PIC Part-A Student Version

  • Upload
    sourav

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

  • 8/3/2019 PIC Part-A Student Version

    1/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    1

    PROCESS INSTRUMENTATIONAND CONTROL

    PreparedandCompiledby

    Prof.T.K.Ghoshal &Prof.Smita Sadhu

    Taughtby

    Prof.Smita Sadhu (SS)Deptt.ofElectricalEngg.JadavpurUniversity

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    2

    SyllabusPartI ConceptsofModulatingandSequentialControl.StructureofModulatingControlloops.ProcessControlterminology.ProcessInstrumentationdiagrams.

    ControllerImplementation:Electronicanalog,Digital,Pneumatic Controllers.Self-tuningandMultifunctionControllers,ControlValves.ProcessActuators:Electrical,Pneumatic,Hydraulic,Valvepositioners.IndustrialInstrumentationSystems:Components,structure,specification.SelftuningandAdaptivecontrollers.

    Supervisorycontrol:ObjectivesandImplementation.

    PartII

    ConceptofProcessesandUnits:Processstatics,massandenthalpybalance. Modellingofprocessdynamics,ModellingofChemicalprocesses. Singleloopcontrolofstandardfirstorderprocessplants. P-I-Dcontrol,Controllertuning,Ziegler-Nichlol's method,Frequencydomaindesign. Feed-forwardcontrol,Multi-loopandCascadecontrol,Interactionanddecoupling. Non-lineareffectsinplantsandcontrollers. Simulationofprocesscontrolsystems.* BoilerDrumLevelControl.* DiscreteControllers:Selectionofsamplingintervals,stability analysis.*

    Books: 1.PrinciplesandPracticeofAutomaticProcessControl- SmithandCorripio 2.PrinciplesofProcessControl- Patranabis 3.AutomaticProcessControl- Eckmann 4.ProcessControlSystems- Shinskey 5.ProcessSystemsAnalysisandControl- Coughanowr &Koppel 6.ChemicalProcessControl- Stephanopoulos 7.Processcontrol- Pollard

  • 8/3/2019 PIC Part-A Student Version

    2/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    3

    PROCESS in Process Control

    DomainofInterest Chemical,thermalandbiotechnical

    processes

    FormalDefinition: Aphysico-chemicalprocess involves

    physicalorchemicalchangeofmatter,orconversionofenergy

    Importance: Abovetypesofprocessesproduce

    productslikefuels,plastics,cement,metals,adhesives,yarnsforcloth,

    foods,beverages,medicines,

    Allareimportantinourdailylife.

    AChemicalPlant

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    4

    CONTROL

    in Process Control Theregulation,manipulation(or modulation)of

    variablesinfluencingaprocessinsuchawayastoobtainthedesiredqualityandquantityofproductinasafeandefficientmanner.

    Hencemodulatingcontrol

    Manualmodulationand

    controlAutomatic

    control

    Controllermodulatessteamflowthrough

    theactuator

    Operatorreadsthe

    temperature

  • 8/3/2019 PIC Part-A Student Version

    3/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    5

    About the Subject

    Caveat!! Nosinglebookmaybegoodenoughforthiscourse

    Solution:

    RefreshyourknowledgeinControlSystem

    Specially,timesresponse,BodePlot,Nyquist plot,stability

    margins

    Consultthereferencebooks

    Solvetheexercisesintheproblemsheet

    Readlecturenotesofcurrentandpreviousyears

    Applyyourmindandcommonsense

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    6

    About the Subject II Historyofintroducingthissubject

    Introducedinthelateseventies

    Digital(electronic)controlwasthenreplacingtraditionalpneumaticanalogcontrol

    Expansionofpetrochemicalindustries expandedjobmarket.

    ShrinkageintraditionalEEjobmarket.

    Consultingengineeringcompaniesrequired

    engineerswiththeseskillsets.

    Someoffactorshavechangedinthepastdecades,butthesubjectremainsexciting.

  • 8/3/2019 PIC Part-A Student Version

    4/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    7

    About the Subject III

    Natureofthesubject Concernscontrolofchemicaland bio-chemical

    processes Startedbychemicalengineers

    Theirownvocabulary.

    Obsessionwithfluids&valves.

    FormalizedlaterbyElectricalEngineers&Shinskey Intensiveuseofelementarycontrolengg.principles

    Requiresdeepappreciationoffreq.domainmethods.

    Mixtureoftheoryandpractice

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    8

    Nature of chemical processes Flowofliquidandslurries Chemicalandbiochemicalreaction Transferofmassandenthalpy MultiInput- multiOutput. Mathematicalmodelmaybeunavailable,unreliable,

    complex,non-linear,etc. Typifiedbyunitoperations(connectedthroughanetwork

    ofpipesandvalves). Filtration

    Distillation(phasechange)

    Fermentation Heatexchangers Boilers

    Chemicalreactors

    AheatExchanger

  • 8/3/2019 PIC Part-A Student Version

    5/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    9

    Nature of chemical processes-II

    ADistillationColumn AFractionating(Distillation)

    ColumnforPetroleum

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    10

    Nature of chemical processes-III

    (a)

    (b)

    Acontinuousstirredtankreactor(CSTR)

    (a)Schematicwithtemperaturecontrolloop

    (b)Photograph

    StirrerMotor

    Cooling

    Coils

  • 8/3/2019 PIC Part-A Student Version

    6/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    11

    Objectives of Process Control(and justification of investment)

    Ensureimprovedsafetyoftheplant bykeepingprocessvariableswithinsafe

    boundaries.

    Reducecapitalcost bykeepingprocessvariableswithinboundaries,

    requiringlesssafetymargins.

    Ensurequalityandconsistencyoftheproduct bykeepingprocessvariableswithinclosetolerance

    Ensureproductivity&economyoperation. Maintainingprocessvariablesatappropriatevalues

    forallthecomponentsoftheplant.

    Reduceabuseofenvironment. Bycontrollingandneutralizingpollutingeffluents

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    12

    Means of attaining Process control objectivesEnsuringpredictableplantperformance

    byfeedback

    Ensuringplantcontrollability Choosingfinalcontrolelements(valvesand

    actuators)

    Structureofcontrolloop.(feedback,feedforward,cascade)

    Goodpairingofinput-outputs.

    Ensuringappropriateoperatingconditions choiceofsetpoints.

    EnsuringCorrectsequenceofoperation SequentialControl(PLC)

  • 8/3/2019 PIC Part-A Student Version

    7/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    13

    Components of A PROCESS CONTROL LOOP

    Controller

    Transducer/

    Transmitter

    Process

    FeedforwardElement

    FCE/ValveActuator

    PVSPCO

    Load Disturbance

    Feedforward

    Feedbacksignal

    FCE:FinalControlElementCO:ControllerOutputPV:ProcessVariableSP:Setpoint

    A physical quantity orproperty that can bemeasured and controlled

    An elementwhich receives

    signals in one form andconverts it to anotherform

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    14

    Process Variable and SET POINTMostfeedbackcontrolloopsattempttomaintain

    aprocessvariable(e.g.,temperature,pressure,pH,etc.)atadesiredvalue.

