56
Ring polymer molecular dynamics David Manolopoulos CECAM Summer School, Toulouse, 2012

Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Ring polymer molecular dynamics

David ManolopoulosCECAM Summer School, Toulouse, 2012

Page 2: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Outline

1. Quantum mechanical correlation functions

2. Ring polymer molecular dynamics

3. Ring polymer reaction rate theory

4. Some tricks of the trade

5. Example applications

6. Limitations

7. References

Page 3: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Quantum mechanical correlation functions

Many dynamical observables can be related to real-timecorrelation functions of the form

cAB(t) =1

Ztr�e−βHA(0)B(t)

�,

whereZ = tr

�e−βH

�,

andB(t) = e+iHt/�Be−iHt/�.

Page 4: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

For example, diffusion coefficients are given by

D(T ) =1

3

� ∞

0cv·v(t) dt,

chemical reaction rate coefficients by

k(T ) =1

Qr(T )

� ∞

0cff (t) dt,

and dipole absorption spectra by

n(ω)α(ω) =πω

3�cV �0(1− e−β�ω)Cµ·µ(ω),

where

Cµ·µ(ω) =1

� ∞

−∞e−iωtcµ·µ(t) dt.

Page 5: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

The standard real-time correlation function is

cAB(t) =1

Ztr�e−βHA(0)B(t)

�,

whereas the Kubo-transformed correlation function is

cAB(t) =1

�β

0tr�e−(β−λ)HA(0)e−λHB(t)

�dλ.

There are several reasons why cAB(t) is the more classical of thetwo objects – and it is cAB(t) that is approximated in RPMD.

Page 6: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

If

CAB(ω) =1

� ∞

−∞e−iωtcAB(t) dt,

and

CAB(ω) =1

� ∞

−∞e−iωtcAB(t) dt,

then it is straightforward to show by working in the basis of energyeigenstates that

CAB(ω) = D(ω)CAB(ω),

where

D(ω) =β�ω

1− e−β�ω .

Page 7: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

cAB(t) =1

�β

0dλ tr

�e−(β−λ)HAe−λHe+iHt/�Be−iHt/�

=1

� β

0dλ

kl

e−(β−λ)EkAkle−λEle+iElt/�Blke

−iEkt/�

=1

� β

0dλ

kl

AklBlke−βEke−λ(El−Ek)e+i(El−Ek)t/�

∴ CAB(ω) =1

� ∞

−∞e−iωtcAB(t) dt

=1

� β

0dλ

kl

AklBlke−βEke−λ(El−Ek)δ(ω − [El − Ek]/�)

=1

β

� β

0e−λ�ω dλ× 1

Z

kl

AklBlke−βEkδ(ω − [El − Ek]/�)

=(1− e−β�ω)

β�ω × CAB(ω).

Proof:

Page 8: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

It follows from this that dynamical observables can bewritten equally well in terms of cAB(t).

For example:

D(T ) =1

3

� ∞

0cv·v(t) dt,

k(T ) =1

Qr(T )

� ∞

0cff (t) dt,

and

n(ω)α(ω) =πβω2

3cV �0Cµ·µ(ω),

where

Cµ·µ(ω) =1

� ∞

−∞e−iωtcµ·µ(t) dt.

Notice that none of these equations involves �!

Page 9: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Ring polymer molecular dynamics

Z = tr[e−βH ]

Z =1

(2π�)n

�dp

�dq e−βnHn(p,q)

where

Based on the classical isomorphism:

Hn(p, q) =n�

j=1

�p2j

2m+

1

2mω2

n(qj − qj−1)2 + V (qj)

�; βn = β/n; ωn = 1/βn�.

Λ(T ) = h/√

2πmkT

�r2�1/2

= Λ(T )/√8π

Page 10: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Proof (as in earlier lectures):

Z = tr�e−βH

�= tr

��e−βnH

�n�where βn = β/n.

Z =

�dq1 . . .

