Precision breeding of grapevine (Vitis vinifera L.) for improved traits

  • Published on
    30-Dec-2016

  • View
    218

  • Download
    3

Transcript

  • Please citehttp://dx.

    ARTICLE IN PRESSG ModelPSL-8963; No. of Pages 8Plant Science xxx (2014) xxxxxx

    Contents lists available at ScienceDirect

    Plant Science

    j ourna l ho me pa ge: www.elsev ier .com/ locate /p lantsc i

    Review

    Precisi

    Dennis J.a Grape BiotechUSAb Department o

    a r t i c l

    Article history:Available onlin

    Keywords:GrapevineVitis viniferaCisgenicsIntragenicsGenetic engineDisease resistaAnthocyanin mExpression an

    expression analysis of a wide range of grapevine-derived promoters and disease-related genes. It is envi-sioned that future research efforts will be extended to the study of promoters and genes functioning toenhance other important traits, such as fruit quality and vigor.

    Published by Elsevier Ireland Ltd.

    Contents

    IntroduAdvancDevelop

    TrGr

    PromotA nCoTis

    ResistanAnAnAnAbPr

    ConclusAcknoRefer

    CorresponE-mail add

    http://dx.doi.o0168-9452/Pu this article in press as: D.J. Gray, et al., Precision breeding of grapevine (Vitis vinifera L.) for improved traits, Plant Sci. (2014),doi.org/10.1016/j.plantsci.2014.03.023

    ction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00es in gene insertion technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00ment of a grape gene-based marker system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

    aditional marker genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00apevine gene-derived anthocyanin marker system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00er mining and functional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00on-destructive anthocyanin-based promoter assay system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00nstitutively active promoters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00sue-specic, inducible and developmentally regulated promoters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00ce/tolerance genes to biotic and abiotic stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00tifungal genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00tibacterial genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00tiviral genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00iotic stress tolerance genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00ecision bred plants under eld testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00wledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

    ences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

    ding author. Tel.: +407 41 6946; fax: +407 814 6186.ress: djg@u.edu (D.J. Gray).

    rg/10.1016/j.plantsci.2014.03.023blished by Elsevier Ireland Ltd.on breeding of grapevine (Vitis vinifera L.) for improved traits

    Graya,, Zhijian T. Lia, Sadanand A. Dhekneyb

    nology Core Laboratory, Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL 32703-8504

    f Plant Sciences, Sheridan Research and Extension Center, University of Wyoming, 663 Wyarno Road, Sheridan, WY 82801 USA

    e i n f o

    e xxx

    eringncearker

    alysis

    a b s t r a c t

    This review provides an overview of recent technological advancements that enable precision breedingto genetically improve elite cultivars of grapevine (Vitis vinifera L.). Precision breeding, previously termedcisgenic or intragenic genetic improvement, necessitates a better understanding and use of genomicresources now becoming accessible. Although it is now a relatively simple task to identify genetic ele-ments and genes from numerous omics databases, the control of major agronomic and enological traitsoften involves the currently unknown participation of many genes and regulatory machineries. In addi-tion, genetic evolution has left numerous vestigial genes and sequences without tangible functions. Thus,it is critical to functionally test each of these genetic entities to determine their real-world functionalityor contribution to trait attributes. Toward this goal, several diverse techniques now are in place, includingcell culture systems to allow efcient plant regeneration, advanced gene insertion techniques, and, veryrecently, resources for genomic analyses. Currently, these techniques are being used for high-throughput

  • Please cite vinehttp://dx.

    ARTICLE IN PRESSG ModelPSL-8963; No. of Pages 82 D.J. Gray et al. / Plant Science xxx (2014) xxxxxx

    Introduction

    Genetic improvement of grapevine (Vitis vinifera L.) is one of thecritical needs to enhance crop productivity and foster protablewine indusunique hybment of elis deemed by severe dchemical cothat incites of durable the unsustators, despitunsuccessfuHowever, gwas identitance was svinifera culthe pathogespecic traistresses, whelite cultivational breedthe producttions of oenbe used to of Vitis becand compleity of the rworldwide a stringentlHowever, edurable disintensive aquent use ohigher humsuch practicsuch increabiotechnoloexpedite gesion breedinof current tses, for the as well as o

