40
Plant genomics and proteomics: applications and ii i C di opportunities in Canadian crops Faouzi Bekkaoui Faouzi Bekkaoui Rendez-Vous Protéomiqe 2008 M t l 10A il 2008 Montreal, 10 April 2008

Plant genomics and proteomics: applications and i i i C di

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Plant genomics and proteomics: applications and i i i C di

Plant genomics and proteomics: applications and i i i C diopportunities in Canadian crops

Faouzi BekkaouiFaouzi Bekkaoui

Rendez-Vous Protéomiqe 2008M t l 10 A il 2008Montreal, 10 April 2008

Page 2: Plant genomics and proteomics: applications and i i i C di

Outline

• Overview of crop genomics projects p g p j

Genome Canada projects

Federal Genomics Initiatives

• Examples of proteomic applications 

Brassica napus (canola)Brassica napus (canola)

• Research opportunities for future projects 

Position paper and potential papersPosition paper and potential  papers

Page 3: Plant genomics and proteomics: applications and i i i C di

Value of Canadian crops

• Agriculture and food is the fourth largest industry in Canada

• Canadian agriculture will export 28.8 million tonnes of i d il d i 200 h $13 8 billigrains and oilseeds in 2007, worth $13.8 billion.  

Canada is one of the world’s largest exporters of agricultural products including flax, canola, lentils andagricultural products including  flax, canola, lentils and durum wheat. 

• Wheat crops form a $5 billion portion of agricultural production in Canada.

Page 4: Plant genomics and proteomics: applications and i i i C di

Importance of Canola

C l t ib t $11 billi t th• Canola contributes over $11 billion to the Canadian economic activity 

• More than 52 000 Canadian farmers grow canola• More than 52,000 Canadian farmers grow canola• Canola exports represent 75% of our annual 

production and bring over $2 billion back to our p gCanadian economy

4

Page 5: Plant genomics and proteomics: applications and i i i C di

Genome Canada Projects

• I. Functional Genomics of Abiotic Stress, Bill Crosby, U of Windsor, Genome Prairieof Windsor, Genome Prairie

• II. Enhancing Canola Through Genomics, Wilf Keller, g g , ,NRC‐PBI, Genome Prairie

• II. Functional Genomics of Arabidopsis, John Coleman, University of Toronto, Ontario Genomics Institute

• II. The Canadian Potato Genome Project, Barry Flinn, U i it f N B i k & Sh RUniversity of New Brunswick & Sharon Regan, University of Carleton, Genome Atlantic

Page 6: Plant genomics and proteomics: applications and i i i C di

Genome Canada Projects

• III. Designing Oilseeds for Tomorrow’s Markets, Randall Weselake ,U of Alberta and GopalanRandall Weselake ,U of Alberta and Gopalan Selvaraj, NRC‐PBI, Genome Alberta

• III. Use of Genomic Tools for Crop Improvements in Temperate Climates, D. Brian Fowler, University of Saskatchewan, Genome Prairie

• GrapeGen ‐ A Genomic Approach to the Identification of the Genetic and EnvironmentalIdentification of the Genetic and Environmental Components Underlying Berry Quality in Grapevine, Steven T. Lund, University of British Columbia

Page 7: Plant genomics and proteomics: applications and i i i C di

Federal Genomics Initiatives

NRC‐Genomics and Health Initiative

• focus on canola (Brassica napus)focus on canola (Brassica napus)

– Seed Development 

– Seed Metabolism

– Seed Quality

AAFC Crop genomics initiatives

• focus on canola, wheat, soybean and corn

– Disease and insect resistance

T l t t h ld d d ht– Tolerance to stresses such as cold and drought 

– Enhanced quality attributes

Development of genomics resourcesDevelopment of genomics resources

• ESTs, DNA arrays, BAC libraries, mutagenized populations etc.