�dqn �q1| e−βnH |q2� . . . �qn| e−βnH |q1� ,

So

=1

2π�

�2πm

βn

�1/2

e−βn[mω2n(q−q�)2+V (q)/2+V (q�)/2]

�q| e−βnH |q�� � �q| e−βnV/2e−βnT e−βnV/2 |q��

≡ 1

2π�

�dp e−βn[p2/2m+mω2

n(q−q�)2/2+V (q)/2+V (q�)/2],

=1

2π�

�dp e−βnp

2/2m+ip(q−q�)/�−βn[V (q)/2+V (q�)/2]

gives Z with an error of O(n−2).

with

Page 11: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

PIMD uses the ring polymer trajectories

q = +∂Hn(p, q)

∂pp = −∂Hn(p, q)

∂q

as a sampling tool to calculate the exact values of staticequilibrium properties such as

�A� = 1

Ztr�e−βH

A�.

Path integral molecular dynamics:

RPMD uses the same trajectories to calculate approximateKubo-transformed correlation functions of the form

cAB(t) =1

βZ

�β

0dλ tr

�e−(β−λ)HA(0)e−λHB(t)

�.

Ring polymer molecular dynamics:

Page 12: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Ring polymer molecular dynamics:

Classical molecular dynamics in an extended phase space!

The RPMD approximation to

cAB(t) =1

βZ

� β

0dλ tr

�e−(β−λ)HA(0)e−λHB(t)

is simply

cAB(t) �1

(2π�)nZ

�dp0

�dq0 e

−βnHn(p0,q0)An(q0)Bn(q t),

where

An(q) =1

n

n�

j=1

A(qj) and Bn(q) =1

n

n�

j=1

B(qj).

Page 13: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

In short, the RPMD approximation includes both:

But it neglects QM interference effects in the real-time dynamics.

tunneling and zero point energy

Page 14: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

One can show that RPMD is:

1. Exact in the high temperature limit

2. Exact in the short time limit

3. Exact in the harmonic limit (for linear A or B)

4. Exact for A = 1 (the unit operator)

5. Faithful to all QM symmetries

6. Consistent with the QM equilibrium distribution

Page 15: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Eg: when A = 1, we have

c1B(t) =1

βZ

�β

0dλ tr

�e−(β−λ)H1 e−λHB(t)

=1

βZ

�β

0dλ tr

�e−βHB(t)

=1

Ztr�e−βHB(t)

=1

Ztr�e−βHe+iHt/�Be−iHt/�

=1

Ztr�e−iHt/�e−βHe+iHt/�B

=1

Ztr�e−βHB

�≡ �B� ,

Page 16: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

And in RPMD,

c1B(t) =1

(2π�)nZ

�dp0

�dq0 e

−βnHn(p0,q0) Bn(qt)

=1

(2π�)nZ

�dpt

�dqt e

−βnHn(p0,q0) Bn(qt)

=1

(2π�)nZ

�dpt

�dqt e

−βnHn(pt,qt) Bn(qt)

=1

(2π�)nZ

�dp0

�dq0 e

−βnHn(p0,q0) Bn(q0)

≡ �B� ,

where we have used Liouville’s theorem and the conservation of Hn(pt, qt).

Page 17: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Non-local operators

d2

dt2tr�e−βH

q e+iHt/�

q e−iHt/�

�=

d

dttr

�e−βH

q e+iHt/� i

� [H, q] e−iHt/��

=d

dttr�e−βHq e+iHt/�v e−iHt/�

=d

dttr�e−βHe−iHt/�q e+iHt/�v

= −tr

�e−βH

e−iHt/� i

� [H, q] e+iHt/�v

= −tr�e−βHe−iHt/�v e+iHt/�v

= −tr�e−βHv e+iHt/�v e−iHt/�

�,

So far we have only considered local operators. But (e.g.),

∴ cvv(t) = − d2

dt2cqq(t) and (similarly) cvv(t) = − d2

dt2cqq(t).

Page 18: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

So in RPMD,

cvv(t) = − d2

dt2cqq(t) ∼ − d2

dt2

�dp0

�dq0 e

−βnHn(p0,q0) q0qt

∼�

dp0

�dq0 e

−βnHn(p0,q0) v−tv0

∼ − d

dt

�dp0

�dq0 e

−βnHn(p0,q0) q−tv0

∼ − d

dt

�dpt

�dqt e

−βnHn(pt,qt) q0vt

∼ − d

dt

�dp0

�dq0 e

−βnHn(p0,q0) q0vt

∼�

dpt

�dqt e

−βnHn(pt,qt) v0vt

∼�

dp0

�dq0 e

−βnHn(p0,q0) v0vt,

where q =1

n

n�

j=1

qj and v = q =1

n

n�

j=1

pjm

.

