated with Basic Starch

Phenomena. Cereal Foods World, 33, 306-311.

Azhar, S. (2007). Synthesis of Well Defined Hematite Films and Their Use in Sintering

Studies. M.Sc.Thesis. University of Technology, Lulea.

Page 29: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

123

Bag, B. G. and Dinda, S. K. (2007). Arjunolic Acid: A Renewable Template in

Supramolecular Chemistry and Nanoscience. Pure Applied Chemistry, 79(11),

2031-2038.

Baga, M., Nair, R. B., Repellin, A., Scoles, G. J. and Chibbar, R. N. (2000). Isolation of a

cDNA Encoding a Granule-Bound 152-Kilodalton Starch-Branching Enzyme in

Wheat. Plant Physiology, 124, 253-263.

Ball, S. G., Wal, M. H., Van De, B. J. and Visser, R. G. F. (1998). Progress in

Understanding the Biosynthesis of Amylose. Trends Plant Science, 3, 462-467.

Bang, H. J. and Kenneth, S. T. (2006). Sonochemical Synthesis of Nanosized

Hematite. Journal of American Chemical Society, 129, 2242-2243.

Barthelet, K., Adil,K., Millange, F., Serre, C., Riou D. and Fe´rey, G. (2003). Synthesis,

Structure Determination and Magnetic Behaviour of The First Porous Hybrid

Oxyfluorinated Vanado(III) Carboxylate: MIL-71. Journal of Materials

Chemistry, 13, 2208–2212.

Barnali Bej, Basu, B. K. and Ash, S. N. (2008). Kinetics Studies on Acid Catalysed

Hydrolysis of Starch. Journal of Science and Industrial Research, 67, 295-298.

Barton, T. J., Bull, L.M., Klemperer, W. G., Loy, D. A., Brian McEnaney, Makoto

Misono, Monson, P.A., Guido Pez, Scherer, G.W., Vartuli, J.C. and Yaghi O.M.

(1999). Tailored Porous Material. Chemistry of Materials, 11(10), 2633-2656.

Bean, M. M. and Setser, C. S. (1992). Starch. In: Food Theory and Applications.

New York: MacMillan.

Beery, K. E. and Ladisch, M. R. (2001). Chemistry and Properties of Starch Based

Dessiccants. Enzyme and Microbiology Technology, 28, 573-581.

Page 30: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

124

Bellussi, G., Perego, C. Carati, A. Peratello, Previde, E. S. and Perego, G. (1994). in:

Weitkamp, J. Karge, H.G. Pfeifer, H. Holderlich W. (Eds.). Zeolites and Related

Microporous Materials State of the Art. Studies Surface Science Catalysis. (pp

84-85). Germany: Elsevier.

Bergna, H. E. (1990). The Colloid Chemistry of Silica. Washington: American Chemical

Society.

Bello, A. B., Waniskal, R. D., Gomez, M. H. and Rooney, L. W. (1995). Starch

Solubilization and Retrogradation during Preparation of To (a Food Gel) from

Different Sorghum Cultivars. Cereal of Chemistry, 72(l), 80-84.

Bernazzani, P., Pandi, H. K. R. and Peyyavula, V. K. (2008). Structural Changes

Associated with Interaction between Starch and Particles of TiO2 or ZnSe.

Journal of Chemistry, Biochemistry and Molecular Biology, 2(1), 1-13.

Blake, D. F. (1990). Scanning Electron Microscopy. In Perry, D. L. (Ed.). Instrumental

Surface Analysis of Geologic Materials. (pp. 11-43). New York: VCH Publishers

Incorporated.

Blasco, T., Corma A., Navarro, M. T. and Pariente, J. P. (1995). Synthesis,

Characterization, and Catalytic Activity of Ti-MCM-41 Structures. Journal of

Catalysis, 156, 65-74.

Brunauer, S., Emmett, P. H. and Teller, E. (1938). Adsorption of Gases in

Multimolecular Layers. Journal of American Chemical Society, 60, 309-319.

Buleon, A., Colonna, P., Planchot, V. and Ball, S. (1998). Starch Granules:Structures

and Biosynthesis. International Journal of Biology Macromolecules, 23, 85-112.

Busuioc, A. M., Meynen, V., Beyers, E., Merstens, M., Cool, P., Bilba, N. and Vansant,

E. F. (2006). Structural Features and Photocatalytic Behavior of Titania Deposited

Within the Pores of SBA-15. Applied Catalysis A; General, 312, 153-164.

Page 31: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

125

Cardinali, M. S. and Lam, T. Y. (2003). New Advances in Starch-Based Particle

Technologies for Aesthetic Modification. National Starch Personal Care, 1-9.

Chakraborty, B. and Viswanathan, B. (1999). Surface Acidity of MCM-41 by In-situ IR

Studies of Pyridine Adsorption. Catalysis Today, 49(1-3), 253-260.

Chai, L. S. (2005). Synthesis, Characterization and Catalytic Properties of Titanium

Containing Aerogel. M.Sc. Thesis, Universiti Teknologi Malaysia, Skudai.

Chang, X., Li, H., Yang, Y., Xu, H., Yang, X. and Ma, Y. (2007). Synthesis of

Multimorphologic Nanostructured SiO2 using Organogelator Sol-gel

Trancription. Journal of Solid Gel Science and Technology, 43, 15-19.

Chao, M. C., Lin, H. P., Mou, C. Y., Cheng, B. W. and Cheng, C. F. (2004).

Synthesis of Nano-sized Mesoporous Silicas with Metal Incorporation, Catalysis

Today, 97, 81–87.

