72
Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks Population Dynamics in Stochastic Games joint with J. Flesch, P. Uyttendaele, Maastricht University and T. Parthasarathy, Indian Statistical Institute, Chennai Toulouse, September 12-16, 2011 Frank Thuijsman, Maastricht University Population Dynamics in Stochastic Games

Population Dynamics in Stochastic Games · 2013-03-13 · Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks Population Dynamics in

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Population Dynamics in Stochastic Games

    joint with J. Flesch, P. Uyttendaele, Maastricht Universityand T. Parthasarathy, Indian Statistical Institute, Chennai

    Toulouse, September 12-16, 2011

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Outline

    1 Introduction

    2 Stochastic Games

    3 Evolutionary Games

    4 Evolutionary Stochastic Games

    5 Concluding Remarks

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    1928, John von Neumann

    2-Person Zerosum Games

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j j

    i a ij i a ij , b ij

    state 1 state s state z

    j

    i

    j

    i

    state 1 state s state z

    Existence of Value and Optimal Strategies

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    1951, John Nash

    n-Person Non-Zerosum Games

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j j

    i a ij i a ij , b ij

    state 1 state s state z

    j

    i

    j

    i

    state 1 state s state z

    Existence of Equilibria

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    1953, Lloyd Shapley

    2-Person Zerosum Stochastic Games

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j j

    i a ij i a ij , b ij

    state 1 state s state z

    j

    i

    j

    i

    state 1 state s state z

    Existence of Value and Optimal Strategies

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    1973, John Maynard Smith and George Price

    Evolutionary Games

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Population of Different Types Playing against Itself.Population Distribution p = (p1,p2, . . . ,pn).Type k has Fitness ekAp in Population p.Concept of Evolutionary Stable Strategies (ESS).

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Question

    How to Model a Population Playing a Stochastic Game?

    Some Words about Stochastic GamesSome Words about Evolutionary GamesPresentation of a Combined Model

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Question

    How to Model a Population Playing a Stochastic Game?Some Words about Stochastic Games

    Some Words about Evolutionary GamesPresentation of a Combined Model

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Question

    How to Model a Population Playing a Stochastic Game?Some Words about Stochastic GamesSome Words about Evolutionary Games

    Presentation of a Combined Model

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Question

    How to Model a Population Playing a Stochastic Game?Some Words about Stochastic GamesSome Words about Evolutionary GamesPresentation of a Combined Model

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    The Stochastic Game Model

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with a ij = b ji

    state z

    y j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Finitely Many States, Finitely Many Actions for each Player

    Payoffs and Transitions at each Stage 1,2,3,4, . . .

    Each State can serve as Initial State

    Complete Information and Perfect Recall

    Discounting or Averaging the Stage Payoffs

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    The Stochastic Game Model

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with a ij = b ji

    state z

    y j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Finitely Many States, Finitely Many Actions for each Player

    Payoffs and Transitions at each Stage 1,2,3,4, . . .

    Each State can serve as Initial State

    Complete Information and Perfect Recall

    Discounting or Averaging the Stage Payoffs

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    The Stochastic Game Model

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with a ij = b ji

    state z

    y j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Finitely Many States, Finitely Many Actions for each Player

    Payoffs and Transitions at each Stage 1,2,3,4, . . .

    Each State can serve as Initial State

    Complete Information and Perfect Recall

    Discounting or Averaging the Stage Payoffs

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    The Stochastic Game Model

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with a ij = b ji

    state z

    y j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Finitely Many States, Finitely Many Actions for each Player

    Payoffs and Transitions at each Stage 1,2,3,4, . . .

    Each State can serve as Initial State

    Complete Information and Perfect Recall

    Discounting or Averaging the Stage Payoffs

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    The Stochastic Game Model

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with a ij = b ji

    state z

    y j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Finitely Many States, Finitely Many Actions for each Player

    Payoffs and Transitions at each Stage 1,2,3,4, . . .

    Each State can serve as Initial State

    Complete Information and Perfect Recall

    Discounting or Averaging the Stage Payoffs

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    The Stochastic Game Model

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with a ij = b ji

    state z

    y j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Finitely Many States, Finitely Many Actions for each Player

    Payoffs and Transitions at each Stage 1,2,3,4, . . .

