55
Polymer Dynamics Tom McLeish Durham University, UK (see Adv. Phys., 51, 1379-1527, (2002)) Boulder Summer School 2012: Polymers in Soft and Biological Matter

Polymer Dynamics - Yale University

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Polymer Dynamics - Yale University

Polymer Dynamics

Tom McLeish Durham University, UK

(see Adv. Phys., 51, 1379-1527, (2002))

Boulder Summer School 2012: Polymers in Soft and Biological Matter

Page 2: Polymer Dynamics - Yale University

Schedule

• Coarse-grained polymer physics • Experimental probes of polymer dynamics • Local friction - the Rouse chain • Hydrodynamics - the Zimm chain • Entangled Dynamics

Page 3: Polymer Dynamics - Yale University

Coarse-grained Polymers

n

R(n,t)

n=0

n=N

Page 4: Polymer Dynamics - Yale University

R

Polymers as Random Walks

Force, f, from free energy F(R)=-kBTlnP

G0=kBTCmon/Nx

Page 5: Polymer Dynamics - Yale University

Experiment - techniques that probe polymer dynamics:

• Bulk information orthogonal to rheology • Direct Molecular information

Dielectric Spectroscopy

T1/2-NMR

SANS NSE

PCS

Self-Diffusion

PFGNMR

Simulation

Linear and non-linear rheology

Page 6: Polymer Dynamics - Yale University

Rheology

tension

log t

log G(t)

τmax

G0

N

N

Shear

Extension

100 101 102 103

time /s104

105

106

107

visc

osity

/ P

a.s

Page 7: Polymer Dynamics - Yale University

Frequency-dependent Shear rheology

( )

( ) 22

22

0

220

/0

1''

1'

)(

τωτωω

τωωτω

τ

+=

+=

⇒= −

GG

GG

eGtG t

Page 8: Polymer Dynamics - Yale University

Stress Tensor

( ) ( )n

tnRn

tnR∂

∂∂

∂ ,,~

Page 9: Polymer Dynamics - Yale University

Linear Polymers

Branched Polymers

Page 10: Polymer Dynamics - Yale University

104 105

~ Mw3.4

~ exp(ν’Ma/Me)

Span Mw

η (P

oise

)

Fetters and Pearson (1983)

Page 11: Polymer Dynamics - Yale University

10 -2 10 0 10 2 10 4 10 -3

10 -2

10 -1

10 0

frequency /s

norm

alis

ed re

spon

se fu

nctio

ns

Dielectric Spectroscopy for Z=16 stars (Watanabe 2002) ( ) ( )

nnR

ntnR

∂∂

∂∂ 0,

','

rheology

Page 12: Polymer Dynamics - Yale University

Neutron Scattering

θ

Ii

I

θλπ sin4

=q

)_()( nscorrelatiodensitynsformFourierTraqI =

Sees inside the chain (“higher q”)

Page 13: Polymer Dynamics - Yale University

SANS on Deformed Chains

Linears - Muller et al. (1993)

Hs - Heinrich et al. (2002)

[ ]{ }),'(),(.exp'1

002 tntnidndn

N

NN

RRq −∫∫

Page 14: Polymer Dynamics - Yale University

Neutron Spin Echo

[ ]{ })0,'(),(.exp'1

002 ntnidndn

N

NN

RRq −∫∫

0 100 200 ns

Wischnewski et al. (2002)

Page 15: Polymer Dynamics - Yale University

Transverse (T2) NMR

Klein et al. (1998)

( ) ( )

∂∂

∂∂∆

∫ ntn

ntndt

b

tb ',..

'','

23cos

02

RLR

Page 16: Polymer Dynamics - Yale University

Diffusion Measurements (NMR, NR, SIMS..)

Komlosh and Callaghan (1999)

Page 17: Polymer Dynamics - Yale University

Lodge (1999)

Page 18: Polymer Dynamics - Yale University

0.1

1

10

100

10 2 10 3 10 4 10 5 10 6

g2

(t), g

3(t)

2]

t [ τ ]

slope 1/2

slope 0.26

slope 1/2

slope 1

Simulation

Putz et al. (2000)

( )2)0,(),( ntn RR −

(in this case …)

Page 19: Polymer Dynamics - Yale University

Summary of Probes of Polymer Dynamics

Page 20: Polymer Dynamics - Yale University

The Rouse Model

n

R(n,t)

n=0

n=N

R(n,t+∆t) ( )

( )

( ) ( ) tRR

RtnD

DtR

eff

≈∆∆⇒

∆≈≈

≈∆

22

2

2

1)(

1

( ) 4/1tR ≈∆⇒

Page 21: Polymer Dynamics - Yale University

Diffusion in the Rouse Model

kTbN

NkT

NbDR

cmR

22

0

22

≅≅

ζ

τRouse Time

Page 22: Polymer Dynamics - Yale University

Stress Relaxation in the Rouse Model

21

)()(

tkTc

tnNkTctG

RN

N

τ

Page 23: Polymer Dynamics - Yale University

Polymer solutions and Hydrodynamics: The Zimm Chain

•Polymers in solution: scaling, correlations •Dynamics: Zimm model, dilute and semi-dilute regimes

M Rubinstein and R Colby, Polymer Physics (2003)

R Larson, The Structure and Rheology of Complex Fluids

References:

Page 24: Polymer Dynamics - Yale University

Polymers in Solution: excluded volume

• Real polymer chains: excluded volume parameter

Flory: balance contact energy with chain entropy ) Swollen chains

• Phantom coil: Melt, near Θ-point

Page 25: Polymer Dynamics - Yale University

Semi-dilute regime

• Onset of multi-chain behaviour, interactions, enhanced viscoelasticity.

e.g. Raise T ) swell ) induce overlap increase viscosity!