Page 8: Plant genomics and proteomics: applications and i i i C di

Arabidopsis thaliana vs Brassica napus

Chromosomes n=5 n=19

Genome size 130 Mb 1200 MbGenome size 130 Mb 1200 Mb

Expressed genes 27,000 80,000-120,000

DNA Homology 85%

Page 9: Plant genomics and proteomics: applications and i i i C di

Brassica Seed

SEED COAT

O

SHOOT APEX

HYPOCOTYL

EMB

RYO

COTYLEDON

ENDOSPERM

RADICLE

C t % ENDOSPERMComponents %

Oils 45

Proteins 22

Carboh drates 20Carbohydrates 20Water 9

others 4

Page 10: Plant genomics and proteomics: applications and i i i C di

Brassica Seed

SEED COAT

EMB

RYO

SHOOT APEXHYPOCOTYL

COTYLEDON

ENDOSPERM

RADICLE

ENDOSPERM

Example of targets:p g• Enhanced oil content• Modified proteins• Modified oilsModified oils• Reduced anti-nutritional factors

Page 11: Plant genomics and proteomics: applications and i i i C di

Seed storage proteinsSeed sto age p ote s

Inhibition of Seed Storage ProteinsHegedus et al g

Gene expression and organisationSharpe et al

Agri-Food Canada Agroalimentaire CanadaAgriculture and Agriculture et

Page 12: Plant genomics and proteomics: applications and i i i C di

B napus seed storageB. napus seed storage proteins

Napin (2S albumin) and Cruciferin (12S globulin)p ( ) ( g )

Major types of seed storage proteins in B. napus

20% and 60% of total protein in mature seed

Page 13: Plant genomics and proteomics: applications and i i i C di

Protein Production in SeedsProtein Production in Seeds

Basic Requirements to Realize this Potential:Basic Requirements to Realize this Potential:

C i hi h d f• Create space within the seed for new proteins

• Accumulate protein in a location where: p– they are functional

– protected from degradation

13

protected from degradation

Page 14: Plant genomics and proteomics: applications and i i i C di

The “Empty” Seed ConceptThe  Empty  Seed Concept

NapinCruciferin

Reduceor80% Cruciferin

OleosinDehydrin

orEliminate Replace

New ProteinsWith

More Utility or Value

14

More Utility or Value

Page 15: Plant genomics and proteomics: applications and i i i C di

Creating Space for New ProteinsCreating Space for New Proteins 

15

Page 16: Plant genomics and proteomics: applications and i i i C di

No ill‐Effect of Storage Protein Depletion

16

Page 17: Plant genomics and proteomics: applications and i i i C di

Gene expression and

• 24 B napus napin genes 4 families

organization in B. napus• 24 B. napus napin genes - 4 families• 18 B. napus cruciferin genes - 4 families• 2 closely related cruciferin genes are most2 closely related cruciferin genes are most

highly expressed• 2 divergent napins are most highly expressed• B. napus cruciferins have similar physical

organisation to Arabidopsis orthologue• B. napus napins have different physical

organisation to Arabidopsis orthologues

Page 18: Plant genomics and proteomics: applications and i i i C di

Brassica Seed Developmentand Metabolismand Metabolism

Page 19: Plant genomics and proteomics: applications and i i i C di

Brassica Seed ESTs

~ 436,000 seed ESTs

– Various stages of embryo development ~145,000Early seed stages under stress conditions 34 300– Early seed stages under stress conditions ~34,300

– Microspore embryogenesis ~29,000– Germination ~48,900– Dormancy ~33,200– Seed Coat ~121,800– Endosperm ~23 500– Endosperm ~23,500

> All ESTs were deposited in GenBankTTeam: R. Datla, F Georges, J Krochko, A Cutler, E Tsang, G Selvaraj and J Zou

Page 20: Plant genomics and proteomics: applications and i i i C di

Proteomic analysis of endosperm with heart stage embryog y

Zou et al

Endosperm in ovules containing p gheart embryos exhibit all phases of endosperm development (Brown et al., 1999) 