Cheng, Y., Li, J. S., Wang, L. J., Sun, X. Y. and Liu, X. D. (2006). Synthesis and

Characterization of Ce-ZSM-5 Zeolite Membranes. Separation and Purification

Technology, 51(2), 210-218.

Chikate, R. C., Jun, W. K. and Rode, V. C. (2008). Nonaqueous Synthesis and

Characterization of Capped α-Fe2O3Nanoparticles from Iron(III) Hydroxyl-oleate

Precursor. Polyhedron, 27, 933-938.

Chiker, F., Nogier, J. Ph., Launay, F. and Bonardet, J. L. (2003). New Ti-SBA

Mesoporous Solid Functionalized under Gas Phase Conditions: Characterization

and Application to Selective Oxidation of Alkenes. Applied Catalysis A; General,

243, 309-321.

Page 32: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

126

Chiola, V., Ritsko, J. E. and Vanderpool, C. D. (1971). U.S. Patent No. 3, 556-725,

Washington DC: U.S. Patent and Trademark Office.

Christian, G. D. (2003). Analytical Chemistry (6th edition). New York: John Wiley &

Sons, Incorporated.

Chung, S. K., Grimsditch, M., Hoffmann, A., Bader, S. D., Xie, J., Pheng, S. and Sun, S.

(2008). Magneto-optic Measurement of Brownian Relaxation of Magnetic

Nanoparticles. Journal of Magnetism and Magnetic Materials, 320, 91–95.

Ciesielski, W. and Tomasik, P. (2004). Complexes of Amylose and Amylopectins with

Multivalents Metal Salts. Journal of Inorganic Biology, 98, 2039–2051.

Clark, J. H. (2006). Green Chemistry; Starch. Green Chemistry., 8, 17.

Clark, J. H., Budarin, V., Dugmore, T., Luque, R., Macquarrie, D. J. and Strelko, V.

(2008). Catalytic Performance of Carbonaceous Materials in the Esterification of

Succinic Acid. Catalysis Communications, 9(8), 1709-1714.

Cole, E. R., Craig, D. C., Fitzpatrick, J. L., Hibbert, D. B. and Steven, J. D. (2001).

Structure and Solution Equilibria of D-glucose and D-mannose Sulfite Adducts.

Carbohydrate Research, 335, 1–10.

Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and

Their Use in Catalysis. Chemistry Reviews, 97, 273-2419.

Corma, A., Urban, D., Marcelo, E. D. and Vicente, F. (2000). New Aluminosilicate and

Titanosilicate Delaminated Materials Active for Acid Catalysis, and Oxidation

Reactions Using H2O2. Journal of American Chemical Society, 122, 2804-2809.

Page 33: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

127

Corma, A., Serra, J.M., Sernaa, P., Valerob, S., Argenteb, E. and Botti, V. (2005)

Optimisation of Olefin Epoxidation Catalysts with the Application of High-

Throughput and Genetic Algorithms Assisted By Artificial Neural Networks

(Softcomputing Techniques). Journal of Catalysis, 229, 513–524.

Cornell, R. M. and Schwertmann, U. (2003). The Iron Oxides. Weinheim, German:

Wiley-VCH.

Da Costa, C. D. J., Lu, G.Q. and Rudolph, V. (2001). Characterisation of Templated

Xerogels for Molecular Sieve Application. Colloids and Surfaces A.

Physicochemical and Engineering Aspects, 179, 243–251.

Davis, P. J., Deshpande, R., Smith, D. M., Brinker, C. J. and Assink, R. A. (1994). Pore

Structure Evolution in Silica Gel During Aging/Drying. IV. Varying Pore Fluid

pH. Journal of Non-Crystalline Solids, 167(3), 295-306

De Graaf, R. A., Lammers, G., Janssen, L. P. B. M. and Beenackers, A. A. C. M. (1995).

Quantitative Analysis of Chemically Modified Starches by 1H-NMR

Spectroscopy. Starch/stärke, 47(12), 469-475.

Denyer, K., Johnson, P., Zeeman, S. and Smith, A. M. (2001). The Control of Amylose

Synthesis. Journal of Plant Physiology, 158, 479-487.

Diniz da Costa, J. C., Coombs, S., Lim, J. and Lu, G. Q. (2004). Characterization of

Xerogels Derived from Sucrose Templated Sol-Gel Synthesis. Journal of Solid-

Gel Science and Technology, 31, 215-218.

Endud, S. (2000). Secondary Aluminated Mesoporous Molecular Sieves Al-MCM-41;

Synthesis, Characterization and Catalytic Activity. Ph.D. Thesis. Universiti

Teknologi Malaysia, Skudai.

Page 34: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

128

Esch, J. V., Beek, F. S., Loos, M. D., Veen, M. E., Kellogg, R. M. and Feringa, B. L.

(1999). Low Molecular Weight Organic Gelators for Organic Solvents. In

Unguro, R. and Dalcanale, E. (Eds.) Supramolecular Science: Where It Is and

Where It Is Going Kluwer (pp. 233-259). The Netherlands: Kluwer Academic

Publisher.

Everett, D. H. (1971). Symbols and Terminology for Physicochemical Quantities and

Units. London Butterworths: International Union of Pure and Applied Chemistry.

Fang, J. M., Fowler, P. A., Sayers, C. and Williams, P. A. (2004). The Chemical

Modification of a Range of Starches under Aqueous Reaction Conditions.

Carbohydrate Polymers, 55, 283–289.

Fang, J. M., Fowler, P. A., Tomkinson, J. and Hill, C. A. S. (2002). The Preparation

and Characterisation of a Series of Chemically Modified Potato Starches.