Page 19: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

The same argument applies to correlation functions involvingother non-local operators.

E.g., chemical reaction rate coefficients can be calculated from

Qr(T )k(T ) =

� ∞

0cff (t) dt = lim

t→∞cfs(t) = − lim

t→∞

d

dtcss(t),

where

cff (t) =d

dtcfs(t) = − d2

dt2css(t),

both in QM and in RPMD.

Which brings me on to...

Page 20: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Ring polymer reaction rate theory

qq‡

V (q)

(Side)(Flux)

The exact QM rate coefficient is

k(T ) =1

Qr(T )limt→∞

c f s(t)

where

c f s(t) =1β

Z β

0dλ tr

�e−(β−λ)H

F(0)e−λHh(t)

withF =

i

h[H,h] and h = h(q−q

‡).NB:1. k(T ) is independent of q‡.2. c f s(t → 0+)∼ at1/2 ∼ 0.

Consider a simple 1d barrier transmission problem:

Page 21: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

qq‡

V (q)

Flux (t = 0) Side (t > 0)

The classical limit rate coefficient is

kcl(T ) =

1Qr(T )

limt→∞

ccl

f s(t)

wherec

cl

f s(t) =

12πh

Zd p0

Zdq0 e

−βH(p0,q0)

×δ(q0−q‡)

p0

m� �� �×h(qt−q

‡)� �� � .

kcl,T ST(T ) = cclf s(t → 0+)/Qr(T ) =

12�|q|�cl e−βV (q‡).

NB:1. kcl(T ) is independent of q‡.2. As t → 0+, h(qt−q‡)→ h(p0), giving

The classical limit:

Page 22: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

c f s(t)/Qr(T )

t

No TST limit

Exactrate

cclf s(t)/Qr(T )

t

TST limit Classicalrate

Quantum Classical

kcl,TST (T ) =12

�|q|�cl e−βV (q‡)

Page 23: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

12�|q|�cl

qq‡

NB:

1. e−βV (q‡)→ Q(q‡)/Qr(T ) includes (some) QM tunneling

2. However, kQT ST(T ) is exponentially sensitive to q‡

(good).(bad).

The centroid density QTST rate is

kQTST(T ) =1

2�|q|�

clQ(q‡)/Qr(T )

where

Q(q‡) =1

(2π�)n

�dp

�dq e−βnHn(p,q)δ(q − q‡)

with

q =1

n

n�

j=1

qj .

“Quantum transition state theory”:

Page 24: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

q‡ q

t = 0

t > 0

p/m

h(qt−q‡) = 1

Side:

Flux:

0The RPMD rate coefficient is

kRPMD(T ) =1

Qr(T )limt→∞

cfs(t)

where

cfs(t) =1

(2π�)n

�dp0

�dq0 e−βnHn(p0,q0)

×δ(q0 − q‡)p0m

h(qt− q‡)

with

q =1

n

n�

j=1

qj , p =1

n

n�

j=1

pj .

Ring polymer reaction rate theory:

Page 25: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

1. Simple to compute

2. Exact in the high temperature limit

3. Exact for a parabolic barrier

4. Equal to kQTST(T ) in the limit as t → 0+

5. Bounded from above by kQTST(T )

6. Independent of q‡

kRPMD(T) is...

...so kRPMD(T) is to kQTST(T) what kcl(T) is to kcl,TST(T)!

Page 26: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Some tricks of the trade

exact evolution under V for time dt/2

exact evolution under H0 for time dt

exact evolution under V for time dt/2

p ← p− dt

2V �(q)

q ← q + dtp

m

p ← p− dt

2V �(q)

Integrating the RPMD equations of motion:

The standard (symplectic) velocity Verlet method for the Hamiltonian

H(p, q) =p2

2m+ V (q) = H0 + V

is

Page 27: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

We can do the same thing with the ring polymer Hamiltonian

H =

n�

j=1

�p2j

2m+

1

2mω

2n(qj − qj−1)

2

�+

n�

j=1

V (qj) = H0 + V.