Page 21: Plant genomics and proteomics: applications and i i i C di

P f h BProteome of the B. napusendosperm

• Total proteins identified:                                      809p

• Chloroplast gene products                                    17

• Mitochondrial gene products 11Mitochondrial gene products                                11

• Genes with no ESTs  (matching BNAEN3GH)      149

• Genes with 4 or more EST members 348Genes with 4 or more EST members                   348

Page 22: Plant genomics and proteomics: applications and i i i C di

Notable entries in the proteome (Endosperm)

Cell wall invertase• Cell wall invertase• Invertase/pectinase inhibitor• cytosolic beta-amylasey y• myo-inositol 1-phosphate synthase• Various components of Golgi vesicle-mediate

t ttransport• Heme transporter• Lipid metabolism enzymes: fatty acyl desaturase; p d e abo s e y es a y acy desa u ase;

acyltransferase• 13 entries correspond to embryo defective genes

Page 23: Plant genomics and proteomics: applications and i i i C di

B. napus Seed Coat structure and development

Selvaraj et al

Page 24: Plant genomics and proteomics: applications and i i i C di

Proteomic Analysis of Black and Y ll B S d CYellow B. napus Seed Coat

Questions to be addressed:Questions to be addressed:

• What proteins constitute the total proteomes of black and yellow B napus seed coats?of black and yellow B. napus seed coats?

• Is there a discernable difference between the d f bl k (N89 53) dseed coat proteomes of black (N89.53) and 

yellow (YN01.429) B. napus seeds?– Do these identifiable differences contribute to the phenotypic differences?

Confidential

Page 25: Plant genomics and proteomics: applications and i i i C di

Proteomic Analysis of B. napus Seed Coat Protein ExtractsBlack Seed Coat Yellow Seed Coat

Acidic Basic Acidic Basic

Confidential

Protein identification Protein identification

Protein Comparison

Page 26: Plant genomics and proteomics: applications and i i i C di

Brassica embryo/seedBrassica embryo/seed development

Datla et al 

Page 27: Plant genomics and proteomics: applications and i i i C di

B. napus Embryo Proteins

Globular Heart Torpedo Bent Mature StageskD

250150100

kD

1007550

37

2520

15

10

700 600 40 8 2 #Embryos

Page 28: Plant genomics and proteomics: applications and i i i C di

Protein Profiles of Key E b St i B

2000

Embryo Stages in B. napus

1747

12001600

2000

ntifi

edat

ed)

992 1070

428800

1200

Prot

eins

Iden

(Non

-rei

tera

428

0

400

#P

Globular Heart Torpedo Bent Mature

Page 29: Plant genomics and proteomics: applications and i i i C di

Proteome of B. napus and Arabidopsis embryos ( l b l t t t )(globular to mature stages)

1032 9391364

60% overlap between identified Arabidopsis and Brassica embryo proteins

Page 30: Plant genomics and proteomics: applications and i i i C di

Functional Classification of Embryo Expressed Proteins(Molecular Function)

Page 31: Plant genomics and proteomics: applications and i i i C di

Integrated Brassica napus and ArabidopsisEmbryo Metabolic Network

EMB2360

TWN2 EMB2728

EMB2024

EMB1144

PLE2 RML1

EMB1989 EMB2284

EMB2757

EMB1276

EMB1395

Common pathwayBrassicaArabidopsisEmbryo defective

Core reactionNon-core reaction

Page 32: Plant genomics and proteomics: applications and i i i C di

Brassica Seed Developmentd M t b liand Metabolism

Example of targets• Large seed size• Uniform seed germination

Red ced coat thickness• Reduced coat thickness

Page 33: Plant genomics and proteomics: applications and i i i C di

Crop Genomics for a Healthy Canada A i lt /Pl tAgriculture/Plants

Genome Canada Position paperKeller et al

Page 34: Plant genomics and proteomics: applications and i i i C di

Agriculture/Plants(Crop Genomics for a Healthy Canada)(Crop Genomics for a Healthy Canada)