    Each State can serve as Initial State

    Complete Information and Perfect Recall

    Discounting or Averaging the Stage Payoffs

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Some Highlights of Stochastic Game Theory

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with a ij = b ji

    state z

    y j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    1953, L.S. Shapley:2-Person Zerosum Stopping Stochastic Games - Value

    1957, H. Everett / D. Gillette:2-Person Zerosum Undiscounted Stochastic Games

    1964, A.M. Fink / M. Takahashi:n-Person β-Discounted Stochastic Games - Equilibria

    1981, J.F. Mertens and A. Neyman:2-Person Zerosum Undiscounted Stochastic Games - Value

    2000, N. Vieille:2-Person Undiscounted Stochastic Games - Equilibria

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Some Highlights of Stochastic Game Theory

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with a ij = b ji

    state z

    y j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    1953, L.S. Shapley:2-Person Zerosum Stopping Stochastic Games - Value

    1957, H. Everett / D. Gillette:2-Person Zerosum Undiscounted Stochastic Games

    1964, A.M. Fink / M. Takahashi:n-Person β-Discounted Stochastic Games - Equilibria

    1981, J.F. Mertens and A. Neyman:2-Person Zerosum Undiscounted Stochastic Games - Value

    2000, N. Vieille:2-Person Undiscounted Stochastic Games - Equilibria

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Some Highlights of Stochastic Game Theory

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with a ij = b ji

    state z

    y j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    1953, L.S. Shapley:2-Person Zerosum Stopping Stochastic Games - Value

    1957, H. Everett / D. Gillette:2-Person Zerosum Undiscounted Stochastic Games

    1964, A.M. Fink / M. Takahashi:n-Person β-Discounted Stochastic Games - Equilibria

    1981, J.F. Mertens and A. Neyman:2-Person Zerosum Undiscounted Stochastic Games - Value

    2000, N. Vieille:2-Person Undiscounted Stochastic Games - Equilibria

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Some Highlights of Stochastic Game Theory

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with a ij = b ji

    state z

    y j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    1953, L.S. Shapley:2-Person Zerosum Stopping Stochastic Games - Value

    1957, H. Everett / D. Gillette:2-Person Zerosum Undiscounted Stochastic Games

    1964, A.M. Fink / M. Takahashi:n-Person β-Discounted Stochastic Games - Equilibria

    1981, J.F. Mertens and A. Neyman:2-Person Zerosum Undiscounted Stochastic Games - Value

    2000, N. Vieille:2-Person Undiscounted Stochastic Games - Equilibria

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Some Highlights of Stochastic Game Theory

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with a ij = b ji

    state z

    y j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    1953, L.S. Shapley:2-Person Zerosum Stopping Stochastic Games - Value

    1957, H. Everett / D. Gillette:2-Person Zerosum Undiscounted Stochastic Games

    1964, A.M. Fink / M. Takahashi:n-Person β-Discounted Stochastic Games - Equilibria

    1981, J.F. Mertens and A. Neyman:2-Person Zerosum Undiscounted Stochastic Games - Value

    2000, N. Vieille:2-Person Undiscounted Stochastic Games - Equilibria

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Some Highlights of Stochastic Game Theory

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with a ij = b ji

    state z

    y j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    1953, L.S. Shapley:2-Person Zerosum Stopping Stochastic Games - Value

    1957, H. Everett / D. Gillette:2-Person Zerosum Undiscounted Stochastic Games

    1964, A.M. Fink / M. Takahashi:n-Person β-Discounted Stochastic Games - Equilibria

    1981, J.F. Mertens and A. Neyman:2-Person Zerosum Undiscounted Stochastic Games - Value

    2000, N. Vieille:2-Person Undiscounted Stochastic Games - Equilibria

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    1973, John Maynard Smith and George Price

    Evolutionary Games

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Population of Different Types Playing against Itself.Population Distribution p = (p1,p2, . . . ,pn).Type k has Fitness ekAp in Population p.Concept of Evolutionary Stable Strategies (ESS).