Page 26: Polymer Dynamics - Yale University

Chain correlations • Sections of chain only see themselves at short distances:

monomers in a “blob”

blobs fill space

Flory/single chain scaling inside blob

Correlation length (e.g. light scattering)

Page 27: Polymer Dynamics - Yale University

Small distances: excluded volume negligible

Large distances: Random walk of blobs

1/2

0.588

1/2

Crossover to melt when: (Edwards screening)

Page 28: Polymer Dynamics - Yale University

Semi-dilute solutions: osmotic pressure

Slope = 1.32

Nocho et al., Macromolecules 1981

Page 29: Polymer Dynamics - Yale University

Diffusion: Zimm model • Local drag coefficient in Rouse model:

• In solution, include long range hydrodynamic drag:

(Stokes)

• Einstein Relation:

Page 30: Polymer Dynamics - Yale University

Zimm or Rouse……who cares?!

• Relax by Zimm modes (faster)

• Monomer diffusion up to a Zimm time : Zimm regime

ln(t)

ln<r2>

2/3

1 sub-Fickian diffusion

Fickian diffusion

( )ln Zτ

( )2ln Nb

( )2ln b

( )0ln τMolecular diffusion diffusion

(recall Rouse sub-Fickian t1/4)

Page 31: Polymer Dynamics - Yale University

Stress relaxation G(t) Count number of unrelaxed chain segments N/n(t)

2/3

[Decalin in Θ-solvent, Hair & Amis, 1989]

Page 32: Polymer Dynamics - Yale University

After Zimm time…..not much stress left!

Stress relaxation at later times…..

ln(t)

ln(G(t))

-2/3

( )ln Zτ

Page 33: Polymer Dynamics - Yale University

Intrinsic viscosity (dilute solution)

• Einstein calculation for colloids (spheres),

only due to surrounding hydrodynamics:

• Polymeric contribution in dilute solution:

Page 34: Polymer Dynamics - Yale University

Dilute solution ) Melt in Good Solvent?

dilute semi-dilute melt

Zimm Rouse

Page 35: Polymer Dynamics - Yale University

Rouse/Zimm together

ln(t)

ln(G(t)) -2/3

-1/2

Zimm relaxation up to screening length ξ

Rouse relaxation of blobs

Page 36: Polymer Dynamics - Yale University

Entangled Dynamics

The Problem

The “Solution”

Page 37: Polymer Dynamics - Yale University

Chain motions

• Linear polymers: reptation

• Branched polymers: arm retraction

Page 38: Polymer Dynamics - Yale University

lnφ(t)

1/2

1/4

1/4

1

τe τR τd

a2aRg

R2g

Diffusion in the reptation Model

1/2

Page 39: Polymer Dynamics - Yale University

log t

log G(t)

τmax

G0

N

N

Stress Relaxation in the reptation Model

Page 40: Polymer Dynamics - Yale University

End-retraction is an “activated process” over a thermal barrier ~M

( )Mντ exp~∴M

Star Polymers

Page 41: Polymer Dynamics - Yale University

The Star-arm fluctuation potential

Page 42: Polymer Dynamics - Yale University

1E3

1E4

1E5

1E6

1E7

1.0E-4 1.0E-3 1.0E-2 1.0E-1 1.0E0 1.0E1 1.0E2 1.0E3 1.0E4 1.0E5 1.0E6 1.0E7

Frequency /rad/s

G/Pa

G' linearG'' linear

'G’ starG'' star

Page 43: Polymer Dynamics - Yale University

Further Topics

• Non-linear Rheology • Quantitative Linear Entangled Dynamics • Rheology, Topology and the Pom-Pom

model • Workshop problems….