Development of Position Paper:

Science Steering Committee: 

Faouzi Bekkaoui (NRC‐PBI), Bruce Coulman (University of Saskatchewan), Adrian Cutler (NRC‐PBI), Raju Datla (NRC‐PBI), Wilf Keller (NRC‐PBI), Isobel Parkin (AAFC‐S k ) J Si h (AA C O )Saskatoon), Jas Singh (AAFC‐Ottawa)

Writer: 

Michael Raine

Sponsoring Centre – Genome Prairie:

Jerome Konecsni (CEO), Reno Pontarollo (CSO), Faye Pagdonsolan (Admin Support)

Workshop:p

May 31, 2007, Chateau Laurier Hotel, Ottawa

Approximately 50 participants:  Academia, Government, Industry

Facilitator:Facilitator:

Pete Desai (Desai & Desai Inc.)

Page 35: Plant genomics and proteomics: applications and i i i C di

Position Paper: Crop GenomicsPosition Paper: Crop Genomicsfor a Healthy Canada

Scope:Scope:

National: cover major Canadian agricultural crops

Key Objectives:• Enhanced crop yield/productivity

• Enhanced health/nutritional value

• Enhanced tolerance to abiotic and biotic stress

• Environmentally friendly, sustainable production

• Di ersification s pport biof el bioprod ct de elopment• Diversification: support biofuel, bioproduct development

Page 36: Plant genomics and proteomics: applications and i i i C di

Potential Comp IV Projects – Based on SpeciesProjects  Based on Species

• Brassica oilseeds

• Flax

l l il hi k b )• Pulse crops  lentils, peas, chickpeas, beans)

• Wheat

• Barley

• OatsOats

• Corn

• Soybean

• Alfalfa (and other forages)

• Potatoes

• Prunus spp (cherries, etc.)

• Blueberries

N l tf d l t ( C li T iti l )• New platform development (e.g. Camelina, Triticale)

Questions:

Genomics resource status?

Overall value of crop?

Critical mass (expertise)?

Receptor capacity (i.e. breeding)? – Breeders must play essential role

Page 37: Plant genomics and proteomics: applications and i i i C di

Potential Comp IV Projects B d ThBased on Themes 

• Abiotic stress (e.g. heat/drought)

• Biotic stress (e.g. Fusarium)Biotic stress (e.g. Fusarium)

• Plant productivity/yield (e.g. architecture, heterosis)

• Bioproduct development (industrial oils)Bioproduct development (industrial oils)

• Health product development

• Sustainability (e g nutrient use efficiency)• Sustainability (e.g. nutrient use efficiency)

• Comparative genomics

Page 38: Plant genomics and proteomics: applications and i i i C di

Canola as an Example: Well Positioned for Genomics Research Projects

• $11B industry

• ~75 public sector scientists (~300 researchers)

• Active private sector (>10 companies)• Active private sector (>10 companies)

• History of genetic research in Canada

• >600,000 ESTs (made in Canada)>600,000 ESTs (made in Canada)

• Microarrys (3 made in Canada)

• TILLING populations (UBC, AAFC)

• International B. rapa Genome Sequencing Initiative

• Arabidopsis data is relevant

Page 39: Plant genomics and proteomics: applications and i i i C di

Acknowledgements

• Wilf Keller

For additional information www.brassicagenomics.ca

• Raju Datla, Daoquan Xiang,, Edwin Wang

• Jitao Zou

G l S l j P l A h J h K ll• Gopalan Selvaraj, Paula Ashe, John Kelly

• Andrew Sharpe, Dwayne Hegedus, Kevin Razwodowski, Derek Lydiate, Isobel Parkin

• DOTM and ECTG projects teams

Agri-Food Canada Agroalimentaire CanadaAgriculture and Agriculture et

Page 40: Plant genomics and proteomics: applications and i i i C di