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    The ESS Concept

    Evolutionary Games

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    ESS: Population Distribution p = (p1,p2, . . . ,pn) with

    pAp ≥ qAp ∀qIf q 6= p and qAp = pAp, then pAq > qAq

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    The Replicator Dynamic by Taylor and Jonker, 1978

    Evolutionary Games

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Population Development by the Replicator Equation:ṗk = pk (ekAp − pAp)

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Remarks on ESS and Asymptotic Stability

    A Static Concept and a Dynamic ProcessESS Not Always ExistsReplicator Dynamic Not Always ConvergesAny ESS is Asymptotically StableLimit Points of Dynamic Not Always ESS

    0 6 −4−3 0 5−1 3 0

    (Hofbauer and Sigmund, 1998)

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Remarks on ESS and Asymptotic Stability

    A Static Concept and a Dynamic Process

    ESS Not Always ExistsReplicator Dynamic Not Always ConvergesAny ESS is Asymptotically StableLimit Points of Dynamic Not Always ESS

    0 6 −4−3 0 5−1 3 0

    (Hofbauer and Sigmund, 1998)

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Remarks on ESS and Asymptotic Stability

    A Static Concept and a Dynamic ProcessESS Not Always Exists

    Replicator Dynamic Not Always ConvergesAny ESS is Asymptotically StableLimit Points of Dynamic Not Always ESS

    0 6 −4−3 0 5−1 3 0

    (Hofbauer and Sigmund, 1998)

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Remarks on ESS and Asymptotic Stability

    A Static Concept and a Dynamic ProcessESS Not Always ExistsReplicator Dynamic Not Always Converges

    Any ESS is Asymptotically StableLimit Points of Dynamic Not Always ESS

    0 6 −4−3 0 5−1 3 0

    (Hofbauer and Sigmund, 1998)

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Remarks on ESS and Asymptotic Stability

    A Static Concept and a Dynamic ProcessESS Not Always ExistsReplicator Dynamic Not Always ConvergesAny ESS is Asymptotically Stable

    Limit Points of Dynamic Not Always ESS

    0 6 −4−3 0 5−1 3 0

    (Hofbauer and Sigmund, 1998)

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Remarks on ESS and Asymptotic Stability

    A Static Concept and a Dynamic ProcessESS Not Always ExistsReplicator Dynamic Not Always ConvergesAny ESS is Asymptotically StableLimit Points of Dynamic Not Always ESS

    0 6 −4−3 0 5−1 3 0

    (Hofbauer and Sigmund, 1998)

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Remarks on ESS and Asymptotic Stability

    A Static Concept and a Dynamic ProcessESS Not Always ExistsReplicator Dynamic Not Always ConvergesAny ESS is Asymptotically StableLimit Points of Dynamic Not Always ESS

    0 6 −4−3 0 5−1 3 0

    (Hofbauer and Sigmund, 1998)

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Remarks on ESS and Asymptotic Stability

    A Static Concept and a Dynamic ProcessESS Not Always ExistsReplicator Dynamic Not Always ConvergesAny ESS is Asymptotically StableLimit Points of Dynamic Not Always ESS

    0 6 −4−3 0 5−1 3 0

    (Hofbauer and Sigmund, 1998)Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Assumptions for Evolutionary Stochastic Games… a ij (s ) …

    p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Symmetric Payoffs: bij = ajiSymmetric Transitions: p(s, i , j) = p(s, j , i)Unichain Stochastic GameOne Ergodic Set for Any Pair of Stationary StrategiesTypes Correspond to Pure Stationary Strategies

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Assumptions for Evolutionary Stochastic Games… a ij (s ) …

    p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Symmetric Payoffs: bij = aji

    Symmetric Transitions: p(s, i , j) = p(s, j , i)Unichain Stochastic GameOne Ergodic Set for Any Pair of Stationary StrategiesTypes Correspond to Pure Stationary Strategies

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Assumptions for Evolutionary Stochastic Games… a ij (s ) …

    p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Symmetric Payoffs: bij = ajiSymmetric Transitions: p(s, i , j) = p(s, j , i)

    Unichain Stochastic GameOne Ergodic Set for Any Pair of Stationary StrategiesTypes Correspond to Pure Stationary Strategies

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Assumptions for Evolutionary Stochastic Games… a ij (s ) …

    p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Symmetric Payoffs: bij = ajiSymmetric Transitions: p(s, i , j) = p(s, j , i)Unichain Stochastic Game

    One Ergodic Set for Any Pair of Stationary StrategiesTypes Correspond to Pure Stationary Strategies

