19
Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 4 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 10-Jan-2018

PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

  • Upload
    others

  • View
    28

  • Download
    2

Embed Size (px)

Citation preview

Page 1: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

Semester II, 2017-18 Department of Physics, IIT Kanpur

PHY103A: Lecture # 4

(Text Book: Intro to Electrodynamics by Griffiths, 3rd Ed.)

Anand Kumar Jha 10-Jan-2018

Page 2: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

2

Notes โ€ข The Solutions to HW # 1 have been posted.

โ€ข Course Webpage: http://home.iitk.ac.in/~akjha/PHY103.htm

โ€ข Office Hour โ€“ Friday 2:30-3:30 pm

โ€ข HW # 2 has also been posted.

โ€ข I am assuming that everyone has been receiving the course emails.

Page 3: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

โ€ข The fundamental Theorem for derivative:

โ€ข The fundamental Theorem for Gradient: ๏ฟฝ ๐›ป๐›ป๐‘‡๐‘‡ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ = ๐‘‡๐‘‡ ๐‘๐‘ โˆ’ ๐‘‡๐‘‡(๐‘Ž๐‘Ž)

๐‘๐‘

๐‘Ž๐‘Ž ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘ƒ๐‘ƒ๐‘ƒ

โ€ข The fundamental Theorem for Divergence

๏ฟฝ ๐›ป๐›ป โ‹… ๐•๐• ๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š

๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข

๐‘‰๐‘‰๐‘œ๐‘œ๐‘œ๐‘œ

๏ฟฝ ๐›ป๐›ป ร— ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š = ๏ฟฝ ๐•๐• โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ

๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘ƒ๐‘ƒ๐‘ƒ

๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข โ€ข The fundamental Theorem

for Curl

3

๏ฟฝ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘

๐‘‘๐‘‘๐‘‘๐‘‘ = ๐‘‘๐‘‘ ๐‘๐‘ โˆ’ ๐‘‘๐‘‘(๐‘Ž๐‘Ž) ๐‘๐‘

๐‘Ž๐‘Ž

(Gaussโ€™s theorem):

(Stokesโ€™ theorem):

Summary of Lecture # 3:

โ€ข Line integral, surface integral, and volume integral

โ€ข Coordinate systems: Spherical polar, and cylindrical

Page 4: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

Dirac Delta function:

โ€ข Dirac delta function is a special function, which is defined as:

๐›ฟ๐›ฟ ๐‘‘๐‘‘ = 0, ๐‘–๐‘–๐‘‘๐‘‘ ๐‘‘๐‘‘ โ‰  0 = โˆž, ๐‘–๐‘–๐‘‘๐‘‘ ๐‘‘๐‘‘ = 0 ๏ฟฝ ๐›ฟ๐›ฟ ๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ = 1

โˆž

โˆ’โˆž

๐›ฟ๐›ฟ ๐‘‘๐‘‘

๐‘‘๐‘‘

4

๐›ฟ๐›ฟ ๐‘‘๐‘‘ = lim๐‘ ๐‘ โ†’0

12๐œ‹๐œ‹๐‘ ๐‘ 2

exp โˆ’๐‘‘๐‘‘ โˆ’ ๐‘Ž๐‘Ž 2

2๐‘ ๐‘ 2

โ€ข Realization of a Dirac Delta function

โ€ข Example: What is the charge density of a point charge ๐‘ž๐‘ž kept at the origin?

๐œŒ๐œŒ(๐‘‘๐‘‘) = ๐‘ž๐‘ž๐›ฟ๐›ฟ(๐‘‘๐‘‘); ๏ฟฝ ๐œŒ๐œŒ ๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ =โˆž

โˆ’โˆž๏ฟฝ ๐‘ž๐‘ž๐›ฟ๐›ฟ ๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐‘ž๐‘žโˆž

โˆ’โˆž

Page 5: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

Properties of a Dirac Delta function:

(4) 3D Dirac delta function is defined as: ๐›ฟ๐›ฟ3 ๐’“๐’“ = ๐›ฟ๐›ฟ ๐‘‘๐‘‘ ๐›ฟ๐›ฟ ๐‘ฆ๐‘ฆ ๐›ฟ๐›ฟ ๐‘ง๐‘ง ๏ฟฝ ๏ฟฝ ๏ฟฝ ๐‘‘๐‘‘ ๐’“๐’“ ๐›ฟ๐›ฟ3 ๐’“๐’“ โˆ’ ๐’‚๐’‚