    AninputvariablethatsetsthedesiredvalueofcontrolledvariableiscalledtheSetPoint

    AControlloopisdesignedsuchthattheprocessvariable isnearlyequaltothesetpoint.

    Thesetpointmaybeassigned manuallythroughlocaloperation

    Manuallybutfromadistance(remotecontrol) suppliedautomaticallybyanothercontroller(cascade

    control).

  • 8/3/2019 PIC Part-A Student Version

    8/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    15

    Actuator & FCE

    ProcessvariablesinChemicalprocessesaremostoftenmanipulatedandcontrolledbymodulatingsomeflow

    Theflowismodulatedbycontrolvalves

    ValvesarethereforecalledtheFinalControlElement(FCE) ApneumaticallyactuatedValve

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    16

    Valves

    Manually

    operated

    Butterfly

    Valve

    AplugorGlobe

    Valve

    Diaphragmvalve

  • 8/3/2019 PIC Part-A Student Version

    9/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    17

    Actuator & FCE-II

    Inorderthatvalvesmaybemanipulatedbyacontroller,valveactuatorsorvalvemotorsarerequired.

    Valvemotorscanbe pneumaticor Electric

    Valvepositionersarespecialactuatingsystemswithfeedbackofvalveposition

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    18

    Loads and DisturbancesAprocessoraplantisdesignedtosupplyor

    sustainload Ageneratorshould supplyadequatecurrent Aboilershould supplyadequateflowofsteam (loadispartofduty,notdisturbance)

    ADisturbanceisexternalinfluencebutnot aload,thatsomehowinfluencethevariabletobecontrolled Oftenthedisturbanceschangewithtime.

    Speedchangeintheprimemoverisadisturbancetoadcgenerator

    Pressurefluctuationofinletsteamisadisturbancetoaturbine

  • 8/3/2019 PIC Part-A Student Version

    10/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    19

    Loads and disturbances in simple processes

    Process Schematicdiagram PV Load Disturbance1. Flow

    throughpipe

    Flowrate

    Downstreampressure

    Upstreampressure/fouling

    2. Heatexchanger

    Processfluido/ptemp

    Processfluidflow

    Steamtemp/steamflow

    3. Levelcontrol

    Level Outletflowrate

    Inletflowpressure

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    20

    Transmitter AControlLooprequiresthat

    ProcessVariableandsomeloads,bemeasuredandthevaluestransmittedtothecontrollerforappropriateaction.

    ATransmitter Measuresthevariablewitha

    sensor, Convertsthesensorsignaltoa

    standardlevelwhichmaybeused(remotely)byanindicatinginstrument,acontrollerorarecorder.

    Thesensingelement,mayormaynotbephysicallyinsidethetransmitter.

    Atemperaturetransmitterwithoutthe

    temperaturesensor

  • 8/3/2019 PIC Part-A Student Version

    11/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    21

    Transmitter-II

    StandardoutputsignalofTransmitters DCCurrentLoop(most

    common) 4 20mA 0 20mA

    DCVoltage 0 10V 0 5V 15V

    Pneumatic(nearlyobsolete)

    0.21.0Atmosphericpressure

    TransmittersaregenerallyspecifiedwithFullScale(range)

    Transmitterreadingisusuallyexpressedaspercentageorperunitoffullscale.

    Example: Witharangeof1250C

    and40%reading, thecurrentoutputfora4-

    20mAtransmitterwouldbe4+0.4*16=10.4ma,

    correspondingto1250*0.4=500C

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    22

    Transmitter-IIIPreferredStandardtransmitteroutput:

    4-20mA(currentloop,suppressedzero)

    Advantagesofcurrentloopsignals

    Nodangerfromshortcircuit

    Novoltagedropconcerns,lowcablecost

    Advantageofsuppressedzero

    Detectionofcircuitbreak(openloop) Possibilityofsupplyingcurrenttothe

    transmitter(twowiretransmitter)

  • 8/3/2019 PIC Part-A Student Version

    12/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    23

    Transmitter-IV

    Transmitter

    Transducer

    DCPowerSource

    CurrentLoopSignal

    ToController

    AFourWireTransmitter

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    24

    Transmitter

    TransducerDCPowerSource

    Transmitter-V

    ATwoWireTransmitter

    CurrentLoopSignalToControllerTransmitter

    Transducer

    Transmitterdrawsa

    constant4macurrentforown

    powering

    Transmitter-V

  • 8/3/2019 PIC Part-A Student Version

    13/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    25

    Transmitter-VI

    ATwoWireTransmitterwithSensorandController

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    26

    Transmitter-VIIARosemount

    FlowTransmitterconnectedtoatubesection.

    Note:

    (i)Local Indicator

    (ii)pressuretappings

    (iii)connectingflanges

    FlowPipe

    Connecting

    Flanges

    Pressure

    Taps

    Pressure

    TapsPower

    In

    Signalout

    LocalIndicator

  • 8/3/2019 PIC Part-A Student Version

    14/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    27

    Process Instrumentation Diagram

    FT

    FC

    PV

    SP

    CO

    Flow

    Actuator

    Valve

    FT:FlowTransmitter

    FC:FlowController

    AlsocalledPipingandInstrumentationDiagram

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    28

    Example (PI Diagram) Identifytransmitters,controllersandFCEinthediagrambelow

    Whatisthis,

    BTW?

    FlowIndicatingController

  • 8/3/2019 PIC Part-A Student Version

    15/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    29

    Recap-Control Loop

    Wehavestudiedessentialaspectsofacontrolloop

    LoopStructure

    Setpoint,ProcessVariable

    Valve,Actuator,FinalControlElementandValvepositioners

    Transmitter

    ProcessInstrumentationdiagram

    Comingup:

    Controller,ControlLaw,FeedbackandFeedforward

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    30

    Controller Error=SP-PV

    Transmitteroutputshouldmatchthecontrollerinputsphysically Type(saycurrentloop)

    Range

    Controlleroutputandactuatorinputalsoshouldmatchphysically

    Signalisonesided,i.e.noreversalofsignals Biasisoftenusedtogenerate

    someCOwithnoerror

    MaximumCOvoltagecapabilitylimitstheelectricalload

    ControlLaw Thedefiningfunctionthat

    generatesCOfromallinputs

    Controller

    Bias FF

    SP

    PV

    CO

  • 8/3/2019 PIC Part-A Student Version

    16/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    31

    Industrial Controllers

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    32

    Control Laws: Feedback & feed forwardControllawdefineshowthecontroller

    output(CO)isgenerated.