Carbohydrate Polymers, 47, 245–252.

Fuglie, K. O. (1998). Raw Materials for Starch in Asia. Some Economic Considerations.

UPWARD Phillipines, 7(2), 5-7.

Frei, R. W. and MacNeil, J. D. (1973). Diffuse Reflectance Spectroscopy in

Environmental Problem-Solving. Cleveland, Ohio: CRC Press.

French, D. (1972). Fine Structure of Starch and Its Relationship to the Organisation of

Starch Granules. Journal of Japan Saccharide Starch Science, 19, 8-25.

French, D. (1984). Organization of Starch Granules. (2nd edition). Starch Chemistry and

Technology. New York: Academic Press.

Friggeri, A., Van Bommel, K. J. C. and Shinkai, S. (2006). Gels of Low Molecular-Mass

Organic Gelators as Templates for Transcription. Netherlands: Springer.

Page 35: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

129

Gallant, D. J., Bouchet, B. and Baldwin, P. M. (1997). Microscopy of Starch: Evidence

Of a New Level of Granule Organization. Carbohydrate Polymers, 32, 171-191.

Gao, H., Lu, W. and Chen, Q. (2000). Characterization of Titanium Silicalite-1 Prepared

from Aqueous TiCl3. Journal of Microporous and Mesoporous Materials, 34, 307-

315.

Garcia, H., Barros, A. S., Gonçalves, C., Gama, F. M. and Gil, A. M. (2008).

Characterization of Dextrin Hydrogels by FTIR Spectroscopy and Solid State

NMR Spectroscopy. European Polymer Journal, 44, 2318–2329.

Gates, B. C. (1992). Catalytic Chemistry. Canada: John Wiley & Sons.

Goheen, S. M. and Wool, R. P. (1991). Degradation of Polyethylene Starch Blends in

Soil. Journal of Applied Polymer Science, 42, 2691–2701.

Goncalves, M. L., Dimitrov, L. D., Jordao, M. H., Wallau, M. and Urquieta-Gonzalez, E.

A. (2008). Synthesis of Mesoporous ZSM-5 by Crystallisation of Aged Gels in

the Presence of Cetyltrimethylammonium Cations. Catalysis Today. 133-135,

69-79.

Gould, E. S. (1957). Inorganic and Structures. New York: Hendry Holt & Co.

Gregg, S. J. and Sing, K. S. W. (1982). Adsorption, Surface Area, and Porosity (2nd ed.)

London: Academic Press.

Gundiah, G., Mukhopadhyay, S., Tumkurkar, U. G., Govindaraj, A., Maitra, U. and Rao,

C. N. R. (2003). Hydrogel Route to Nanotubes of Metal Oxides and Sulfates.

Journal of Material Chemistry, 13, 2118–2122.

Han, X. W., Yu, H., Liu, X. M., Bao, X., Li, C. and Hui, Y. Z. (1999). Complete 1H

and 13C Assignments of Diosgenyl Saponins. Magnetic Resonanace Chemistry,

37, 140-144.

Page 36: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

130

Hussain, A., Saiyudi, N. K. M. and Majid, Z. A. (2008). Introduction to Surface and

Colloid Chemistry. Skudai: UTM Publisher.

Hatakeyama, T. and Quinn, F. X. (1994). Thermal Analysis, Fundamentals and

Application to Polymer Science. Chichester: John Wiley & Sons.

Iler, R. K. (1979). The Chemistry of Silica. New York: Wiley.

Iler, R. K. (1971). Relation of Particle Size of Colloidal Silica to the Amount of a

Cationic Polymer Required for Flocculation and Surface Coverage. Journal

of Colloid and Interface Science, 37(2), 364-373.

International Starch Institute. (1997). International Starch: Starch Raw Material

Composition & Starch Usage Worldwide. Aarhus Denmark: Interface Starch

Institute.

Janardhanam, S. K., Ramasamy, I. and Nair, B. U. (2008). Synthesis of Iron Oxide

Nanoparticles Using Chitosan and Starch Templates. Transition Metals

Chemistry, 33, 127-131.

Jane, J. (2000). Carbohydrates: Basic Concepts. Scientific Technical System, 43-45.

Jermy, B. R. and Pandurangan, A. (2006). Al-MCM-41 as an Efficient Heterogeneous

Catalyst in the Acetalization of Cyclohexanone with Methanol, Ethylene Glycol

and Pentaerythritol. Journal of Molecular Catalysis A: Chemical, 256(1-2), 184-

192.

Jin, S. E., Jones, G. J., Burgess, S. C., Merritt, M. E., Sherry, A. D. and Malloy, C. A.

(2005). Comparison of [3,4-13C2]Glucose to [6,6-2H2]Glucose as a Tracer for

Glucose Turnover by Nuclear Magnetic Resonance. Magnetic Resonance in

Medicine, 53, 1479–1483.

Jing, Z. (2006). Preparation and Magnetic Properties of Fibrous Gamma Iron Oxide

Nanoparticles via a Nonaqueous Medium. Materials Letters, 60, 2217–2221.

Page 37: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

131

Jung, J. H., Lee, S.S., Shinkai, S., Iwaura, R. and Shimizu, T. (2004). Novel Silica

Nanotubes Using a Library of Carbohydrate Gel Assemblies as Templates for

Sol-Gel Transcription in Binary Systems. Bulletin of the Korean Chemical

Society, 25(1), 63-68.

Kacurakova, M. and Wilson, R. H. (2001). Developments in Mid-infrared FT-IR

Spectroscopy of Selected Carbohydrates. Carbohydrate Polymers, 44, 291–303.

