32
ב"ב בבבב בבבבDigital communication- Digital communication- student version student version Dr. Uri Mahlab

Digital communication- student version

  • Upload
    audra

  • View
    89

  • Download
    1

Embed Size (px)

DESCRIPTION

Digital communication- student version. Dr. Uri Mahlab. General overview. Digital Radio Theory and Implementation -How a Digital Radio Works. Digital Radio Block Diagram. CODER. MOD. UPCONVERTER. DEMOD. DECODER. DOWNCONVERTER. Analog vs. Digital Modulation. AM. FM. PM. DIGITAL. - PowerPoint PPT Presentation

Citation preview

Page 1: Digital communication-  student version

ד"ר אורי מחלב

Digital communication- Digital communication- student versionstudent version

Dr. Uri Mahlab

Page 2: Digital communication-  student version

ד"ר אורי מחלב

General overviewGeneral overview

Digital Radio Theoryand Implementation

-How a Digital Radio Works

Page 3: Digital communication-  student version

ד"ר אורי מחלב

Digital Radio Block DiagramDigital Radio Block Diagram

CO

DER MOD

UPCONVERTER

DOWNCONVERTER

DEMOD

DE C

OD

E R

Page 4: Digital communication-  student version

ד"ר אורי מחלב

Analog vs. Digital ModulationAnalog vs. Digital Modulation

AM

FM

PM

DIGITAL

With digital modulation information is in the phase and

amplitude of the signal

Page 5: Digital communication-  student version

ד"ר אורי מחלב

The IQ DiagramThe IQ Diagram

Vq

Vi

magnitude

phase

Q

I

Page 6: Digital communication-  student version

ד"ר אורי מחלב

Analog Modulation on the IQ diagramAnalog Modulation on the IQ diagram

Q

I

B

A

C

D

FM

PM

Page 7: Digital communication-  student version

ד"ר אורי מחלב

BPSK Timing and State DiagramBPSK Timing and State Diagram

Reference

State 1 State 0

= 0 deg. = 180 deg.

0 State 1 State

BPSK

Constellation

Diagram

Q

I

t

Page 8: Digital communication-  student version

ד"ר אורי מחלב

QPSK ModulationQPSK Modulation

Q

I

00

1011

01

Vi

Vq

4 Possible States

Page 9: Digital communication-  student version

ד"ר אורי מחלב

16 QAM State Diagram16 QAM State Diagram

Q

I

0000 00110001

01010100 0111

1100

0010

1101

0110

10011000 1010

1110

1011

1111

Page 10: Digital communication-  student version

ד"ר אורי מחלב

Symbol Rate:Symbol Rate:

“The rate at which the carrier

moves between points in the

constellation”

Page 11: Digital communication-  student version

ד"ר אורי מחלב

Example:Example:

16 Mb/s4 Bits

A 16 QAM radio has 4 bit per state (or symbol).

If the radio operates at 16 Mb/s, then the

carrier must change states

or

4 million times per second (4 MBaud)

SYMBOL RATE = 4MHz

Page 12: Digital communication-  student version

ד"ר אורי מחלב

Some Typical Modulation FormatsSome Typical Modulation Formats

BPSK QPSK 8PSK

16QAM 64QAM

Page 13: Digital communication-  student version

ד"ר אורי מחלב

QPSK ModulatorQPSK Modulator

SERIAL TOPARALLEL

CONVERTERCARRIER PHASE

SHIFT BPFCOMBINER

00

11 10

01

COMBINED VECTOR

STATE DIAGRAM

BALANCED

MODULATION

BALANCED

MODULATION

QUADRATURE DATA STREAM

IN-PHASE DATA STREAM

fs = fb/2

BINARY

NRZ

INPUT

SIGNAL

fb

SYMBOL RATE:fs = fb/2

I

Q

I.F0°

90°

Page 14: Digital communication-  student version

ד"ר אורי מחלב

I, Q, Eye diagram and ConstellationI, Q, Eye diagram and Constellation

EYE

I

Q

+1

-1

+1

-1

CONSTELLATION :

I

Q

1,4

5 3

2

Page 15: Digital communication-  student version

ד"ר אורי מחלב

QPSK DemodulatorQPSK Demodulator

BPF PowerSplitter

CarRec.

PhaseSplitter

Symboltiming

rec.(STR)

Parallelto serial

converter

LPF.

LPF.

ThreshComp.

ThreshComp.