    Infeedback,CO=f1 (PV,SP)

    Infeed-forward,CO=f2 (LOAD)

    Incombined,CO=f3(PV,SP,LOAD)

    ControllerPlant&Actuator

    PVSP

    CO

    Feedback

    FeedForward Load

  • 8/3/2019 PIC Part-A Student Version

    17/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    33

    Control Laws:-II

    Feedbackapproach: AdjustCOsuchthatPV SPnotwithstanding

    loadanddisturbance slowbutgoodadjustmentcapability

    Cantolerateinaccurateplantdescription(robustness)

    Feedforwardapproach: AdjustCOtonullifytheeffectofloadonPV

    fastbut

    notaccuratewhenplantdescriptionisapproximate Usedasanauxiliarytofeedback

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    34

    Controllability(in the sense of process control)

    Aprocesstobecontrolledmustbecontrollable

    Thetermcontrollability hasaspecialmeaninginprocesscontrolcontext.

    Thisissometimescalledinput-outputcontrollability

    InthesimplestSISOcasethereisonlyoneprocessvariableofinterest.

    Forprocesscontrollabilityinthesimplecase: Theremustexistaninputvariable(usuallyaflow),whichmay

    bemanipulatedindependently.

    Theprocessvariableshouldchangeinresponsetochangeintheinputvariable.

    Forastepchangeininput,theoutputshouldeithersettleataconstantvalueorkeeponincreasing(typeonehighertype)

    Donotconfuse

    withstatecontrollability

  • 8/3/2019 PIC Part-A Student Version

    18/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    35

    Fly-ball governor- The First Feedback Controller

    JamesWattsDrawing

    Principle

    Amoremodernversion(1930)

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    36

    Controllability-II(in the sense of process control)

    Formulti-outputsystems,therewouldbemorethanone(saymnumberof)processvariablesofinterest.

    Forinput-outputcontrollabilityofmulti-outputcase Theremustbeatleastmnumberofinputvariableswhichcan

    beindependentlymanipulated.

    Itwouldbepossibletoformmnumberofinput outputpairs,

    eachwithanuniqueinput(thatisinputvariablescannotberepeated)and

    eachofwhichiscontrollable.

    Notethat

    Theremaybemorethanoneschemeofpairing Somepairingschemecanbebetterthantheother.

    Responseofaprocessvariabletoitsinputpairshouldbemoresignificantthantheresponsetounpairedinput.

    Thisiscalleddiagonaldominance.

  • 8/3/2019 PIC Part-A Student Version

    19/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    37

    Modelling ElementaryProcesses

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    38

    Modelling of elementary processFlowthroughOrifice,Venturi andPipe

    FlowthroughControlValve

    Dyeinjection

    Heattransferinanoven

    LiquidlevelSystem

    Linearization

    LessonslearntfromModelling

  • 8/3/2019 PIC Part-A Student Version

    20/622

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    39

    Flow Through Orifice

    q=cd (/4)D22 [2(p1 - p2)/(1- d

    4)]1/2

    Whereq=volumetricflow,cd isaconstant

    D2

    =orifice,venturi ornozzleinsidediameter

    D1=upstreamanddownstreampipediameter

    d=D2 /D1 diameterratio,=densityp1 ,p2=upstreamanddownstreampressures

    q=cf(P)

    P=p1-p2p1 p2

    D1

    D2

    Usedforsmalltomediumflow

    measurement

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    40

    Venturi Tube

    Usedformeasurementofmedium(100litres/minute)tolargeflow

  • 8/3/2019 PIC Part-A Student Version

    21/622

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    41

    Common Flow equation

    Thiscommonflowequationmaybeusedfororifice,venturi andlongpipesections

    Theflowrateq isvolumetric

    Flowisassumedtobeturbulent

    Theflowcoefficientcf isstronglydependentondensityandgeometry

    andmildlyonReynoldsnumber(1%-2%)

    Theflowcoefficientcf isstronglydependentontheunitschosenfor

    flowandpressure

    Whenpressureisexpressedashead,densityeffectgetscancelled.

    Formassflowrate,q istobemultipliedbydensity

    q=cf(P)

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    42

    Common Flow equation-II

    Theflowequationisstronglynonlinear Forlinear,smallsignalapproximation,localslopemay

    beused.

    (2%changeinpressuredrop=>1%changeinflow)

    qP

    Pq

    PPPc

    PcPPcq

    PPPqqq

    Pcq

    f

    ff

    f

    ~~

    2

    1

    ~)1

    ~/1(

    ~~

    ~;~

    +=

    +=

    +=+=

    =

  • 8/3/2019 PIC Part-A Student Version

    22/622

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    43

    Control Valve Characteristics

    Flowthroughvalvealsoobeysthegeneralflowequation

    P indicatespressuredropacrossthevalveTheflowcoefficientcf() becomesafunctionof

    valveopening Letthevalveopeningbeexpressedbya

    variable ,where =1indicatesfullopening =0indicatesthatthevalveisfullyclosed Theflowequationisvalidwithintheinterval

    0.05

  • 8/3/2019 PIC Part-A Student Version

    23/622

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    45

    Control Valve Characteristics-III

    Smallsignallinearequationscanbederivedasabove

    Theoperatingpointshouldbeknown

    PPcP

    Pcq

    PcPPcqPcq

    PPPqqq

    Pcq

    ff

    fff

    f

    +

    =

    ++==

    +=+=+==

    })(){(})(){(

    ~)(

    ~)~(;

    ~)~(~

    ~;~

    ;~)(

    )~

    ,

    ~

    ,~( Pq

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    46

    Control Valve Characteristics-IVAcontrolvalveisusedinapipingcircuitwith

    differenttypesofload

    Theflowisdeterminedbythepumpcharacteristics,valveopeningandflowcharacteristicsofthepipingandtheload.

    Forefficientflowcontrolinapipingcircuit acontrolvalveisgenerallyconnectedinseries when

    aconstantpressure pumpisused

    acontrolvalveisgenerallyconnectedinparallelorshunt whenaconstantflow pumpisused

    Exercise:Drawdiagramsandwithanalogyfromelectriccircuits,explaintheabove

  • 8/3/2019 PIC Part-A Student Version

    24/622

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    47

    Control Valve Characteristics-V

    a=quickopeningb=linear

    c=squareroot

    d,e =equalpercentage

    f=hyperbolic

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0.0 0.2 0.4 0.6 0.8 1.0

    X/Xmax

    F/Fmax

    a b

    c d

    e f

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    48

    Dye injection

    v: Averagevelocityoffluid

    L:Lengthofpipesection

    Delay=L/v

    q1Colourless

    Fluidflowrate

    vq1+q2

    L

    Dyeq2

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

    0.2

    0.4

    0.6

    0.8

    1

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Input

    IdealresponseActualresponse

    T=L/v

    (Delay) Percentagecomposition

    =(q2/(q1+q2))*100 (q2/q1)*100=y (say)

    q2

    y

  • 8/3/2019 PIC Part-A Student Version

    25/622

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    49

    Dye injection-IIStep Response

    q2 Blue:input

    Red:idealresponseGreen:actualresponse

    Percentagecomposition

    =(q2/(q1+q2))*100

    (q2/q1)*100=y(say)

    y

    T=L/v

    (Delay)

    time

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

    0.2

    0.4

    0.6

    0.8

    1

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

    0.2

    0.4

    0.6

    0.8

    1

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    50

    Dye injection-IIIDyeinjectionisusedroutinelyforcolouring

    subsidizedkerosenetobesoldinFairPriceShops.