Kang, K. H., Lee, M. H., Choi, E. T. and Park, Y. S. (2007). Diacetone-D-glucose-

Mediated Asymmetric Syntheses of N-Carboxyalkylated and O-Carboxyalkylated

Flavones. Bulletin of the Korean Chemical Society, 28 (7), 1999-1201.

Kaulakowska, M., Robert, J., Griffith, D. M., Young, N. M. and Jennings, H. J. (1993)

High-Resolution NMR Spectroscopic Analysis of the C-polysaccharide of

Streptococcus Pneumoniae. Canadian Journal of Chemistry, 71, 644-648.

Kholdeeva, O. A. and Trukhan, N. N. (2006 ). Mesoporous Titanium Silicates as

Catalysts for the Liquid-phase Selective Oxidation of Organic Compounds.

Russian Chemical Reviews, 75, 41.

Kim, D. H., Ilev, I. K. and Kang, J. U. (2010). Using Mid-Infrared Glucose Absorption

Peak Changes for High-Precision Glucose Detection. Lasers and Electro-Optics

Society, 226-227.

Kin, M. F. (2008). Reactivity of Cation Exchange Natural Zeolite, Sodium-Mordenite

and Zinc-Mordenite in Knoevenagel Reaction. M.Sc Thesis, Universiti Teknologi

Malaysia, Skudai.

Klucinec, J. D. and Thompson, D. B. (2002). Amylopectin Nature and Amylose-to-

Amylopectin Ratio as Influences on the Behavior of Gels of Dispersed Starch.

Cereal Chemistry,79(1), 24–35.

Page 38: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

132

Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli J. C. and Beck, J. S. (1992).

Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template

Mechanisme. Nature, 359, 710-712.

Krijnen, S. (1998). Titanium Epoxidation Catalysts: Zeolite and Silsesquioxine Based

Materials. Ph.D. Thesis. Technology University, Eindhoven.

Kortesuo, P. (2001). Sol Gel Derived Silica Gel Monoliths and Microparticles as

Carrier in Controlled Drug Delivery in Tissue Administration. Ph.D. Thesis,

University of Helsinki, Finland.

Kulik A. S., Chris de Costa J. R. and Haverkamp J. (1994). Water Organization and

Molecular Mobility in Maize Starch Investigated by Two-Dimensional Solid-

State NMR. Journal of Agriculture Food Chemistry, 42, 2803-2807.

Krull, R. E., Cocco, M., Freyer, A. and Minard, R. (1977). Application of NMR to

Biochemical Kinetics. Journal of Chemical Education, 54, 124-127.

Lambert, J. B., Shurvell, H. F., Lightner, D. A. and Cooks, R. G. (1998). Organic

Structure Spectroscopy. Upper Saddle River, N.J: Prentice Hall.

Lang, A. T. P. (2004). Physico-Chemical Properties of Starch in Sago Palm (Metroxylon

Sagu) at Different Growth Stages. M.Sc. Thesis, Universiti Sains Malaysia,

Penang.

Lapirsadi, G., Chiker, F., Launay, F., Nogier, J. P., Bonardet, J. L. (2005). Preparation,

Characteisation and Catalytic Bifunctional Ti-AlSBA15 Materials: Application to

a “One-Pot” Green Synthesis of Adipic Acid from Cyclohexene and Organic

Hydroperoxides. Journal of Microporous and Mesoporous Materials, 78(2-3),

289-295.

Page 39: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

133

Lai, W. C., Tseng, S. C., Tung, S. H., Huang, Y. H. and Raghavan, S. R. (2009).

Nanostructured Polymers Prepared Using a Self-Assembled Nanofibrillar

Scaffold as a Reverse Template. Journal of Physical Chemistry, 113, 8026–

8030.

Lecloux, A.J. and Pirard, J.P. (1998). High-temperature Catalysts through Sol–gel

Synthesis. Journal of Non-Crystalline Solid, 225(1), 146-152.

Lee, D.C. and Chapman, C. (1986). Infrared Spectroscopic of Biomembranes and

Model Membranes. Bioscience Reports. 6(3), 235-256.

Lee, L. S., Nur, H., Hamdan, H. (2009). Physical Properties and Bifunctional catalytic

Performance of Phospate –Vanadium Impregnated Silica-Titania Aerogel.

Catalysis Letter, 1-5.

Li, H., Zhang, F., Zhang, Y., He, J. and Hu, J. (2007). Organic Solvents Mediate Self-

Assembly of GAV-9 Peptide on Mica Surface. Acta Biochimica et Biophysica

Sinica, 39(4), 285-289.

Li, Q. (2001). Synthesis and Catalytic Applications of Mesoporous Metal Oxides. Ph.D.

Thesis, Technische Universitat Munchen, Germany.

Liao, M.H. and Chen, D, H. (2002). Preparation and Characterization of a Novel

Magnetic Nano-adsorbent. Journal of Materials Chemistry, 12, 3654–3659.

Lindeboom, N. (2005). Studies on Characterization, Biosynthesis and Isolation of Starch

and Protein from Quinoa (Chenopodoium Quinoa Willd.). Ph.D. Thesis,

University of Saskatchewan, Saskatoon.

Lindeboom, N., Chang, P., R., Tyler, R, P. (2004). Analytical, Biochemical and

Physicochemical Aspects of Starch Granule Size, with Emphasis on Small

Granule Starches: A Review. Starch/Stärke, 56, 89–99.

Page 40: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

134

Liu, T., Burger, C. and Chu, B. (2003). Nanofabrication in Polymer Matrices.

Programme Polymer Science, 28, 5-26.