IF

Input

Phase

Demodulation

Phase

Demodulation

Binary

NRZfb

fb/2

fb/2

I

Q

I

Q

90°

Page 16: Digital communication-  student version

ד"ר אורי מחלב

16 QAM Modulator16 QAM Modulator

Data

2-to-4level

convert

2-to-4level

convert

Premod.LPF

Premod.LPF

Phasesplit BPFLO

L.F.

16 QAM

Output

90°

Q

I

4bf

4bfI

Q

2bf

2bf

Binary

NRZ

Data

bf

Page 17: Digital communication-  student version

ד"ר אורי מחלב

16 QAM Demodulator16 QAM Demodulator

BPF CR STR

X2datacon

blner

LPF

LOGIC

1thV

2thV

3thV

4-to-2 level converterof Q channel. Samedesign as I channel.

IF Input

I

Q

90°

4-LevelSignal

4-LevelSignal

4bf

4bf

Regeneration

DataOutfb

2bf

2bf

LPF

Page 18: Digital communication-  student version

ד"ר אורי מחלב

Which waveform requires more bandwidth?Which waveform requires more bandwidth?

A

B

time

Page 19: Digital communication-  student version

ד"ר אורי מחלב

Bandwidth ConsiderationsBandwidth Considerations

Page 20: Digital communication-  student version

ד"ר אורי מחלב

Two random data sequenceTwo random data sequence

timefrequency

Page 21: Digital communication-  student version

ד"ר אורי מחלב

Unfiltered Digital Radio SpectrumUnfiltered Digital Radio Spectrum

0f SFf 0 SFf 20 SFf 30 SFf 40 SFf 0SFf 20 SFf 30 SFf 30 SFf 50

Page 22: Digital communication-  student version

ד"ר אורי מחלב

An UNFILTERD RadioAn UNFILTERD Radio

CO

DER MOD U/C

D/C DEMOD

DEC

OD

ERtime

time

frequency

Data is easier to

recover but signal

requires a lot of

bandwidth

Page 23: Digital communication-  student version

ד"ר אורי מחלב

A FILTERED RadioA FILTERED Radio

CO

DER MOD U/C

D/C DEMOD

time

time

frequency

Signal requires less

bandwidth but data

is filtered

DEC

OD

E R

Page 24: Digital communication-  student version

ד"ר אורי מחלב

Intersymbol InterferenceIntersymbol Interference

Page 25: Digital communication-  student version

ד"ר אורי מחלב

Nyquist FilteringNyquist Filtering

Raised Cosine

Page 26: Digital communication-  student version

ד"ר אורי מחלב

Filter Coefficient & Determines Required B.W.Filter Coefficient & Determines Required B.W.

15.0

3.00

SF2SFRateSymbolFS _

Amplitude

Response

Linear Phase

(Flat Group Delay)

Page 27: Digital communication-  student version

ד"ר אורי מחלב

The Filtering is Distributed in the RadioThe Filtering is Distributed in the Radio

CO

DER MOD

UPCONVERTER

DOWNCONVERTER

DEMOD

DE C

OD

E R

Page 28: Digital communication-  student version

ד"ר אורי מחלב

SUMMARYSUMMARY

As the modulation complexity increases,the radio becomes more spectrally efficient.However, it also become more susceptibleto errors caused by noise and distortions.

Page 29: Digital communication-  student version

ד"ר אורי מחלב

TOTAL PROBABILITYOF NOISE AMPLITUDE

EXCEEDING THISTHRESHOLD

THRESHOLDP(x)

X10 20 30-10-20-30

0.1

0.2

0.3

0.4

Page 30: Digital communication-  student version

ד"ר אורי מחלב

How Error OccurHow Error OccurVOLTAGE

PROBReceived signal withsuperimposed noise

1 ERROR

0 ERROR0

1

THRESHOLDDECISION

NORMAL1 VALUE

NORMAL0 VALUE

BINARY SIGNAL + AMPLTUDENOISE FDP

Page 31: Digital communication-  student version

ד"ר אורי מחלב

Gaussian DistributionGaussian Distribution

0.1

0.2

0.3

0.4

P(x)

X10 20 30-10-20-30

NEVER RECHSZEBO

PROBABILITYDENSITY

FUNCTION

0=RMS VALUE AFTERSUBTRACTING

DC COMPONENT

Page 32: Digital communication-  student version

ד"ר אורי מחלב

Meaning of Eye diagramMeaning of Eye diagram

Threshold