Since H0 is harmonic, its evolution involves the normal modes

pk =

n�

j=1

pjCjk and qk =

n�

j=1

qjCjk,

where

Cjk =

�1/n, k = 0�2/n cos(2πjk/n), 0 < k < n/2�1/n(−1)

j, k = n/2�

2/n sin(2πjk/n), n/2 < k < n.

Page 28: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

In the normal mode representation, H0 becomes

H0 =n−1�

k=0

�p2k

2m+

1

2mω

2k q

2k

with ωk = 2ωn sin(kπ/n).

The time evolution through dt is therefore

�pk

qk

�←

�cosωkdt −mωk sinωkdt

(1/mωk) sinωkdt cosωkdt

��pk

qk

�,

followed by a transformation back to the bead representation

pj =n−1�

k=0

Cjkpk and qj =n−1�

k=0

Cjk qk.

Page 29: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Aside on centroid molecular dynamics:

The adiabatic implementation of CMD can be obtained simply bychanging H0 in the normal mode representation to

H0 =n−1�

k=0

�p2k

2mk+

1

2mω

2k q

2k

where m0 = m and mk>1 � m.

This adiabatically separates the internal modes of the ring polymerfrom the centroid mode. It is necessary to use a smaller time step dt

to correctly follow the motion of the internal modes and it is alsodesirable to attach these modes to a thermostat to ensure canonicalsampling.

The net result is classical molecular dynamics on a free energy surface:the centroid potential of mean force.

Page 30: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Ring polymer contraction:

The real bottleneck of the calculation is the evaluation of the

forces associated with the potential

Vn(q) =

n�

j=1

V (qj),

which seems to require n times the effort of classical MD.

However, most empirical potentials can be split into two parts,

V (q) = VS(q) + VL(q),

where VS(q) is short-range and rapidly-varying and VL(q) islong-range and slowly-varying.

Page 31: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

0 0.5 1 1.5 2rij / σ

0

1

2

3

4

5

V(r ij) /

V(σ

)

0.8 1 1.20

0.02

0.04

0.06

VS

VL

VS

E.g.: The Coulomb potential is often splitinto short- and long-range parts

V (r) = VS(r) + VL(r)

VS(r) = [1− f(r)]V (r)

VL(r) = f(r)V (r)

f(r) = erf(√πr/σ) (dashed)

f(r < σ) = 2(r/σ)− 2(r/σ)3 + (r/σ)4 (solid)

Page 32: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Now if VL(q) is sufficiently slowly varying over the length scale

of the ring polymer (�r2�1/2 � Λ(T )/

√8π), we can write

Vn(q) �n�

j=1

VS(qj) + nVL(q) where q =1

n

n�

j=1

qj .

Within this approximation, the forces are

−∂Vn(q)

∂qj= −dVS(qj)

dqj− n

dVL(q)

dq· ∂q

∂qj,

I.e.,

−∂Vn(q)

∂qj= −dVS(qj)

dqj− dVL(q)

dq.

Note that the RPMD equations of motion with these forces will

exactly conserve the RPMD Hamiltonian with the approximate

Vn(q).

Page 33: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Full potential on centroid(just one Ewald sum)

In practice, the contraction can be implemented as follows:

Vn(q) =n�

j=1

VS(qj) + nVL(q)

=n�

j=1

VS(qj) + n [V (q)− VS(q)]

= nV (q) +n�

j=1

[VS(qj)− VS(q)] .

Plus a short-range correctionon each bead (zero beyond σ)

Page 34: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

2 3 4 5 6 7 8 9r / Å

0

0.5

1

1.5

2

2.5

3

g OO(r)

σ ≥ 4 Åσ = 3 Å

3 3.5 4 4.5 5

0.9

1

1.1

σ (A) D (A2 ps−1)

3 0.402(3)

4 0.397(3)

5 0.399(3)

∞ 0.400(3)

This works extremely well. E.g.:

Page 35: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

And it gives a method with purely classical computational effort in the limit of infinite system size:

500 1000 1500 2000number of water molecules

1

2

3

4

5

6

rela

tive

cpu

time

σ = 5 Åσ = 4 Åσ = 3 Å

classical effort −→

Page 36: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Aside on PI+GLE and PIGLET:

1 2 4 8 16 32 64 128n.beads

5

10

15

c V�k B

15

20

25

30

35

�T��kJ�m

ol�

�40

�30

�20

�V��kJ�m

ol�

PIPI�GLE

QT

Here are the PI+GLE results for

liquid water that Joe Morrone

showed you on Tuesday evening:

Notice how the PI+GLE �V �converges more rapidly than�T �.