Luan, Z., Maes, E. M., Van der Heide, P. A. W., Zhao, D., Czernuszewicz, R. S. and

Kevan, L. (1999). Incorporation of Titanium into Mesoporous Silica Molecular

Sieve SBA-15. Chemisrty of Materials, 11, 3680-3686.

Maity, G. C. (2007). Low Molecular Mass Gelators of Organic Liquids. Journal of

Physical Science, 11, 156-171.

Manners, D. J. and Matheson, N. K. (1981). The Fine Structure of Arnylopectin.

Carbohydrate Research., 90, 99-110.

Mano, J. F., Koniarova, D. and Reis, R. L. (2003). Thermal Properties of Thermoplastic

Starch/ Synthetic Polymer Blends with Potential Biomedical Applicability.

Journal of Material in Medicine, 14, 127-135.

Martin, C. and Smith, A. M. (1995). Starch Biosynthesis-The Plant Cell. Korean Bulletin

Chemicals Society, 7, 971-985.

Maschmeyer, T. and Leon, V. D. W. (2006). An Overview of Zeolite, Zeotype and

Mesoporous Solids Chemistry: Design, Synthesis and Catalytic Properties.

Journal of Microporous and Mesoporous Solid, 4, 1-30.

Maschmeyer, T. Rey, F. Sankar, G. and Thomas, J.M. (1995). Heterogenous Catalyst by

Grafting Metallocene Complexes onto Mesoporous Silica. Nature, 378,159–162

McCusker L. B., Liebau, F. and Engelhardt G. (2001). Nomenclature of Structural and

Compositional Characteristics of Ordered Microporous and Mesoporous

Materials with Inorganics Hosts. Pure Applied Chemistry, 73(2), 381-394.

Melton, L. D. (1975). Synthesis of Monosubstituted Cyclohexamyloses and

Monosubstituted Maltoses. Ph.D. Thesis, Simon Praser University, Burnaby.

Page 41: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

135

Mendelsohn, R. and Flach, C. R. (2002). Infrared Reflection–Absorption Spectrometry

of Monolayer Films at the Air–Water Interface. U.S.A; John Wiley and Sons Ltd.

Miao, Z., Ding, K., Wu, T., Liu , Z., Han, B., An, G., Miao, S. and Yang G. (2008).

Fabrication of 3D-Networks of Native Starch and Their Application to Produce

Porous Inorganic Oxide Networks Through a Supercritical Route. Journal of

Microporous and Mesoporous Materials, 111, 104–109.

Mohamed, A. (2005). Synthesis, Characterization and Activity of Al-MCM-41 Catalyst

for Hydroxalkylation of Epoxides. M.Sc. Thesis. Universiti Teknologi Malaysia,

Skudai.

Myers, A. M., Morell, M. K., James, M. G. and Ball, S. G. (2000). Recent Progress

Toward Understanding the Biosynthesis of the Amylopectin Crystal. Plant

Physiology, 122, 989-997.

Myllarinen, P. (2002). Starches-From Granules to Novel. Ph.D. Thesis, University of

Helsinki, Finland.

Nidhin, M., Indumathy. R., Sreeram, K.J. and Nair, B. U. (2008). Synthesis of Iron Oxide

Nanoparticle of Narrow Distribution on Polysaccharide Templates. Bulletin of

Material Science, 31, 93-96

Nur, H., Lau, C. G., Endud, S. and Hamdan, H. (2004). Quantitative Measurement of a

Mixture of Mesophases Cubic MCM-48 and Hexagonal MCM-41 by 13C

CP/MAS NMR. Material Letters, 58(12-13), 1971-1974.

Nur, H. (2006). Modification of Titanium Surface Species of Titania by Attachment of

Silica Nanoparticles. Materials Science and Engineering, B 133, 49 – 54.

Oates, C. G. (1997). Towards an Understanding of Starch Granule Structure and

Hydrolysis. Trends in Food Science & Technology, 8, 375-382.

Page 42: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

136

Ono, Y., Nakashima, K., Sano, M., Hojo, J. and Shinkai, S. (2001). Organogels are

Useful as a Template for the Preparation of Novel Helical Silica Fibers. Journal

of Materials Chemisty, 11, 2412–2419.

Oostergetel, G. T. and Van Bruggen E. F. J. (1993). The Crystalline Domains in Potato

Starch Granules are Arranged in a Helical Fashion. Carbohydrate Polymer, 21,

7-12.

Palani, A., Gokulakrishnan, N., Palanichamy, M. and Pandurangan A. (2006).

Transesterification of Dimethyl Carbonate with Diethyl Carbonate Over Al-Zn-

MCM-41 and Al-MCM-41 Molecular Sieves. Applied Catalysis A: General, 304,

152-158.

Parida, K.M. and Rath, D. (2006). Studies on MCM-41: Effect of Sulfate on Nitration of

Phenol. Journal of Molecular Catalysis A: Chemical, 258(1), 381-387.

Pang, J. B., Qiu, K. Y. and Wei, Y. (2001). Preparation of Mesoporous Silica Materials

with Non-Surfactant Hydroxy-Carboxylic Acid Compounds as Templates via sol-

Gel Process. Journal of Non-Crystalline Solids, 283, 101-108.

Pankhurst, Q. A. (2006). Nanomagnetic Medical Sensors and Treatment Methodologies.

BT Technology Journal, 24, 3.

Patel, A.C. (2006). Bioapplicable, Nanostructured and Nanocomposite Materials for

Catalytic and Biosensor Applications. Ph.D. Thesis, Drexel University,

Philadelphia.