Page 44: Polymer Dynamics - Yale University

A non-linear view of entanglement:

• Bifurcation of Stretch and Orientation relaxation times

lnM

lnτ

lnMe

τstretch

τorient

Page 45: Polymer Dynamics - Yale University

Startup of extensional flow shows two nonlinearities in rate:

Page 46: Polymer Dynamics - Yale University

Quantative Theory: New Physical Processes

• Contour length fluctuation • Constraint Release

R(n,t)

Page 47: Polymer Dynamics - Yale University

•Linear regime - (Likhtman and McLeish, Macromolecules 2002, 35, 6332-6343)

• numerical solution of CLF • CR: Rubinstein and Colby (1988) • longitudinal stress relaxation

++= ∑∑

=

−−

=

− N

Zp

tpZ

p

tp

e

RR epZ

epZ

ctRtMRTctG ττ

νν µρ22 2

2

1

12

11151),()(

54),(

??? µ(t)=L(t)/L(0) - fraction of tube segments survived after time t

Linear Rheology ( ) ( )n

tnRn

tnR∂

∂∂

∂ ,,

Page 48: Polymer Dynamics - Yale University

Polystyrene, Shausberger et al, 1985, Mw=290K, 750K and 2540K,

Me=13K

1E-5 1E-4 1E-3 0.01 0.1 1 10 100 1000 10000100

1000

10000

100000

1000000

G',

G'' (

Pa)

ω (s-1)

Page 49: Polymer Dynamics - Yale University

10-2 10-1 100 101 102 103 104 105 106 107103

104

105

106

G',

G'' (

Pa)

ω (s-1)

Polybutadiene, Baumgaertel et al, 1992, Mw=20.7K, 44.1K, 97K and 201K

Page 50: Polymer Dynamics - Yale University

Rheology and Topology

-3 -2 -1 0 1 2 3 4Logw

4

4.25

4.5

4.75

5

5.25

5.5

5.75

Log

G'

Log

G''

ç

ç

çç

ç ççççççç ç ç ççç çç ççç çççççççç

ç ç çççç

ç çç çç ç

ç çç çç çç ç çç ç

ç

ó

óó

óó

óóó

óóóóóóóóóó

óóóóóóóó

óóóóóóóóóóóóó

óóóóóóóóóóóóóóóóóóóóóóóóó

óóóóóóóóóóóóóó

óóóóóó óó

óó óó óó

óó óó óó óó ó ó ó ó ó ó

-3 -2 -1 0 1 2 3 4Logw

4

4.25

4.5

4.75

5

5.25

5.5

5.75

Log

G'

Log

G''

ç

ç

çç

ç ççççççç ç ç ççç çç ççç çççççççç

ç ç çççç

ç çç çç ç

ç çç çç çç ç çç ç

ç

ó

óó

óó

óóó

óóóóóóóóóó

óóóóóóóó

óóóóóóóóóóóóó

óóóóóóóóóóóóóóóóóóóóóóóóó

óóóóóóóóóóóóóó

óóóóóó óó

óó óó óó

óó óó óó óó ó ó ó ó ó ó

(a)

-4 -2 0 2 4Logw

3.5

4

4.5

5

5.5

Log

G'

Log

G''

çç

çç ç ç ç ç

çççç

ç ç ç ç çççç ççç ç

çç ç ç ç ç ç ç ç ç

ó

ó

ó

óóóóóó ó ó ó óóó

óóóóóóó

óóóóóóóóó

óóóóóóóóóóóóóóó

óóóóóóóóóóóóóóó

óóóóóóóóóóóóó

óóóóóóóóó

óó óó óó óó óó óó ó ó ó ó ó

(b)Figure 8 Experimental and theoretical complex moduli for the twoH-polymers of the table. Fitting parameters of G0 and τe wereconsistent with literature values, the number of entanglementsalong arm and crossbar, sa and sb together with theirpolydispersities εa and εb determined by GPC and SALS.Theoretical curves accounting for polydispersity are dashed; thosewithout are solid.

Page 51: Polymer Dynamics - Yale University

LCB Polymers in non-linear flow

Pom-pom constitutive equation

• highly entangled branch points

• long flexible backbone sections

• dangling ends

Page 52: Polymer Dynamics - Yale University

Stretch

Orientation

Stress

Page 53: Polymer Dynamics - Yale University

Represent a polydisperse (branched) polymer as a spectrum of pom-poms

Linear relaxation spectrum => τbi, gi

‘decorate’ these modes using nonlinear extensional data => qi, τsi

Page 54: Polymer Dynamics - Yale University

Multi-mode pompom - an example Steady State Viscosity

10-3 10-2 10-1 100 101 102 Strain Rate /s-1

103

104

105

106

107

Vis

cosi

ty /P

a·s

Extension

Shear

Transient Viscosity 0.001 s-1 0.003 s-1 0.010 s-1 0.030 s-1 0.100 s-1 0.300 s-1 1.000 s-1 3.000 s-1 10.000 s-1 30.000 s-1

Rates

10-1 100 101 102 103 104 Time /s 103

104

105

106

107

Vis

cosi

ty /P

a·s

Extension

Shear

First Normal Stress Difference in Shear

10-1 100 101 102 103 Time /s

0.0

0.5

1.0

1.5

2.0

2.5

Stre

ss /1

05 Pa 10 s-1

5 s-1 2 s-1 1 s-1

Rates

Data from Meissner (1972, 1975) and Münstedt and Laun (1979).

Page 55: Polymer Dynamics - Yale University

100

102

104

106

0.0001 0.01 1 1001

10

100

X riX qiX giA riA qiA gi

τb

g i

r i, qi

IUPAC A and shifted IUPAC X pom-pom parameters

LDPE

Comb 9

Metallocene

Classes of LCB and q-Spectra