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Assumptions for Evolutionary Stochastic Games… a ij (s ) …

    p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Symmetric Payoffs: bij = ajiSymmetric Transitions: p(s, i , j) = p(s, j , i)Unichain Stochastic GameOne Ergodic Set for Any Pair of Stationary Strategies

    Types Correspond to Pure Stationary Strategies

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Assumptions for Evolutionary Stochastic Games… a ij (s ) …

    p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Symmetric Payoffs: bij = ajiSymmetric Transitions: p(s, i , j) = p(s, j , i)Unichain Stochastic GameOne Ergodic Set for Any Pair of Stationary StrategiesTypes Correspond to Pure Stationary Strategies

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Assumptions Continued

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Fitness of Type k in Population x̄ = (x̄1, x̄2, . . . , x̄n)is Average Reward γ(ek , x)where x Stationary Strategy determined by x̄Different Populations can give Same Stationary StrategyStationary Strategy x is ESS if

    γ(x , x) ≥ γ(y , x) ∀ Stationary Strategies yIf y 6= x and γ(y , x) = γ(x , x), then γ(x , y) > γ(y , y)

    Population Development by Replicator Dynamic˙̄xk = x̄k (γ(ek , x)− γ(x , x))

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Assumptions Continued

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Fitness of Type k in Population x̄ = (x̄1, x̄2, . . . , x̄n)is Average Reward γ(ek , x)where x Stationary Strategy determined by x̄

    Different Populations can give Same Stationary StrategyStationary Strategy x is ESS if

    γ(x , x) ≥ γ(y , x) ∀ Stationary Strategies yIf y 6= x and γ(y , x) = γ(x , x), then γ(x , y) > γ(y , y)

    Population Development by Replicator Dynamic˙̄xk = x̄k (γ(ek , x)− γ(x , x))

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Assumptions Continued

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Fitness of Type k in Population x̄ = (x̄1, x̄2, . . . , x̄n)is Average Reward γ(ek , x)where x Stationary Strategy determined by x̄Different Populations can give Same Stationary Strategy

    Stationary Strategy x is ESS ifγ(x , x) ≥ γ(y , x) ∀ Stationary Strategies yIf y 6= x and γ(y , x) = γ(x , x), then γ(x , y) > γ(y , y)

    Population Development by Replicator Dynamic˙̄xk = x̄k (γ(ek , x)− γ(x , x))

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Assumptions Continued

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Fitness of Type k in Population x̄ = (x̄1, x̄2, . . . , x̄n)is Average Reward γ(ek , x)where x Stationary Strategy determined by x̄Different Populations can give Same Stationary StrategyStationary Strategy x is ESS if

    γ(x , x) ≥ γ(y , x) ∀ Stationary Strategies yIf y 6= x and γ(y , x) = γ(x , x), then γ(x , y) > γ(y , y)

    Population Development by Replicator Dynamic˙̄xk = x̄k (γ(ek , x)− γ(x , x))

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Assumptions Continued

    … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    Fitness of Type k in Population x̄ = (x̄1, x̄2, . . . , x̄n)is Average Reward γ(ek , x)where x Stationary Strategy determined by x̄Different Populations can give Same Stationary StrategyStationary Strategy x is ESS if

    γ(x , x) ≥ γ(y , x) ∀ Stationary Strategies yIf y 6= x and γ(y , x) = γ(x , x), then γ(x , y) > γ(y , y)

    Population Development by Replicator Dynamic˙̄xk = x̄k (γ(ek , x)− γ(x , x))

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Some Remarks … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    ESS Not Always ExistsReplicator Dynamic Not Always ConvergesLimit Points of Dynamic Not Always give ESS

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Some Remarks … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    ESS Not Always Exists

    Replicator Dynamic Not Always ConvergesLimit Points of Dynamic Not Always give ESS

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Some Remarks … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    ESS Not Always ExistsReplicator Dynamic Not Always Converges

    Limit Points of Dynamic Not Always give ESS

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Some Remarks … a ij (s ) …p (s , i , j )

    … a ij (s ), b ij (s ) …p (s , i , j )

    j p j

    i a ij p i a ij , b ij with b ij = a ji

    state z

    x j (s )

    x i (s )

    state 1 state s state z

    j

    i

    state 1 state s

    ESS Not Always ExistsReplicator Dynamic Not Always ConvergesLimit Points of Dynamic Not Always give ESS

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Why Unichain?