โˆž

โˆ’โˆž

โˆž

โˆ’โˆž= ๐‘‘๐‘‘(๐’‚๐’‚)

โˆž

โˆ’โˆž

5

๐›ฟ๐›ฟ ๐‘‘๐‘‘ โˆ’ ๐‘Ž๐‘Ž = 0, ๐‘–๐‘–๐‘‘๐‘‘ ๐‘‘๐‘‘ โ‰  0 = โˆž, ๐‘–๐‘–๐‘‘๐‘‘ ๐‘‘๐‘‘ = ๐‘Ž๐‘Ž

(3) If ๐‘‘๐‘‘(๐‘‘๐‘‘) is a continuous function of ๐‘‘๐‘‘

๏ฟฝ ๐›ฟ๐›ฟ ๐‘‘๐‘‘ โˆ’ ๐‘Ž๐‘Ž ๐‘‘๐‘‘๐‘‘๐‘‘ = 1โˆž

โˆ’โˆž

๏ฟฝ ๐‘‘๐‘‘(๐‘‘๐‘‘)๐›ฟ๐›ฟ ๐‘‘๐‘‘ โˆ’ ๐‘Ž๐‘Ž ๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ ๐‘‘๐‘‘(๐‘Ž๐‘Ž)๐›ฟ๐›ฟ ๐‘‘๐‘‘ โˆ’ ๐‘Ž๐‘Ž ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐‘‘๐‘‘(๐‘Ž๐‘Ž)โˆž

โˆ’โˆž

โˆž

โˆ’โˆž

๐›ฟ๐›ฟ ๐‘˜๐‘˜๐‘‘๐‘‘ =1๐‘˜๐‘˜๐›ฟ๐›ฟ(๐‘‘๐‘‘), (1)

(2) Dirac delta function centered at ๐‘‘๐‘‘ = ๐‘Ž๐‘Ž is defined as follows

Page 6: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

Divergence of the vector field ๐•๐• = r๏ฟฝr2

Recall Homework Problem 1.5. The divergence ๐›๐› โ‹… r๏ฟฝrn = 2โˆ’๐‘›๐‘›

r(n+1).

So, for ๐•๐• = r๏ฟฝr2 , ๐›๐› โ‹… ๐•๐• = ๐›๐› โ‹… r๏ฟฝ

r2 = 0r3 = 0 (except at r=0 where it is 0/0, not defined

Letโ€™s calculate the divergence using the divergence theorem:

๏ฟฝ ๐›๐› โ‹… ๐•๐• ๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š

๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข

๐‘‰๐‘‰๐‘œ๐‘œ๐‘œ๐‘œ

๏ฟฝ ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š

๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข= ๏ฟฝ

rฬ‚R2 โ‹… ๐‘…๐‘…2sin๐œƒ๐œƒ ๐‘‘๐‘‘๐œƒ๐œƒ ๐‘‘๐‘‘๐‘‘๐‘‘rฬ‚ = ๏ฟฝ sin๐œƒ๐œƒ ๐‘‘๐‘‘๐œƒ๐œƒ ๐‘‘๐‘‘๐‘‘๐‘‘ = 4๐œ‹๐œ‹

Take the volume integral over a sphere of radius R and the surface integral over the surface of a sphere of radius R.

Therefore,

๏ฟฝ ๐›๐› โ‹… ๐•๐• ๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š

๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข= 4๐œ‹๐œ‹

๐‘‰๐‘‰๐‘œ๐‘œ๐‘œ๐‘œ

We find that ๐›๐› โ‹… ๐•๐•=0 but its integral over a volume is finite. This is possible only if

๐›๐› โ‹… ๐•๐• = ๐›๐› โ‹… rฬ‚r2

= 4๐œ‹๐œ‹ ๐›ฟ๐›ฟ(๐ซ๐ซ)

6

Page 7: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

Divergence of the vector field ๐•๐• = r๏ฟฝr2

Recall Homework Problem 1.5. The divergence ๐›๐› โ‹… r๏ฟฝrn = 2โˆ’๐‘›๐‘›

r(n+1).