Prabakar, S., Assink, R. A., Raman, N. K., Myers, S. A. and Brinker, C. J. (1996).

Identification of Self- and Cross-Condensation Products in Organically Modified

Silica Sols by 29Si and 17O NMR Spectroscopy. Journal of Non-Crystalline

Solid, 202 (1-2), 53-60.

Page 43: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

137

Prasetyoko, D. (2005). Bifunctional Oxidative and Acidic Titanium Silicalite (TS-1)

Catalysts for One Pot Synthesis of 1,2-octanediol from 1-octene. Ph.D. Thesis,

Universiti Teknologi Malaysia, Skudai.

Prasetyoko, D., Ramli, Z., Endud, S. and Nur, H. (2005). TS-1 Loaded with Sulfated

Zirconia As Bifunctional Oxidative and Acidic Catalyst for Transformation of 1-

octene to 1, 2-octanediol. Journal of Molecular Cataysis A: Chemical, 241, 118-

125.

Predoi, D. (2007). Study on Iron Oxide Nanoparticles Coated in Dextrin Obtained by

Coprecipitation. Digest Journal of Nanomaterials and Biostructures, 2(1), 169 –

173.

Ra cuciu, M., Creanga, D. E , Badesc, V. and Sulitanu, N. (2007). Microstructural

Investigation of Some Biocompatible Ferrofluids. Journal of Magnetism and

Magnetic Materials, 316, 772–775.

Ramli, Z. (1995). Rhenium Impregnated Zeolites: Synthesis, Characterization and

Modification as a Catalyst in the Methathesis of Alkenes. Ph.D. Thesis, Universiti

Teknologi Malaysia, Skudai.

Rebar, V., Fischbach, E. R., Apostolopoulos, D. and Kokini J. L. (1984).

Thermodynamics of Water and Ethanol Adsorption on Four Starches as Model

Biomass Separation Systems. Biotechnology Bioengineering, 26, 513-517.

Richard, A. O. K. . (2004). Introduction to Food Chemistry. Northern Ireland: CRC

Press.

Ring, S. (1995). Stiff Tests for Designer Starches. Chemistry in Britain, 303-307.

Robin, J. P., Merrier, C., Charbonniere, R. and Guilbot, A. (1974). Lintnerized

Starches. Gel Filtration and Enzymatic Studies of Insoluble Residues from

Prolonged Acid Treatment of Potato Starch. Cereal Chemistry, 51, 389-406.

Page 44: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

138

Roger, C., Smith, J. H., Schaefer, D. E. and Beaucage, G. B. (1994). General Routes to

Porous Metal Oxide via Inorganic and Organic Templates. Journal of Sol Gel

Science and Technology, 2, 67-72.

Rossi, C., Lepri, A., Piccchi, M. P., Bastianoni, S., Medaglini, D., Vanassuna, M. and

Cresta, E. (1989). NMR Investigation of the Simultaneous Fermentation of

Xylose and Glucose by a Selected Strain of Klebsiella Planticola (Gil). Buletin

Magnetic Resonance, 1-4 (14), 197-198.

Rupp, W., Husing, N. and Schubert, U. (2002). Preparation of Silica-Titania Xerogels

and Aerogels by Sol-gel Processing of New Single-source Precursors. Material

Chemistry, 12, 2594-2596.

Ruthven, D.M. (2001). Characterization of Zeolite by Sorption Capacity Measurements.

In: Robson, H. (Ed.) Verified Syntheses of Zeolitic Materials. (pp 61-65). New

York: John Wiley and Sons Incoporated.

Sangeetha, N. M. and Maithra, U. (2005). Supramolecular Gels: Functions and Uses.

Chemical Society Review, 34, 821–836

Santo, V. D., Liguori, F., Pirovano, C. and Guidotti, M. (2010). Design and Use of

Nanostructured Single-Site Heterogeneous Catalysts for the Selective

Transformation of Fine Chemicals. Molecules, 1, 3829-3856

Sawant, K.R. (2004). Imprinting the Surface of Mesoporous Aluminosilicates using

Organic Structure-Directing Agents. Doctor Philosophy. University of Delaware.

Newark.

Schattka, J. H, Shchukin, D. G, Jia, J., Antonietti, M. and Caruso R. A. (2002).

Photocatalytic Activities of Porous Titania and Titania/Zirconia Structures

Formed by Using a Polymer Gel Templating Technique. Chemistry Material, 14,

5103-5108.

Page 45: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

139

Schmid, G. ((2004). Nanoparticles: From Theory to Application. Weinheim: Wiley-

VCH.

Schreck, J. O. and Loffredo, W. M. (1994). Qualitative Testing for Carbohydrates.

REAC, 446, 1-8.

Seckinger, H. L. and Wolf, M. I., (1966). Polarization Color of Maize Starches Varying

in Amylose Content and Genetic Background. Die Starke, 1(18), 2-5.

Selvaraj, M., Pandurangan, A., Seshadri, K.S., Sinha, P.K. and Lal, K. B. (2003).

Synthesis, Characterization and Catalytic Application of MCM-41 Mesoporous

Molecular Sieves Containing Zn and Al. Applied Catalyst A: General, 242(2),

347-364.

Shchukin, G. D. and Caruso, R. A. (2003). Template Synthesis of Porous Gold

Microspheres. Chemistry Communication, 1478-1479.

Shen, W., Yang, X., Guo, Q., Liu, Y., Song, Y., Han, Z., Sun, Q. and Cheng, J. (2006).