    1, 1 4, 3 3, 3 5, 4(0, 1) (.5, .5) (1, 0) (.5, .5)

    3, 4 2, 2 4, 5 2, 2(.5, .5) (0, 1) (.5, .5) (1, 0)

    1, 1 4, 3 3, 3 5, 4 4, 4 6, 7(.5, 0, .5) (.5, .5, 0) (1, 0, 0) (.5, 0, .5) (0, 1, 0) (0, .5, .5)

    3, 4 2, 2 4, 5 2, 2 7, 6 5, 5(.5, .5, 0) (0, .5, .5) (.5, 0, .5) (0, 0, 1) (0, .5, .5) (1, 0, 0)

    1, 1 4, 3 3, 3 5, 4(0, 1, 0) (.5, .5, 0) (1, 0, 0) (.5, .5, 0)

    3, 4 2, 2 4, 5 2, 2 2, 2(.5, .5, 0) (0, 1, 0) (.5, .5, 0) (0, 0, 1) (0, 0, 1)

    state 3

    3, 3 5, 4(1, 0) (1, 0)

    4, 5 2, 2 2, 2(1, 0) (0, 1) (0, 1)

    state 2

    state 1 state 2

    state 1 state 2

    state 1

    state 3

    state 1 state 2

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    A 2 State Example with Replicator Dynamics

    1, 1 4, 3 3, 3 5, 4(0, 1) (.5, .5) (1, 0) (.5, .5)

    3, 4 2, 2 4, 5 2, 2(.5, .5) (0, 1) (.5, .5) (1, 0)

    1, 1 4, 3 3, 3 5, 4 4, 4 6, 7(.5, 0, .5) (.5, .5, 0) (1, 0, 0) (.5, 0, .5) (1, 0, 0) (0, .5, .5)

    3, 4 2, 2 4, 5 2, 2 7, 6 5, 5(.5, .5, 0) (0, .5, .5) (.5, 0, .5) (0, 0, 1) (0, .5, .5) (0, 1, 0)

    1, 1 4, 3 3, 3 5, 4(0, 1, 0) (.5, .5, 0) (1, 0, 0) (.5, .5, 0)

    3, 4 2, 2 4, 5 2, 2 2, 2(.5, .5, 0) (0, 1, 0) (.5, .5, 0) (0, 0, 1) (0, 0, 1)

    state 3

    state 3

    state 1 state 2

    state 1 state 2

    state 1 state 2

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    A 2 State Example with Replicator Dynamics

    1, 1 4, 3 3, 3 5, 4(0, 1) (.5, .5) (1, 0) (.5, .5)

    3, 4 2, 2 4, 5 2, 2(.5, .5) (0, 1) (.5, .5) (1, 0)

    1, 1 4, 3 3, 3 5, 4 4, 4 6, 7(.5, 0, .5) (.5, .5, 0) (1, 0, 0) (.5, 0, .5) (1, 0, 0) (0, .5, .5)

    3, 4 2, 2 4, 5 2, 2 7, 6 5, 5(.5, .5, 0) (0, .5, .5) (.5, 0, .5) (0, 0, 1) (0, .5, .5) (0, 1, 0)

    1, 1 4, 3 3, 3 5, 4(0, 1, 0) (.5, .5, 0) (1, 0, 0) (.5, .5, 0)

    3, 4 2, 2 4, 5 2, 2 2, 2(.5, .5, 0) (0, 1, 0) (.5, .5, 0) (0, 0, 1) (0, 0, 1)

    state 3

    state 3

    state 1 state 2

    state 1 state 2

    state 1 state 2

    (Trajectory)

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

    replicator2.aviMedia File (video/avi)

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    A 2 State Example with Replicator Dynamics

    1, 1 4, 3 3, 3 5, 4(0, 1) (.5, .5) (1, 0) (.5, .5)

    3, 4 2, 2 4, 5 2, 2(.5, .5) (0, 1) (.5, .5) (1, 0)

    1, 1 4, 3 3, 3 5, 4 4, 4 6, 7(.5, 0, .5) (.5, .5, 0) (1, 0, 0) (.5, 0, .5) (1, 0, 0) (0, .5, .5)