    Processessimilartodyeinjectionarefairlycommon

    Thedelayinresponseforthedyeinjectionandsimilarsystemsiscalledtransportdelay.

    Transportdelayisacommonphenomenoninchemicalprocesseswhichinvolvepipelinesand

    fluidtransportation.

  • 8/3/2019 PIC Part-A Student Version

    26/622

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    51

    Heat transfer in an oven

    H

    watts

    Insulation

    Charge

    m:heatedmass

    c:specificheatA:Externalsurfacearea

    hAdissipatedHeat

    ambienaboveeTemperatur:

    Insteadystate,Heatdissipated=Heatinput

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    52

    Heat transfer in an oven- Equations:

    Considerheatbalanceequations

    mc

    H

    mc

    hA

    dt

    dor

    differenceetemperaturinchangehAdtdcmHor

    gssurroundinand

    ovenbetweendifferenceetemperaturthAcmtH

    fisitactuallythough

    etemperaturtoalproportionbetoassumedistransferheatsimplicityFor

    CmwatttcoefficientransferHeathcmabsorptionHeat

    timetJthAPO

    JtHPI

    n

    =+

    =+=

    =+=

    ==

    ==

    =

    ,

    ..,

    ....

    )],([

    ,

    /..

    )(./

    )(./

    2 o

  • 8/3/2019 PIC Part-A Student Version

    27/622

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    53

    Heat transfer in an oven-Transfer function

    t

    H Hss

    t

    ss

    ( )( )

    sHsH

    sor

    hAHconsttimetheishA

    mcwhere

    hAHmc

    H

    mc

    hA

    dt

    d

    ss

    ss

    ssss

    +=

    ==

    =+=+

    1

    1

    /;

    /&

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    54

    Heat transfer in an oven-

    non-dominant poles Ifonecarriesoutanexperimentonarealoven,the

    responsecouldbeabitdifferent.

    Thisisbecausesomeeffectshavebeenneglectedinthesimplemodel.

    Forexample: Theovenitselfwouldhaveitsowntimeconstant,whichcanbe

    muchmorethanthetimeconstantofthecharge.

    Thetemperaturemeasuringdevicemayhaveitsowntimeconstant

    Whentheaboveeffectsaremodelled properly,onewouldgetahigherordertransferfunction.

    Sometimesonetimeconstantmaybesignificantlylargerthattheother.Thistimeconstantiscalleddominantandtheothersnon-dominant.

  • 8/3/2019 PIC Part-A Student Version

    28/622

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    55

    Heat transfer in an oven-non-dominant poles-II

    ( )( ) )1)(1)(1(

    1321

    sssHsH

    sss

    ss

    +++=

    t

    ss

    StepResponse

    Time(sec)

    Amplitude

    0 0.5 1 1.5 2 2.5 30

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Effectofnon-dominantpoles

    appearsasadelay

    1st orderresponse

    3rdorderresponse

    A3rd ordermodelwithtwonon-

    dominanttimeconstants

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    56

    Liquid Level Process-AA:Areaofcross-sectionofcontainer

    Q1:Inletflowrate

    Q2:Outletflowrate

    H:Heightoffluid

    CylindricalTank,LinearOutputFlowEquation

    Q2

    A

    Q1

    H

    Q2 dependsonthe

    pressureatthebottom-

    whichisproportionaltotheheightoftheliquid

    column

    Inthisspecialcase,outletflow

    IsassumedtobelinearwithH.(say); 22 HCQHQ f=

  • 8/3/2019 PIC Part-A Student Version

    29/622

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    57

    Liquid Level Process-A-II

    Insteadystate

    AQAHCdt

    dH

    QHCdt

    dHAQQ

    dt

    dHA

    HAtQtQ

    f

    f

    //)( 1

    112

    21

    =+

    =+=+

    +=

    )/~(~~~~

    ~;

    ~~

    121

    122

    ff CQHHCQQ

    HHQQQ

    ===

    ===

    DifferentialEquation

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    58

    Liquid Level Process-A-IIITransferFunction

    ( )( )

    sAs

    QH

    sC

    Q

    sQ

    sH

    QHACAwhere

    C

    QH

    dt

    dh

    C

    QH

    dt

    dhCA

    f

    f

    f

    f

    f

    +=

    +=

    +=

    ==

    =+

    =+

    1

    1.

    1

    )~/~(

    1

    1

    ]~

    /~

    /[

    )/(

    11

    1

    1

    1

    1

    Timeconstant=timerequiredto

    fillthetanktothesteadystate

    height!!

  • 8/3/2019 PIC Part-A Student Version

    30/623

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    59

    Liquid Level Process-B

    A:Areaofcross-sectionofcontainer

    Q1:Inletflowrate

    Q2:Outletflowrate

    H:Heightoffluid

    CylindricalTank,non- LinearOutputFlowEquation

    ThistimeoutletflowrateIsassumed

    tobeproportionaltosquarerootofHClosertoempiricalresult.

    Pressure squareofflowrate

    (say); 22 HCQHQ f=Q2

    A

    Q1

    H

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    60

    Liquid Level Process-B-II

    Insteadystate

    1

    12

    21

    QHCdt

    dHA

    QQdt

    dHA

    HAtQtQ

    f =+

    =+

    +=

    HQC

    CQHHCQQ

    HHQQQ

    f

    ff

    ~/

    ~

    )/~

    (~~~~

    ~;

    ~~

    1

    2

    121

    122

    =

    ===

    ===

  • 8/3/2019 PIC Part-A Student Version

    31/623

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    61

    Liquid Level Process-B-III

    Forsmallchangesaboutsteadystate

    dt

    dh

    dt

    dH

    hHH

    qQQ

    qQQ

    =

    +=

    +=

    +=

    ~

    ~

    ~

    222

    111

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    62

    Liquid Level Process-B-IV Hencetheprocessequationsare:

    1

    1

    1

    11

    11

    11

    11

    ~2

    ~

    ,

    ~2

    ,

    ~~

    2

    ~,

    ~~

    21

    ~,

    ~~1

    ~,

    ~)

    ~(,

    qhH

    Q

    dt

    dhAor

    qH

    ghC

    dt

    dhAor

    qQH

    ghCgHC

    dt

    dhAor

    qQH

    hgHC

    dt

    dhAor

    qQgH

    hHC

    dt

    dhAor

    qQghHCdt

    dHAor

    f

    ff

    f

    f

    f

    =+

    =+

    +=++

    +=

    ++

    +=

    ++

    +=++

  • 8/3/2019 PIC Part-A Student Version

    32/623

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    63

    Liquid Level Process-B-V

    ( )