The Effect of Carbon Precursor on the Pore Size Distribution of Mesoporous

Carbon during Templating Synthesis Process. Materials Letters, 60, 3517–3521

Shin, Y. and Exarhos, G. J. (2007). Template Synthesis of Porous Titania using

Cellulose Nanocrystals, Materials Letters, 61, 2594-2597.

Shinkai, S., Van Bommel, K. J. C. and Friggeri, A. (2003). Organic Templates for the

Generation of Inorganic Materials. Angew. Chemistry International Edition,

42(9), 980-1000.

Singh, N., Singh, J., Kaur, L., Sodhi, N. S. and Gill, B. S. (2003). Morphological,

Thermal and Rheological Properties of Starches from Different Botanical Sources.

Food Chemistry, 81, 219–231.

Page 46: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

140

Skoog, D. A. (1985). Principles of Instrumental Analysis (3rd ed.) Philadelphia: P.A.

Saunders, College Publisher.

Snyder, E. M. (1984). Industrial Microscopy of Starches. New York; Academic Press.

Sofronov, L. N., Spesivtsev, E. V., Popov, V.P, Antonova, L. V., Gutakovskii, A. K.,

Obodnikov, V. I., Stepovik, A. P. and Gromov, V. T. (2000). Ftir Spectroscopy

and Spectroscopic Ellipsometry Study of Nanocrystalline Layers Formed by

High-Dose Hydrogen and Deuterium Implantation of Silicon. Material Research

Society, 609, A24.9.1-A.24.9.6.

Song, Y. M., Kim, S. J., Kwon, H. Y., Park, S. H., Park, D. G., Kweon, H. J., Kwon, Y.

U. and Burlitch, J. M. (1999). Crystallization of Farsterite Xerogel A new

Crystalline Materials synthesized by Homogeneous Distribution of carbonaceous

Component into Forsterite Xerogel. Buletin Korean Chemistry Society, 20, 5.

Srivastava, D. N., Perkas. N., Zaban, A. and Gedanken, A.(2002). Sonochemistry as A

Tool for Preparation of Porous Metal Oxide. Pure Applied Chemistry, 74(9),

1509–1517.

Shi, W., Liang, P., Ge, D., Wang, J. and Zhang, Q. (2007). Starch-Assisted Synthesis

of Polypyrrole Nanowires by a Simple Electrochemical Approach.. Chemistry

Communication, 2414–2416.

Sing, K. S. W., Everett, D. H., Haul., R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J.

and Siemieniewska, T. (1985). Reporting Physiosorption Data for Gas/Solid

Systems with Special Reference to the Determination of Surface Area and

Porosity. Pure Applied Chemistry, 57, 603-619.

Sun, Z. (2005). Novel Sol-Gel Nanoporous Materials, Nanocomposites and Their

Applications in Bioscience. Ph.D. Thesis, Drexel University, Philadelphia.

Page 47: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

141

Sun, T., Wong M., S. and Ying, J. Y. (2000). Synthesis of Amorphous, Microporous

Silica with Adamantanamine as a Templating Agent. Chemistry Communication,

2057-2058.

Tester, R. F. (1989). The Swelling and Gelatinisation Properties of Cereal Starches.

Ph.D. Thesis, University of Strathclyde, Glasgow.

Tester, R. F. and Morrison, W. R. (1990). Swelling and Gelatinization of Cereal

Starches. Cereal Chemistry, 67, 558–563.

Tosh, S. M. and Marangonia, A. G. (2004). Determination of the Maximum Gelation

Temperature in Gelatin Gels. Applied Physic Letters, 84, 000-6951.

Trukhan, N. N., Panchenko, A. A. and Roduner, E.( 2005). FTIR Spectroscopic Study of

Titanium-Containing Mesoporous Silicate Materials. Langmuir, 21 (23), 10545–

10554

Tuel, A. (1995). Synthesis, Characterization, and Catalytic Properties of the New

TiZSM-12 Zeolite. Zeolites. 15: 236-242.

Valckenborg, R. M. E. (2001). NMR on Technological Porous Material. Ph.D. Thesis,

University of Technology, Eindhoven.

Van der Waal, J. C. and Van Bekkum, H. (1997). Zeolite Titanium Beta: A versatile

Epoxidation Catalyst. Solvent Effects. Journal of Molecular Catalysis A: Chemical,

124, 137-146.

Van der Waal, J. C., Kooyman, P. J., Jansen, J. C. and van Bekkum, H. (1998). Synthesis

and Characterization of Aluminum-free Zeolite Titanium Beta using

di(cyclohexylmethyl) dimethylammonium as a New and Selective Template.

Journal of Microporous and Mesoporous Materials, 25(1-3), 43-57.

Page 48: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

142

Venkatathri, N. (2004). Synthesis, Characterization and Catalytic Properties of Silicon

Containing Anatase (TiO2). Bulletin of Catalysis Society India, 3, 99-106.

Verwey, E. J. W. and Overbeek, J. T. (1979). Theory of Stability of Lyophobic

Colloids. New York: Elsevier.

Visser, R. G. F. and Jacobsen, E. (1993). Towards Modifying Plant for Altered Starch

Content and Composition. Trends in Biotechnology, 11, 63-68.

Wade, L. G. Jr. (2006). Organic Chemistry. Whitman College; Pearson Prentice Hall.

Wang, G.J., Wang, Y.R., Liu, Y.W., Liu, Z.W., Guo, Y.J., Liu, G.Q., Yang, Z.X., Xu,

M.X. and Wang, L. (2009). Synthesis of Highly Regular Mesoporous Al-MCM-

41 from Metakaolin. Applied Clay Science, 44(1), 185-188.