    3, 4 2, 2 4, 5 2, 2 7, 6 5, 5(.5, .5, 0) (0, .5, .5) (.5, 0, .5) (0, 0, 1) (0, .5, .5) (0, 1, 0)

    1, 1 4, 3 3, 3 5, 4(0, 1, 0) (.5, .5, 0) (1, 0, 0) (.5, .5, 0)

    3, 4 2, 2 4, 5 2, 2 2, 2(.5, .5, 0) (0, 1, 0) (.5, .5, 0) (0, 0, 1) (0, 0, 1)

    state 3

    state 3

    state 1 state 2

    state 1 state 2

    state 1 state 2

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    A 2 State Example with Replicator Dynamics

    1, 1 4, 3 3, 3 5, 4(0, 1) (.5, .5) (1, 0) (.5, .5)

    3, 4 2, 2 4, 5 2, 2(.5, .5) (0, 1) (.5, .5) (1, 0)

    1, 1 4, 3 3, 3 5, 4 4, 4 6, 7(.5, 0, .5) (.5, .5, 0) (1, 0, 0) (.5, 0, .5) (1, 0, 0) (0, .5, .5)

    3, 4 2, 2 4, 5 2, 2 7, 6 5, 5(.5, .5, 0) (0, .5, .5) (.5, 0, .5) (0, 0, 1) (0, .5, .5) (0, 1, 0)

    1, 1 4, 3 3, 3 5, 4(0, 1, 0) (.5, .5, 0) (1, 0, 0) (.5, .5, 0)

    3, 4 2, 2 4, 5 2, 2 2, 2(.5, .5, 0) (0, 1, 0) (.5, .5, 0) (0, 0, 1) (0, 0, 1)

    state 3

    state 3

    state 1 state 2

    state 1 state 2

    state 1 state 2

    (Trajectory)

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

    replicator2random.aviMedia File (video/avi)

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    1951, George Brown / Julia Robinson

    The Fictitious Play Process:Playing Best Replies against Observed Action Frequencies

    For Matrix Games FP leads to Optimal StrategiesNo FP Convergence for Bimatrix Games (Shapley, 1964). . .

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    1951, George Brown / Julia Robinson

    The Fictitious Play Process:Playing Best Replies against Observed Action Frequencies

    For Matrix Games FP leads to Optimal Strategies

    No FP Convergence for Bimatrix Games (Shapley, 1964). . .

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    1951, George Brown / Julia Robinson

    The Fictitious Play Process:Playing Best Replies against Observed Action Frequencies

    For Matrix Games FP leads to Optimal StrategiesNo FP Convergence for Bimatrix Games (Shapley, 1964)

    . . .

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    1951, George Brown / Julia Robinson

    The Fictitious Play Process:Playing Best Replies against Observed Action Frequencies

    For Matrix Games FP leads to Optimal StrategiesNo FP Convergence for Bimatrix Games (Shapley, 1964). . .

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    A 2 State Example with Fictitious Play

    1, 1 4, 3 3, 3 5, 4(0, 1) (.5, .5) (1, 0) (.5, .5)

    3, 4 2, 2 4, 5 2, 2(.5, .5) (0, 1) (.5, .5) (1, 0)

    1, 1 4, 3 3, 3 5, 4 4, 4 6, 7(.5, 0, .5) (.5, .5, 0) (1, 0, 0) (.5, 0, .5) (1, 0, 0) (0, .5, .5)

    3, 4 2, 2 4, 5 2, 2 7, 6 5, 5(.5, .5, 0) (0, .5, .5) (.5, 0, .5) (0, 0, 1) (0, .5, .5) (0, 1, 0)

    1, 1 4, 3 3, 3 5, 4(0, 1, 0) (.5, .5, 0) (1, 0, 0) (.5, .5, 0)

    3, 4 2, 2 4, 5 2, 2 2, 2(.5, .5, 0) (0, 1, 0) (.5, .5, 0) (0, 0, 1) (0, 0, 1)

    state 3

    state 3

    state 1 state 2

    state 1 state 2

    state 1 state 2

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    A 2 State Example with Fictitious Play