    ( )

    sQ

    H

    sq

    shor

    QHAwhere

    Q

    qHh

    dt

    dhor

    Q

    qHh

    dt

    dhQHA

    A

    qh

    HA

    Q

    dt

    dh

    +

    =

    =

    =+

    =+=+

    1

    1.~

    ~2

    ,

    ]~

    /~

    2,[

    ~~

    2,

    ~~

    2)~

    /~

    2(~2

    ~

    11

    1

    1

    1

    1

    11

    11

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    64

    Liquid Level Process-C

    Q1A:Areaoffreeliquidsurface

    Q1:Inletflowrate

    Q2:Outletflowrate

    H:Heightoffluid

    R:RadiusCylinder

    HorizontalCylindricalTank,non- LinearOutputFlowEquation

    (say); 22 HCQHQ f=

    Q2

    L

    H

    R

    LHRHLHRRbLA222

    22)(22 ===

  • 8/3/2019 PIC Part-A Student Version

    33/623

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    65

    Liquid Level Process-C-II

    dt

    dh

    dt

    dH

    hHH

    qQQ

    qQQ

    =

    +=

    +=

    +=

    ~

    ~

    ~ changesmallgConsiderin

    222

    111

    2

    1

    2

    1

    21

    122

    ~~22

    ~

    ~/

    ~

    )/~

    (~

    ~~~

    ;~

    ;~~

    statesteadyIn

    HHRLAA

    HQC

    CQH

    HCQQ

    HHQQQ

    f

    f

    f

    ==

    =

    =

    ==

    ===

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    66

    Liquid Level Process-C-III

    DeriveTransferfunctionfromabove

    1

    11

    11

    111

    11

    112

    21

    ~

    ~~2where;~

    ~2

    ~2

    ~~~~

    /1(~~

    ~/1(

    ~~~~

    ~~

    ~

    QAHq

    QHh

    dtdh

    qhH

    Q

    dt

    dhAqQHhQ

    dt

    dhA

    QHhHCdt

    dhAQhHC

    dt

    dhA

    QHCdt

    dhAQQ

    dt

    dHA

    HAtQtQ

    ff

    f

    ==+

    =++=++

    =++=++

    =+=+

    +=

  • 8/3/2019 PIC Part-A Student Version

    34/623

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    67

    Liquid Level Process-D

    Q1:Inletflowrate

    Q2:Outletflowrate

    H:Heightoffluid A:Areaoffreeliquid

    surface=R2;R:Radius

    (D/B)=(2R/H)

    ConicalTank,non- LinearOutputFlow

    (say); 22 HCQHQ f=

    (say)

    })/)(4/{()2/(

    2

    2222

    H

    HBDBDHRA

    =

    ===

    Q1

    D

    H

    A

    B

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    68

    Liquid Level Process-D-II

    dt

    dh

    dt

    dH

    hHH

    qQQ

    qQQ

    =

    +=

    +=

    +=

    ~

    ~

    ~changesmallgConsiderin

    222

    111

    2

    1

    2

    1

    21

    122

    ~~

    ~/

    ~

    )/~

    (~

    ~~~

    ;~

    ;~~

    statesteadyIn

    HAA

    HQC

    CQH

    HCQQ

    HHQQQ

    f

    f

    f

    ==

    =

    =

    ==

    ===

    2

    1

    2

    1

    21

    122

    ~~

    ~/

    ~

    )/~

    (~

    ~~~

    ;~

    ;~~

    statesteadyIn

    HAA

    HQC

    CQH

    HCQQ

    HHQQQ

    f

    f

    f

    ==

    =

    =

    ==

    ===

    2

    1

    2

    1

    21

    122

    ~~

    ~/

    ~

    )/~

    (~

    ~~~

    ;~

    ;~~

    statesteadyIn

    HAA

    HQC

    CQH

    HCQQ

    HHQQQ

    f

    f

    f

    ==

    =

    =

    ==

    ===

  • 8/3/2019 PIC Part-A Student Version

    35/623

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    69

    Liquid Level Process-D-III

    DeriveTransferfunctionfromabove

    1

    3

    1

    11

    11

    111

    11

    112

    21

    ~)

    ~(2

    ~

    ~~2

    where;~

    ~2

    ~2

    ~~~~

    /1(~~

    ~/1(

    ~~~~

    ~~

    ~

    Q

    H

    Q

    AHq

    Q

    Hh

    dt

    dh

    qhH

    Q

    dt

    dhAqQHhQ

    dt

    dhA

    QHhHCdt

    dhAQhHC

    dt

    dhA

    QHCdt

    dhAQQ

    dt

    dHA

    HAtQtQ

    ff

    f

    ===+

    =++=++

    =++=++

    =+=+

    +=

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    70

    Linearization

    Nonlinearfirstorderdifferentialequationscanbelinearizedatequilibriumpoints(steadystatevalues)

    vV

    fy

    Y

    fVYf

    dt

    dy

    dt

    dYvVVyYY

    VYf

    VVYYdt

    dYVYf

    dt

    dY

    VVYYVVYY)|()|()

    ~,

    ~(

    ~;

    ~point,nominalabouttheonperturbatismallagConsiderin

    0)~,

    ~(

    ~;

    ~;0state,steadyin;),(

    ~;

    ~~;

    ~====

    +

    +==

    +=+=

    =

    ====

    0

    (Taylorseriesexpansion)

  • 8/3/2019 PIC Part-A Student Version

    36/623

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    71

    Linearization-II

    GeneralCase

    HQf

    f

    hAHCAQH

    qAQQdt

    dh

    AHCQAQQdt

    dH

    ~,

    ~111

    1

    121

    1

    |])}/)/(({)}/([{

    /)(/)(

    +

    =

    ==

    HQCCQH

    HCQQHHQQQ

    ff

    f

    ~/

    ~)/

    ~(

    ~

    ~~~;

    ~;

    ~~ statesteadyIn

    1

    2

    1

    21122

    ==

    =====

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    72

    Linearization-III

    Comparewithpreviousresult

    hHQ

    Hq

    hHHH

    QHQ

    H

    q

    hHH

    CHQH

    q

    hHHCHQHA

    q

    dt

    dh

    HQf

    HQf

    3

    1

    2

    1

    2

    13

    12

    1

    ~,

    ~2/33

    12

    1

    ~,

    ~22

    11

    ~2

    ~

    ~

    }~~2/3

    ~

    ~~~

    2{1

    ~

    |})(~~

    2{1

    ~

    |])}/()/(({~

    1

    1

    =

    =

    +=

    +=

    2~~:DProcessFor HA =

    1

    3

    ~)

    ~(2

    Q

    H =

  • 8/3/2019 PIC Part-A Student Version

    37/623

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    73

    Lessons learnt from Modelling

    Simplechemicalprocessesmaybemodelledwiththehelpofunderlyingphysics.