Page 37: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

We have recently fixed thisby designing a new PIGLETmethod that converges �T �just as rapidly as �V �:

2 3 4 6 8 12 16 32P

5

10

15

�T O�T cl��meV

�50

100

�T H�T cl��meV

� PIMDPI�GLEPIGLET100

200

�V�Vcl��meV

M. Ceriotti at el.submitted to PRL.

Page 38: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

And finally:

All of the equations in these notes have been given for a simple one-dimensional

model problem.

However the multidimensional generalisation is entirely straightforward when

identical particle exchange effects can be ignored.

E.g., For a system with N Cartesian degrees of freedom the partition function

becomes

Z =1

(2π�)Nn

�dNn

p

�dNn

q e−βnHn(p,q)

where

Hn(p, q) =

N�

i=1

n�

j=1

�p2i.j

2mi

+1

2miω

2n(qi,j − qi,j−1)

2

�+

n�

j=1

V (q1,j , . . . , qN,j).

Page 39: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Example applications

Quantum diffusion in liquid para-hydrogen (2005)

Quantum diffusion in liquid water (2005)

Neutron scattering from liquid para-hydrogen (2006)

Proton transfer in a polar solvent (2008)

Diffusion of H and Mu in water and ice (2008)

The IR spectrum of liquid water (2008)

Gas phase chemical reaction rates (2009)

Competing quantum effects in liquid water (2009)

The dynamics of the solvated electron (2010)

A re-entrant quantum glass transition (2011)

Enzyme-catalysed hydride transfer (2011)

Aqueous electron transfer (2011)

Page 40: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.00 0.05 0.10 0.15 0.20 0.25

D (A

/ps)

N-1/3

2o

25KRPMD

Classical

G L S

FT

.

D =13

� ∞

0cv·v(t) dt

D(L) = D(∞)− ξkBT

6πηL

Quantum diffusion in liquid para-hydrogen

Page 41: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Sinc(κ, ω) =12π

� ∞

−∞e−iωtFs(κ, t) dt;

Fs(κ, t) � e−κ2γ(t); γ(t) = −i�t

2m+

13

� t

0(t− t�)cv·v(t�) dt�.

-5 0 5 10 15 20 25! [meV]

0.00

0.01

0.02

0.03

0.04

Sin

c("B(!

'),!

) [m

eV-1

]

"B(!') [Å-1

]3.55 4.34 4.99 5.55

"B(!) [Å-1

]

"B(!) [Å-1

]

-5 0 5 10 15 20 25! [meV]

0.00

0.05

0.10

0.15

0.20

Sin

c("F(!

'),!

) [m

eV-1

]

ExptRPMD-G

"B(!) [Å-1

]

1.78 2.54 3.17 3.71

"F(!') [Å-1

]

-5 0 5 10 15 20 25! [meV]

0.00

0.01

0.02

0.03

0.04

Sin

c("B(!

'),!

) [m

eV-1

]

"B(!') [Å-1

]3.55 4.34 4.99 5.55

"B(!) [Å-1

]

"B(!) [Å-1

]

-5 0 5 10 15 20 25! [meV]

0.00

0.05

0.10

0.15

0.20

Sin

c("F(!

'),!

) [m

eV-1

]

ExptRPMD-G

"B(!) [Å-1

]

1.78 2.54 3.17 3.71

"F(!') [Å-1

]

Sinc(κ, ω) � Dκ2/π

ω2 + (Dκ2)2−→ ←−

Inelastic neutron scattering from liquid para-hydrogen (at 14 K)

Page 42: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

0 0.5 1 1.5 2m / mH

0.8

1

1.2

1.4

1.6

D /

Å2 ps-1

ClassicalRPMD

MuH

D

Mu

H

D

Quantum diffusion of Mu, H, D in liquid water

The classical results satisfy

D(m) = (mH/m)1/2 Dhop+Dcav

Page 43: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

The net result is hardly anyisotope effect in the RPMDdiffusion coefficients of Mu,H and D - in good qualitative agreement with experiment.