Wei, Y., Jin, D., Ding, T., Shih, W. H., Liu, X., Cheng, S. Z. D. and Fu, Q. (1998). A

Non-surfactant Templating Route to Mesoporous Silica Materials. Advance

Materials, 3(4), 313-316

Whitehurst, D. D. (1991). U.S. Patent No. 1, 32. Washington D.C.: U.S. Patent and

Trademark Office.

Willis, H.A., Van der Maas, J. H. and Miller R. G. J. (1987). Laboratory Methods in

Vibrational Spectroscopy. (3rd ed.) Great Britain; Wiley & Sons.

Wong, K. L. (2007). Synthesis and Characterization of Tin-modified Mesoporous Silica

MCM-48 for Selective Oxidation of Alcohol to Aldehyde. M.Sc. Thesis. Universiti

Teknologi Malaysia, Skudai.

Wool and Sun, (2005). Bio-Based Polymers and Composites. Nature, 389, 338-339.

Wu, P., Tatsumi, T., Komatsu, T. and Yashima, T. (2001). A Novel Titanosilicate with

MWW Structure: II. Catalytic Properties in the Selective Oxidation of Alkenes.

Journal of Catalysis, 202, 245–255

Page 49: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

143

Wu, Y., Ren, X., and Wang, J. (2008). Facile Synthesis and Morphology Control of

Zeolites MCM-22 via a Two-Step Sol-Gel Route with Tetrahethyl Orthosilicate as

Silicate Source. Journal of Materials Chemistry and Physics, 113, 773-779..

Wurzburg, O.B. (1986). Modified Starches: Properties and Uses. Boca Raton, Florida;

CRC Press. Incorporated.

Xiao, L., Li, J., Jin, H. and Xu, R. (2006). Removal of Organic Templates from

Mesoporous SBA-15 at Room Temperature Using UV/Dilute H2O2. Journal of

Microporous and Mesoporous Material, 96, 413–418.

Xu, B., Xiao, T., Yan, Z., Sun, X., Sloan, J., Gonzales-cortes, S., Alshahran. F. and

Green, M. (2006).Synthesis of Mesoporous Alumina with Highly Thermal

Stability using Glucose Template in Aqueous System. Journal of Microporous

and Mesoporous Material, 91, 293-295.

Yan, Y., Kang, E. H., Yang, K. E, Tong, S. L., Fang, C. G., Liu, S. J. and Xiao. F. S.

(2004). High Activity in Selective Catalytic Oxidation of Naphtha to 2-hydroxy-1,

4-naphthoquinone by Molecular Oxygen under Air Pressure over Recycled Iron

Porphyrin Catalysts. Catalysis Communication, 5, 387–390.

Yamaguchi, M., Kainuma, K. and French D. (1979). Electron Microscopic Observation

Of Waxy Maize Starch. Journal of Ultrastructure Research, 69, 246-261.

Yiu, P. H., Loh, S. L., Rajan, A., Wong, S. C. and Bong, C. F. J. (2008). Physiochemical

Properties of Sago Starch Modified by Acid Treatment in Alcohol. American

Journal of Applied Science, 5 (4), 307-311

Page 50: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

144

Yuan, R. C., Thompson, D. B. and Boyer C. D. (1993). Fine Structure of Amylopectin

in Relation to Gelatinization and Retrogradation Behavior of Maize Starches from

Three wx-Containing Genotypes in Two Inbred Lines. Cereal Chemistry, 70(1),

81-89.

Yoza, B., Matsumoto, M. and. Matsunaga, T. (2002). DNA Extraction Using Modified

Bacterial Magnetic Particles in the Presence of Amino Silane Compound. Journal

of Biotechnology, 94, 217-224.

Zhao, X. S. (2006). Novel Porous Materials for Emerging Applications. Journal of

Material Chemistry, 16, 623-625.

Zhang, B., Davis, S. A. and Mann, S. (2002). Starch Gel Templating of Spongelike

Macroporous Silicalite and Mesoporous Films. American Chemical Society,

14(3), 1368-1375.

Zhang, J., Hu, Y., Matsuoka, M., Yamashita, H., Minagawa, M., Hidaka, H. and Anpo,

M. (2001). Relationship between the Local Structures of Titanium Oxide

Photocatalysts and Their Reactivities in the Decomposition of NO. Journal of

Physical Chemistry, 105(35), 8395-8398.

Zheng, J. Y., Qiu, K. Y., Pang, J. B. and Wei, Y. (2002). Synthesis of Mesoporous

Silica Materials via Non-surfactant Templated Sol-Gel Route by Using Mixture of

Organic Compounds as Template. Journal of Sol Gel Science and Technology, 24,

81-88.

Zheng, W. Q., Shan, N., Yu, L. X. and Wang, X. Q. (2007). The UV-Visible,

Fluorescence and EPR Properties of Porphyrins and Metalloporphyrins. Dyes and

Pigments. 77(1), 153-157.

Zholobenko, V., Garforth. and Dwyer, A. J. (1997). TGA-DTA Study on Calcination of

Zeolitic Catalyst. Thermochimica Acta, 294, 39-44

Page 51: PREPARATION OF SILICA-BASED POROUS MATERIALS FROM …eprints.utm.my/id/eprint/33400/1/JuanMatminMFS2011.pdf · panjang polisakarida kepada monosakarida ß-D-glukosa berantai lebih

145

Zhou. J, Zhou. M. and Caruso. R. A. (2006). Agarose Template for the Fabrication of

Macroporous Metal Oxides Structure. Langmuir, 22, 3332-3336. Zobel, H. F. (1988). Molecules to Granules: A Comprehensive Starch Review.

Starch/Stärke, 40, 44-50.