    1, 1 4, 3 3, 3 5, 4(0, 1) (.5, .5) (1, 0) (.5, .5)

    3, 4 2, 2 4, 5 2, 2(.5, .5) (0, 1) (.5, .5) (1, 0)

    1, 1 4, 3 3, 3 5, 4 4, 4 6, 7(.5, 0, .5) (.5, .5, 0) (1, 0, 0) (.5, 0, .5) (1, 0, 0) (0, .5, .5)

    3, 4 2, 2 4, 5 2, 2 7, 6 5, 5(.5, .5, 0) (0, .5, .5) (.5, 0, .5) (0, 0, 1) (0, .5, .5) (0, 1, 0)

    1, 1 4, 3 3, 3 5, 4(0, 1, 0) (.5, .5, 0) (1, 0, 0) (.5, .5, 0)

    3, 4 2, 2 4, 5 2, 2 2, 2(.5, .5, 0) (0, 1, 0) (.5, .5, 0) (0, 0, 1) (0, 0, 1)

    state 3

    state 3

    state 1 state 2

    state 1 state 2

    state 1 state 2

    (Trajectory)

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

    2StatesFictitious250generations.aviMedia File (video/avi)

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    A 3 State Example with Replicator Dynamics

    1, 1 4, 3 3, 3 5, 4(0, 1) (.5, .5) (1, 0) (.5, .5)

    3, 4 2, 2 4, 5 2, 2(.5, .5) (0, 1) (.5, .5) (1, 0)

    1, 1 4, 3 3, 3 5, 4 4, 4 6, 7(.5, 0, .5) (.5, .5, 0) (1, 0, 0) (.5, 0, .5) (0, 1, 0) (0, .5, .5)

    3, 4 2, 2 4, 5 2, 2 7, 6 5, 5(.5, .5, 0) (0, .5, .5) (.5, 0, .5) (0, 0, 1) (0, .5, .5) (1, 0, 0)

    1, 1 4, 3 3, 3 5, 4(0, 1, 0) (.5, .5, 0) (1, 0, 0) (.5, .5, 0)

    3, 4 2, 2 4, 5 2, 2 2, 2(.5, .5, 0) (0, 1, 0) (.5, .5, 0) (0, 0, 1) (0, 0, 1)

    state 3

    3, 3 5, 4(1, 0,) (.5, .5)

    4, 5 2, 2 2, 2(.5, .5) (0, 1) (0, 1)

    state 2

    state 1 state 2

    state 1 state 2

    state 1

    state 3

    state 1 state 2

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    A 3 State Example with Replicator Dynamics

    1, 1 4, 3 3, 3 5, 4(0, 1) (.5, .5) (1, 0) (.5, .5)

    3, 4 2, 2 4, 5 2, 2(.5, .5) (0, 1) (.5, .5) (1, 0)

    1, 1 4, 3 3, 3 5, 4 4, 4 6, 7(.5, 0, .5) (.5, .5, 0) (1, 0, 0) (.5, 0, .5) (0, 1, 0) (0, .5, .5)

    3, 4 2, 2 4, 5 2, 2 7, 6 5, 5(.5, .5, 0) (0, .5, .5) (.5, 0, .5) (0, 0, 1) (0, .5, .5) (1, 0, 0)

    1, 1 4, 3 3, 3 5, 4(0, 1, 0) (.5, .5, 0) (1, 0, 0) (.5, .5, 0)

    3, 4 2, 2 4, 5 2, 2 2, 2(.5, .5, 0) (0, 1, 0) (.5, .5, 0) (0, 0, 1) (0, 0, 1)

    state 3

    3, 3 5, 4(1, 0,) (.5, .5)

    4, 5 2, 2 2, 2(.5, .5) (0, 1) (0, 1)

    state 2

    state 1 state 2

    state 1 state 2

    state 1

    state 3

    state 1 state 2(Trajectory)

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

    3StatesReplicator.aviMedia File (video/avi)

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    A 3 State Example with Fictitious Play

    1, 1 4, 3 3, 3 5, 4(0, 1) (.5, .5) (1, 0) (.5, .5)

    3, 4 2, 2 4, 5 2, 2(.5, .5) (0, 1) (.5, .5) (1, 0)