    Manychemicalprocessesaredescribedbynonlineardifferentialequations. Thenonlinearequationscanbelinearizedabout

    operatingpoints.

    Manychemicalprocessesmayexhibitdelayedresponse.

    Thedelayscouldbedueto

    Transportoffluidoverlongpipes Contributionofsmallernon-dominanttimeconstants(moreaboutitlater)

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    74

    Step Response of ProcessPlants

  • 8/3/2019 PIC Part-A Student Version

    38/623

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    75

    Step response of process plants

    SelfLimiting1st order

    SelfLimitinghigherorder

    0 0.5 1 1 .50

    0.5

    1

    S te p Re sp o n se

    Time(sec)

    Amplitude

    0 0.5 1 1 .50

    0.5

    1

    S te p Re sp o n se

    Time(sec)

    Amplitude

    0 0.5 1 1 .50

    0.5

    1

    S te p Re sp o n se

    Time(sec)

    Amplitude

    0 0.5 1 1 .50

    0.5

    1

    S te p Re sp o n se

    Time(sec)

    Amp

    litude

    AlsoknownasType0system

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    76

    Step response of process plants-II SelfLimitingOscillatory

    withovershoot

    SelfLimitingOscillatorywith

    overshootandUndershoot

    22

    2

    )(2

    )()(

    nn

    n

    sssG

    ++=

    22

    2

    )(2

    )(

    2/1

    2/1)(

    nn

    n

    ssTs

    TssG

    ++

    +

    =

    Non-minimum

    phasezerocauses

    undershoot

  • 8/3/2019 PIC Part-A Student Version

    39/623

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    77

    Step response of process plants-III

    Non-SelfLimiting(Type-1):Ramp

    Non-SelfLimiting(Type-2):

    Parabola

    )1()(

    ss

    KsG

    +=

    )1(

    )(2

    ss

    KsG

    +

    =

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    78

    Step response of process plants-IV

    SelfLimitingwithtransportdelay

    )1()(

    s

    esG

    sT

    +=

  • 8/3/2019 PIC Part-A Student Version

    40/624

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    79

    Response of non-oscillatory higher order processes

    0 0.5 1 1.50

    0.5

    1

    StepResponse

    Time(sec)

    Amplitude

    0 0.5 1 1.50

    0.5

    1

    StepResponse

    Time(sec)

    Amplitude

    0 0.5 1 1.50

    0.5

    1

    StepResponse

    Time(sec)

    Amplitude

    0 0.5 1 1.50

    0.5

    1

    StepResponse

    Time(sec)

    Amplitude

    0 0.5 1 1.50

    0.5

    1

    StepResponse

    Time(sec)

    Amplitude

    0 0.5 1 1.50

    0.5

    1

    StepResponse

    Time(sec)

    Amplitude

    0 0.5 1 1.50

    0.5

    1

    StepResponse

    Time(sec)

    Amplitude

    0 0.5 1 1.50

    0.5

    1

    StepResponse

    Time(sec)

    Amplitude

    1/(0.1s+1)2

    1/(0.1s+1)3

    1/(0.1s+1)4

    1/(0.1s+1)5

    1/(0.1s+1)6

    1/(0.1s+1)7

    1/(0.1s+1)8

    1/(0.1s+1)9

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    80

    Frequency Response

    Revisit

  • 8/3/2019 PIC Part-A Student Version

    41/624

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    81

    Frequency Response Intro

    Frequencyresponsemethodisaveryconvenienttoolforanalyzinglinearsystems,because Frequencyresponsecanbeexperimentallyobtained

    CanbeeasilysketchedfromTransferFunction

    StabilitymarginsandapproximatespeedofresponsecanbeeasilyobtainedfromOPENLOOPfrequencyresponse

    InthiscoursewewouldfrequentlyuseBodePlotandoccasionallyNyquist plot.

    Bode:Magnitude,Phaseagainstfreq Nyquist:Phasor plotincomplexplane

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    82

    Frequency Response Intro-II InBodePlot

    Frequencyaxisislogarithmic

    Magnitudemaybeplotted,eitherinabsolutevalueandusingalogarithmicscale

    OrinDecibelvalueusinglinearscale

    Wewouldoftenusetheasymptoticplotforaqualitativeanalysis Slopesandcornerswouldbeimportant

    consideration

    Meaningofunitslopeindecibelscale: 20dB/decade

    Meaningofunitslopeinabsolutevaluescale: Onedecadeperdecade

    Iffrequencyischanged(n=)10times,themagnitudewouldchange(n=)10times

    Example:unitnegativeslope,frequencyincreased7.4times,magnitudewouldbe(1/7.4times)

    100

    100

    1

    100

    100

    1

  • 8/3/2019 PIC Part-A Student Version

    42/624

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    83

    Frequency Response Intro-III

    Meaningofdoublepositive slopeinabsolutevaluescale: Increasefrequencyntimes,the

    magnitudewouldbecomen-squaretimes.

    Meaningofdoublenegative slopeinabsolutevaluescale: Iffrequencyisincreasedbyntimes,the

    magnitudewouldbecome(1/n-square)times

    Example:M=100@20r/s,at30r/s,themagnitudewouldbe100X(20/30)2 =44.44

    Example:M=100@20r/s,themagnitudewouldbe250at20X((100/250)=

    12.65r/s

    100

    2030

    44.44

    Doublenegativeslope

    12.65

    250

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    84

    Bode plot of Integrator

    10-1

    100

    101

    102

    Magnitude(abs)

    100

    101

    102

    103

    -91

    -90

    -89

    Phase

    (deg)

    Frequency(rad/sec)

    ( ) deg90==

    K

    j

    KjG

    GainCrossoveratK(r/s)

    Unitnegative

    slope

    GainatunityFreq=K

    Phase

    constantat- 90deg

  • 8/3/2019 PIC Part-A Student Version

    43/624

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    85

    Double Integrator

    100

    101

    102

    10-2

    10-1

    100

    101

    102

    Magnitude(abs)

    BodeDiagram

    Frequency(rad/sec)

    ( ) deg180)( 22

    ==

    Kj

    KjGDouble

    negativeslope

    GainCross

    overatK(r/s)

    Gainatunity

    Freq=K

    WhatisthePhaseplot??