0 0.5 1 1.5 2m / mH

0.8

1

1.2

1.4

1.6

D /

Å2 ps-1

ClassicalRPMD

MuH

D

Mu

H

D

But thermal QM “swelling”strongly inhibits the inter-cavity hopping of Mu:

�r2�1/2 ∼ Λ(T )/

√8π

Λ(T ) = h/√2πmkT

Quantum diffusion of Mu, H, D in liquid water

Page 44: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

“Quantum fluctuations can promote or inhibit glass formation”

T* = 0.7

T* = 2.0

T. E. Markland et al.Nature Physics 7, 99 (2011)

Page 45: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

δ+δ+ 2δ−

q-TIP4P/F

VOH(r) = quartic

200 250 300 350T / K

0.94

0.96

0.98

1

1.02

1.04

ρ / g

cm

-3

Experimentq-TIP4P/Fq-SPC/Fw

Competing quantum effects in liquid water

Page 46: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

δ+δ+ 2δ−

q-TIP4P/F

VOH(r) = quartic

Competing quantum effects in liquid water

0

5000

10000

15000

20000

0

5000

10000

15000n(ω

)α(ω

) / c

m-1

0 1000 2000 3000 4000ω / cm-1

0

5000

10000

15000

Experiment

q-TIP4P/F

q-SPC/Fw

Page 47: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Competing quantum effects in liquid water

q-TIP4P/F

DQM/Dcl = 1.1

Page 48: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

0 1 2 3 4 5 1000 K / T

-22

-20

-18

-16

-14

-12

-10

log 10

[k(T

) / c

m3 m

olec

ule-1

s-1] QM

RPMDClassical

k(T )Qr(T ) =� ∞

0cff (t) dt

H+H2

Symmetric barrier. Tc = 345 K.

RPMD is out by -29% at 200 K.

Gas phase chemical reaction rates

Page 49: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

0 1 2 3 4 5 1000 K / T

-24

-22

-20

-18

-16

-14

-12

log 10

[k(T

) / c

m3 m

olec

ule-1

s-1] QM

RPMDClassical

Asymmetric barrier. Tc = 296 K.

RPMD is out by +92% at 225 K.

H+CH4

Gas phase chemical reaction rates

k(T )Qr(T ) =� ∞

0cff (t) dt

Page 50: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

...

iωb

F.T.

ω0 = iωb

ω±1 =�

(2π/β�)2 − ω2b

ω±2 =�

(4π/β�)2 − ω2b

ω±3 =�

(6π/β�)2 − ω2b

(etc.)

The deep tunneling regime

Qualitative change in behaviour for

β > βc =2π

�ωb

T < Tc =�ωb

2πkB

Page 51: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some
Page 52: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

β/βc

koTSTRPMD(T ) =

1

α(T )kinst(T )

1.0 1.2 1.4 1.6 1.8 2.0

symm

asym

Page 53: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

“Dynamics and dissipation in enzyme catalysis”

N. Boekelheide et al.PNAS 108, 16159 (2011)

Page 54: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

Limitations

0 1000 2000 3000 4000ω / cm-1

0

5000

10000

15000

20000

25000

n(ω

)α(ω

) / c

m-1

RPMD (300 K)RPMD (350 K)

ω1 = 2π/β� = 1300 cm−1 at 300 K

Infrared spectroscopy ofliquid water

Page 55: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

!"!#!$!% 0&%&$&#&"

0 50 100 150

log(k E

T)

!!G0 / (kcal/mol)

I

II

IIIIV V VI

0

50

100

150

&%''

!% !( 0 1 &% 3

E / k

cal/m

ol

s / Å

IIIIII

IV

V

VI(b)

(a)

A. R. Menzeleev et al.JCP 135, 074106 (2011)

The Marcus inverted regime

Page 56: Ring polymer molecular dynamics - University of Oxfordmanolopoulos.chem.ox.ac.uk/downloads/CECAM12.pdf · Ring polymer molecular dynamics 3. Ring polymer reaction rate theory 4. Some

References

I have only included references in these slides to work done by other groups.

A complete list of our own publications on RPMD can be found at

http://physchem.ox.ac.uk/~mano/publications.html