    1, 1 4, 3 3, 3 5, 4 4, 4 6, 7(.5, 0, .5) (.5, .5, 0) (1, 0, 0) (.5, 0, .5) (0, 1, 0) (0, .5, .5)

    3, 4 2, 2 4, 5 2, 2 7, 6 5, 5(.5, .5, 0) (0, .5, .5) (.5, 0, .5) (0, 0, 1) (0, .5, .5) (1, 0, 0)

    1, 1 4, 3 3, 3 5, 4(0, 1, 0) (.5, .5, 0) (1, 0, 0) (.5, .5, 0)

    3, 4 2, 2 4, 5 2, 2 2, 2(.5, .5, 0) (0, 1, 0) (.5, .5, 0) (0, 0, 1) (0, 0, 1)

    state 3

    3, 3 5, 4(1, 0,) (.5, .5)

    4, 5 2, 2 2, 2(.5, .5) (0, 1) (0, 1)

    state 2

    state 1 state 2

    state 1 state 2

    state 1

    state 3

    state 1 state 2

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    A 3 State Example with Fictitious Play

    1, 1 4, 3 3, 3 5, 4(0, 1) (.5, .5) (1, 0) (.5, .5)

    3, 4 2, 2 4, 5 2, 2(.5, .5) (0, 1) (.5, .5) (1, 0)

    1, 1 4, 3 3, 3 5, 4 4, 4 6, 7(.5, 0, .5) (.5, .5, 0) (1, 0, 0) (.5, 0, .5) (0, 1, 0) (0, .5, .5)

    3, 4 2, 2 4, 5 2, 2 7, 6 5, 5(.5, .5, 0) (0, .5, .5) (.5, 0, .5) (0, 0, 1) (0, .5, .5) (1, 0, 0)

    1, 1 4, 3 3, 3 5, 4(0, 1, 0) (.5, .5, 0) (1, 0, 0) (.5, .5, 0)

    3, 4 2, 2 4, 5 2, 2 2, 2(.5, .5, 0) (0, 1, 0) (.5, .5, 0) (0, 0, 1) (0, 0, 1)

    state 3

    3, 3 5, 4(1, 0,) (.5, .5)

    4, 5 2, 2 2, 2(.5, .5) (0, 1) (0, 1)

    state 2

    state 1 state 2

    state 1 state 2

    state 1

    state 3

    state 1 state 2(Trajectory)

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

    3StatesFictious250Generations.aviMedia File (video/avi)

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    About this Model

    Existence of Symmetric Equilibria for SymmetricStochastic Games?Relation between Replicator Dynamic and Fictitious Playfor Symmetric Stochastic Games?Some Stability Issues on Population Dynamic

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    About this Model

    Existence of Symmetric Equilibria for SymmetricStochastic Games?

    Relation between Replicator Dynamic and Fictitious Playfor Symmetric Stochastic Games?Some Stability Issues on Population Dynamic

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    About this Model

    Existence of Symmetric Equilibria for SymmetricStochastic Games?Relation between Replicator Dynamic and Fictitious Playfor Symmetric Stochastic Games?

    Some Stability Issues on Population Dynamic

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    About this Model

    Existence of Symmetric Equilibria for SymmetricStochastic Games?Relation between Replicator Dynamic and Fictitious Playfor Symmetric Stochastic Games?Some Stability Issues on Population Dynamic

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Other ‘Evolutionary’ Work in Maastricht

    Examining the effects of periodic fitness in replicator dynamics

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Other ‘Evolutionary’ Work in Maastricht

    Examining the effects of periodic fitness in replicator dynamics

    (Trajectory)

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

    CenterCycle.aviMedia File (video/avi)

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Other ‘Evolutionary’ Work in Maastricht

    Examining the effects of local replicator dynamics

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Other ‘Evolutionary’ Work in Maastricht

    Studying sex choice ovipositioning behavior of parasitoid wasps

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

  • Introduction Stochastic Games Evolutionary Games Evolutionary Stochastic Games Concluding Remarks

    Thanks

    Thank you for your attention!Any comment is welcome!

    This presentation will be available atwww.personeel.unimaas.nl/F-Thuijsman

    Frank Thuijsman, Maastricht University

    Population Dynamics in Stochastic Games

    IntroductionStochastic GamesEvolutionary GamesEvolutionary Stochastic GamesConcluding Remarks