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    86

    Magnitude plot of first order system( )

    ( )22

    11

    +=

    +=

    K

    j

    KjG

    BodeDiagram

    Frequency (rad/ sec)

    100

    101

    102

    100

    101

    Magnitude(abs)

    Corner

    frequency1/

    K

    Asymptotic

    plot

    ActualplotUnitnegative

    slope

    /1)/1( 2 KKgcf =

  • 8/3/2019 PIC Part-A Student Version

    44/624

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    87

    Phase lag of first order term

    BodeDiagram

    Frequency(rad/sec)

    100

    101

    102

    -90

    -60

    -30

    0

    Phase(deg)

    ( )

    ( )

    ( )

    ( )

    1

    2,/1

    45,/1

    ,/1

    tan1

    2

    2

    2

    1

    2

    +>>

    ==

  • 8/3/2019 PIC Part-A Student Version

    45/624

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    89

    More General TF-2

    ( ) )1.1(

    )02.01(

    ss

    sKsG +

    +

    =

    100

    101

    102

    103

    104

    -60

    -40

    -20

    0

    20

    40

    60

    Magnitude(dB)

    Frequency(rad/sec)

    Unitnegativeslope

    1st corner

    @1r/s

    Doublenegative

    slope

    Unitnegative

    slope

    2nd corner@50r/s

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    90

    Standard Process Model

  • 8/3/2019 PIC Part-A Student Version

    46/624

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    91

    Standard type zero process model

    Usuallychemicalprocessesarenotoscillatorybynature Manyplantsexhibit1 st order-likeselfregulating

    response Havetransportdelayorhigherorderfastpoleswhich

    canbeapproximatedasdelay Sometextbookscallthedelayas lag!! Separatemodelrequiredfornon- selfregulatingplants

    ( )s

    eKsG

    sT

    p+

    =

    1

    1Time

    Constant

    DelayProcessGain

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    92

    Step Response of Standard Type Zero Process Model

    ( )s

    eKsG

    sT

    p+

    =

    1

    1

    0 0.5 1 1.5 20

    0.2

    0.4

    0.6

    0.8

    1

    StepResponse

    Time(sec)

    Amplitude

    T

    K1

    ( ) )()1( /)(1 TtueKtyTt =

  • 8/3/2019 PIC Part-A Student Version

    47/624

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    93

    Fitting empirical step response in the standard process model

    y

    K

    y

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    time

    0.26K

    0.67K

    t1 t2

    u

    t

    u

    u

    yK

    =

    Att1=T+0.3

    y=K(1-e-0.3)=0.26K

    Att2=T+y=K(1-e-1)=0.67K

    Wemaydetermine andTfromt1 andt2

    ProcessReaction

    Curve

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    94

    Step Response of Standard Type Zero Process Model

    ( )s

    KesG

    sT

    p

    +=

    1

    0 0.5 1 1.5 20

    0.2

    0.4

    0.6

    0.8

    1

    StepResponse

    Time(sec)

    Amplitude

    T

    K

  • 8/3/2019 PIC Part-A Student Version

    48/624

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    95

    Unit step response for

    0 0.5 1 1.5 2 2.5 30

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    System:sys

    Time(sec):0.0964

    Amplitude:0.1

    System:sys

    Time(sec):0.511

    Amplitude:0.6

    StepResponse

    Time(sec)

    Amplitude

    ( )( )( )ss

    sGp05.015.01

    1

    ++=

    0427.0;511.0

    ),2(&)1(

    )2(..........916.0511.0,

    6.01

    )1........(105.00964.0,

    1.01

    511.0

    0964.0

    ==

    =

    =

    =

    =

    T

    From

    Tor

    e

    Tor

    e

    T

    T

    Asmallnondominanttime

    constantcanbeapproximatedas

    adelay

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    96

    Unit step response for

    StepResponse

    Time(sec)

    Amplitude

    0 0.5 1 1.5 2 2.5 30

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    System:sys

    Time(sec):0.1

    Amplitude:0.0512

    System:sys

    Time(sec):0.6

    Amplitude:0.628

    ( )( )( )205.015.01

    1

    sssG

    p ++

    =

    07.0;535.0

    ),2(&)1(

    )2(..........988.06.0,628.01

    )1(..........0525.01.0,

    0512.01

    6.0

    1.0

    ==

    ==

    =

    =

    T

    From

    Tore

    Tor

    e

    T

    T

    5.0=

    ( )

    1.0205.0

    05.012

    +

    T

    Fairlygood

    approximationofparameters!

    Twonon-dominantand

    smalltimeconstants

  • 8/3/2019 PIC Part-A Student Version

    49/624

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    97

    Alternative method: Graphical method

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    time

    T

    Tangenttothe

    highestslope

    FinalsteadyValue

    Smoothentheplotfirst

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    98

    Normalized modelIfthesteadystateO/Pwith100%inputis

    alsodefinedas100%O/P,thegainKbecomesunity.

    Thenormalizedprocessmodelbecomes:

    ( )s

    esGsT

    p

    +=

    1

  • 8/3/2019 PIC Part-A Student Version

    50/625

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    99

    Frequency response of plant

    ( )

    ( ) ( )

    ( ) ( )

    ( ) ( ) =

    +===

    =+

    ===

    +==

    +=

    j

    KjGejG

    j

    KjGejG

    s

    KsGandesGLet

    s

    KesG

    Tj

    Tj

    sT

    sT

    p

    1

    1

    1

    1

    21

    21

    21

    ??

    ?? ??

    ??

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    100

    Magnitude contribution of delay( ) TjejG =1

    =1forall

    frequencies

    1sincos == TjT

  • 8/3/2019 PIC Part-A Student Version

    51/625

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    101

    Phase contribution of delay

    ( ) TTT == cossintan1

    -T

    ( ) TjejG = 1

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    102

    Bode plot for delay usinglinearscale for frequency

    10-1

    100

    101

    Magnitude(abs)

    0 50 100 150 200 250 300 350 400 450-540

    -450

    -360

    -270

    -180

    -90

    0

    Phase(deg

    )

    BodeDiagram

    Frequency(rad/sec)

    -T

  • 8/3/2019 PIC Part-A Student Version

    52/625

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    103

    Magnitude contribution of first order term

    ( )( )

    22

    11

    +=

    +=

    K

    j

    KjG

    BodeDiagram

    Frequency (rad/ sec)

    100

    101

    102

    100

    101

    Magnitude(abs)

    Cornerat

    1/

    K

    Asymptoticplot

    Actualplot

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    104

    Phase contribution of first order term

    BodeDiagram

    Frequency(rad/sec)

    100

    101

    102

    -90

    -60

    -30

    0

    Phase(deg)

    ( )

    ( )

    ( )

    ( )

    1

    2,/1

    45,/1

    ,/1

    tan1

    2

    2

    2

    1

    2

    +>>

    ==

  • 8/3/2019 PIC Part-A Student Version

    53/625

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    105

    Frequency Response of Standard TypeZero Process Model

    sTesG=)(1

    BodeDiagram

    Frequency(rad/sec)

    10-1

    100

    101

    Magnitude(abs)

    100

    101

    102

    -90

    -45

    0

    Phase(deg)

    BodeDiagram

    Frequency(rad/sec)

    10-1

    100

    101

    Magnitude(abs)

    101

    102

    103

    -540

    -450

    -360

    -270

    -180

    -90

    0

    Phase(deg)

    1/s

    sG+

    =1

    1)(2

    Whyistheshapelikethis?