    Advances i

    The metinducing siment for ovfor perennicles to convdurability oIn order toing, efcienAn increasinto documenThe preciseparticle bommediated grecovery [1and optimiing hundreplants mod

    low-gene copy number and dened gene insertion [24,26]. A largenumber of modied plants is critical for identication of lines witha desirable level of gene expression and performance to meet over-all improvement objectives [27]. The need to test many plant lines,

    e nooutsting ton bon-pely peferh won mnal non-tilizeproagoinomot

    werc maot ofng wds, ths com7 anputaine gem, sert tionay,

    ore olicatvativy lontionceptae co

    ered.zatiorape at fore cotorss genctionant rfunchethicate

    timine

    akingtionnal cg a c resoly coplantedinnal aed cine, er

    ed cr this article in press as: D.J. Gray, et al., Precision breeding of grapedoi.org/10.1016/j.plantsci.2014.03.023

    tries throughout the world [1]. Although numerousrids were developed over the years, genetic improve-ite hybrids, the mainstays of worldwide production,to be largely unsuccessful, especially in areas ravagedisease/pest infestations and/or that require extensiventrol to maintain. For example, the bacterial pathogenPierces disease, Xylella fastidiosa, has no proven methodcontrol other than well-known genetic resistance andinable mass spraying of pesticides to inhibit insect vec-e well over 50 million dollars expended, apparentlylly, by Federal and State governments since 1999 [2].

    enetic resistance (tolerance) among native Vitis speciesed by 1958 [3]. The practical use of genetic resis-ubsequently conrmed through hybridization with V.tivars to instill durable and near complete control ofn [46]. Particularly urgent now is the introduction ofts for durable tolerance to diseases, pests, and abioticile maintaining the essential quality of highly desiredrs [7,8]. However, it is not possible to rely on conven-ing to improve elite cultivars so that they can adapt toion environment, while still meeting the strict expecta-ophiles [9,10]. Conventional breeding cannot practicallyadd desired disease resistance traits to elite cultivarsause of a long lifecycle, severe inbreeding depression,x genetic control of enological qualities [11]. A major-elatively few elite grape cultivars currently cultivatedare centuries-old and maintained primarily throughy managed system of vegetative propagation [12,13].lite cultivars often lack other desirable traits such asease and pest resistance that are demanded by todaysgricultural conditions. As such, producers rely on fre-f pesticides to control diseases, particularly in areas ofidity; this is in spite of increasing public outcry againstes and resulting environmental issues [14]. To mitigatesingly crucial agricultural and health concerns, moderngy has advanced to the point where it is now possible tonetic improvement of existing elite cultivars via preci-g [7,15]. This review is intended to provide an overview

    echnological advancement, particularly genomic analy-development of resistance to biotic and abiotic stresses,ther traits, via precision breeding of elite cultivars.

    n gene insertion technology

    hodology to insert specic genes into plants withoutgnicant genetic rearrangement has been in develop-er thirty years. Such technology is particularly attractiveal crops like grapevine that have severe genetic obsta-entional breeding and require multi-year evaluation forf desired traits due to their long lifecycle and longevity.

    provide a reliable working platform for genetic test-t cell regeneration systems were developed [1620].g number of scientists used such regeneration systemst insertion of single or few genes into grapevine [11].

    methods of gene insertion employed either biolisticbardment [21,22] or, more commonly, Agrobacterium-

    ene insertion into regenerative cells, followed by plant1,2325]. Both methods have been meticulously renedzed over the years and are now capable of produc-ds of genetically modied plants. The majority ofied via the Agrobacterium approach tended to harbor

    as is thselect

    Durprecisifrom nrelativerally rresearcinsertifunctiomany were uThis apand onand prand/orgenetithe piv

    Alomethoing wain 200of comgrapevlate thand inapplicaunderwand m

    Appconseronly bapplicaand ac

    As wdiscovorganithat gthan thtraits aand facsuch aof-funimportactual rial, wits intrlongeddetermare mannotafunctiocreatingenetilogicalentire ing brefunctioimprovgrapevin growally br (Vitis vinifera L.) for improved traits, Plant Sci. (2014),

    rm with conventional breeding, is critical in order toanding individuals.he early years of technology development aimed towardreeding, it was necessary to test genetic elementslant hosts, including animals and bacteria, due to therimitive state of biotechnology. This approach was gen-red to as transgenic modication. This early discoveryas absolutely essential so that cell culture and geneethods could be rened to the point of being fully

    [28]. Subsequently, as pointed out by Rommens [29],plant genes and promoters with known functionalityd to display the technological marvel of biotechnology.ch to crop improvement inevitably invited argumentsg worries as to whether such plants with foreign genesers were healthy, represented an environmental threate otherwise dangerous in some way. The use of foreignterial in food crops including grapevine remains to be

    social and ethical public debate [7,29,30].ith the renement of cell culture and gene insertione nal technology required to enable precision breed-pletion of the draft genome of V. vinifera Pinot Noir

    d the relatively new-found and simplied availabilitytional analysis [31,32]. It is now possible to identifyenes, along with their associated genetic elements, iso-from sexually-compatible disease-resistant relatives,them into elite cultivars. While still in its infancy, th...

Recommended

View more >