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    106

    Frequency Response of Standard Type ZeroProcess Model

    -20

    -15

    -10

    -5

    0

    5

    Magnitude(dB)

    10 20 30 40 50 60 70 80 90 100

    -180

    -135

    -90

    -45

    0

    Phase(deg)

    BodeDiagram

    Frequency(rad/sec)

    Frequencyscaleislinearforphaseplot

    1/

  • 8/3/2019 PIC Part-A Student Version

    54/625

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    107

    Frequency Response of Standard Type ZeroProcess Model

    -20

    -15

    -10

    -5

    0

    5

    Magnitude(dB)

    10-1

    100

    101

    102

    -180

    -135

    -90

    -45

    0

    Phase(deg)

    BodeDiagram

    Frequency(rad/sec)

    1/

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    108

    Frequency Response of Standard Type Zero Process Model

    Comments Ordinaryfirstordersystemhas90degree

    PhaseMarginandinfinitegainmargin.Suchplantsarealwaysstableinclosedloopwithconstantgain.

    Standardprocessplantisnotordinarybecauseofthedelay

    Delayhasgotthecapabilityofprovidinginfinitephaselag

    Delayed1st orderplantsareliabletobecomeunstableinclosedloop

  • 8/3/2019 PIC Part-A Student Version

    55/625

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    109

    Effect of gain on magnitude plotBodeDiagram

    Frequency(rad/sec)

    10-1

    100

    101

    102

    103

    10-1

    100

    101

    Magnitude(abs)

    K=1

    K=2

    K=3

    gcf2

    gcf3

    Unitygain

    1/

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    110

    GM=1/|G(jwp

    )|

    PM=180deg+/G(jwg)

    10-1

    100

    101

    Magnitude(abs)

    BodeDiagram

    Frequency(rad/sec)

    100

    101

    102

    -180

    -135

    -90

    -45

    0

    Phase(deg)

    pcf=wp

    gcf=wg

    PhaseMargin

    Gain

    Margin

    gcfdecreaseswithgain

    pcf doesnot

    depend

    upongain

    PMincreases

    withdecrease

    ingain

    GMdecreases

    withincreasein

    gain

  • 8/3/2019 PIC Part-A Student Version

    56/625

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    111

    Nyquist plot

    Resultantplot

    sTesG

    =)(1 ssG

    += 11)(2

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    112

    Pad Approximation forDelay

  • 8/3/2019 PIC Part-A Student Version

    57/625

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    113

    Pad Approximation

    Thedelaytermisdifficulttohandlewhilecomputingclosedloopresponse.

    FrenchmathematicianHenriPad (1863-1953),formulatedthe"best"approximationofagivenfunctionbyarationalfunction ofspecifiedorder.

    UsingtheabovemethodtheLaplacetransformexp(-sT)ofdelay,maybeapproximatedbytransferfunctionsofanygivenorder.

    Normally,formanualcomputation1st orsecondorderapproximationsareused.

    Forcomputersimulation5

    th

    to10th

    orderapproximationsmaybeemployed.

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    114

    Pad Approximation -II

    ( ) ( )

    ( ) ( )...

    !3

    2/

    !2

    2/2/1

    ...!3

    2/

    !2

    2/2/1

    32

    32

    2/

    2/

    2/2/

    ++++

    ++==

    sTsTsT

    sTsTsT

    e

    eeee

    sT

    sT

    sTsTsT

    Thesetermsarechangedslightlytoaccommodatethe

    effectoftruncationofhigherorder

    terms

    Pade approximationmaybeappreciatedfromthis

  • 8/3/2019 PIC Part-A Student Version

    58/625

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    115

    First order Pad approximation

    Frequencyresponse

    Unitstepresponse

    TimeResponseofprocessplantwithfirst

    orderPad appx.fordelay

    ( )2/1

    2/11

    sT

    sTesG

    sT

    +

    =

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    116

    Frequency response of First order Padapprox. for unit delay

    BodeDiagram

    Frequency(rad/sec)

    10-2

    10-1

    100

    101

    102

    -180

    -90

    0

    Phase

    (deg)

    10-1

    100

    101

    Magnitude(abs)

    Maxphaselagis-180degree

    Unitygain

  • 8/3/2019 PIC Part-A Student Version

    59/625

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    117

    Unit step response of 1st order Padapprox. for delay

    0 0.5 1 1.5 2 2.5 3-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1StepResponse

    Time(sec)

    Amplitude

    100%Negativekick

    CausedbyNonMinimumPhase

    term

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    118

    Time Response of standard plant with 1st order Pad

    apprx. for delay

    0 0.5 1 1.5 2 2.5 3-0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1StepResponse

    Time(sec)

    Amplitude

    Negative

    kick reducedduetoplanttimeconstant

    ( )2/1

    2/1

    1 sT

    sT

    s

    KsGp

    +

    +=

    OpenLoop

  • 8/3/2019 PIC Part-A Student Version

    60/626

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    119

    Second order Pad approximation

    Frequencyresponse

    Unitstepresponse

    TimeResponseofprocessplantwith

    secondorderPad appx.fordelay

    ( )12/2/1

    12/2/122

    22

    1

    TssT

    TssTesG

    sT

    ++

    +=

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    120

    Frequency response of Second order Padapprox. for delay

    10-1

    100

    101

    Magnitude(abs)

    10-1

    100

    101

    102

    -360

    -270

    -180

    -90

    0

    Phase(deg)

    BodeDiagram

    Frequency(rad/sec)

    Maxphaselag

    is-360degree

  • 8/3/2019 PIC Part-A Student Version

    61/626

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    121

    Unit step response of 2nd order Pad approx.for delay

    StepResponse

    Time(sec)

    Amplitude

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    Smallernegative

    kick for2nd

    order

    positivekick

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    122

    Time Response of standard plantwith 2nd order Pad appx. for delay

    StepResponse

    Time(sec)

    Amplitude

    0 1 2 3 4 5 6-0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2 Open

    Loop

    Kickssubstantially

    reducedduetothetimeconstant

  • 8/3/2019 PIC Part-A Student Version

    62/62

    2010PICLecture2010 Prof.T.K.Ghoshal &Prof.Smita Sadhu

    123

    Higher the order, better the approximationUnit step response

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1

    -0.5

    0

    0.5

    1

    1.5

    time

    Firstorder

    Secondorder

    Thirdorder

    Fourthorder

    Puredelay

    Higher the order, better the approximation

    Frequency response

    10-2

    10-1

    100

    101

    102

    -540

    -360

    -180

    0

    Phase(deg)

    BodeDiagram

    Frequency(rad/sec)

    10-1

    100

    101

    102

    -540

    -360

    -180

    0

    Phase(deg)

    BodeDiagram

    Frequency(rad/sec)

    10-1

    100

    101

    102

    -540

    -360

    -180

    0

    Ph

    ase(deg)

    BodeDiagram

    Frequency(rad/sec)

    0

    Firstorder

    Secondorder

    Thirdorder

    Phasekeepsonincreasingastheorder

    becomeshigher