So, for ๐•๐• = r๏ฟฝr2 , ๐›๐› โ‹… ๐•๐• = ๐›๐› โ‹… r๏ฟฝ

r2 = 0r3 = 0 (except at r=0 where it is 0/0, not defined)

Letโ€™s calculate the divergence using the divergence theorem:

๏ฟฝ ๐›๐› โ‹… ๐•๐• ๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š

๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข

๐‘‰๐‘‰๐‘œ๐‘œ๐‘œ๐‘œ

๏ฟฝ ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š

๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข= ๏ฟฝ

rฬ‚R2 โ‹… ๐‘…๐‘…2sin๐œƒ๐œƒ ๐‘‘๐‘‘๐œƒ๐œƒ ๐‘‘๐‘‘๐‘‘๐‘‘rฬ‚ = ๏ฟฝ sin๐œƒ๐œƒ ๐‘‘๐‘‘๐œƒ๐œƒ ๐‘‘๐‘‘๐‘‘๐‘‘ = 4๐œ‹๐œ‹

Take the volume integral over a sphere of radius R and the surface integral over the surface of a sphere of radius R.

Therefore,

๏ฟฝ ๐›๐› โ‹… ๐•๐• ๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ ๐•๐• โ‹… ๐‘‘๐‘‘๐š๐š

๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข= 4๐œ‹๐œ‹

๐‘‰๐‘‰๐‘œ๐‘œ๐‘œ๐‘œ

We find that ๐›๐› โ‹… ๐•๐•=0 but its integral over a volume is finite. This is only possible if

๐›๐› โ‹… ๐•๐• = ๐›๐› โ‹… rฬ‚r2

= 4๐œ‹๐œ‹ ๐›ฟ๐›ฟ(๐ซ๐ซ)

7

๐›๐› โ‹… rฬ‚r2

= 4๐œ‹๐œ‹ ๐›ฟ๐›ฟ(r) = 4๐œ‹๐œ‹ ๐›ฟ๐›ฟ(๐ซ๐ซ โˆ’ ๐ซ๐ซ๐ซ)

๐›๐› โ‹… rฬ‚r2

? ?

Page 8: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

A few more essential concepts:

(i) The divergence ๐›๐› โ‹… ๐…๐… is known (ii) The curl ๐›๐› ร— ๐…๐… is known (iii) If the field goes to zero at infinity.

8

1. The Helmholtz theorem

For the proof of this theorem, see Appendix B of Griffiths

A vector field ๐…๐… in elctrodynamics can be completely determined if:

Page 9: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

2. Scalar Potential:

(1) โˆซ ๐…๐… โ‹… ๐‘‘๐‘‘๐ฅ๐ฅb

a is independent of path. (2) โˆฎ๐…๐… โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ = 0 for any closed loop.

This is because of Stokesโ€™ theorem

๏ฟฝ ๐›๐› ร— ๐…๐… โ‹… ๐‘‘๐‘‘๐š๐š = ๏ฟฝ ๐…๐… โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ

๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘ƒ๐‘ƒ๐‘ƒ

๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข

โ€ข This is because Curl of a gradient is zero ๐›๐› ร— ๐›๐›V = ๐ŸŽ๐ŸŽ

(3) ๐…๐… is the gradient of a scalar function: ๐…๐… = โˆ’๐›๐›V

If the curl of a vector field ๐…๐… is zero, that is, if ๐›๐› ร— ๐…๐… = 0 everywhere, then:

9

โ€ข The scalar potential not unique. A constant can be added to V without affecting the gradient: ๐›๐›V= ๐›๐›(V + a), since the gradient of a constant is zero.

โ€ข The minus sign is purely conventional.

A few more essential concepts:

Page 10: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

3. Vector Potential:

(1) โˆซ๐…๐… โ‹… ๐‘‘๐‘‘๐š๐š is independent of surface. (2) โˆฎ๐…๐… โ‹… ๐‘‘๐‘‘๐š๐š = 0 for any closed surface.

This is because of the divergence theorem

๏ฟฝ ๐›๐› โ‹… ๐…๐… ๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ ๐…๐… โ‹… ๐‘‘๐‘‘๐š๐š

๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข

๐‘‰๐‘‰๐‘œ๐‘œ๐‘œ๐‘œ

โ€ข This is because divergence of a curl is zero ๐›๐› โ‹… ๐›๐› ร— ๐€๐€ = 0

If the divergence of a vector field ๐…๐… is zero, that is, if ๐›๐› โ‹… ๐…๐… = 0 everywhere, then:

(3) ๐…๐… is the gradient of a vector function: ๐…๐… = ๐›๐› ร— ๐€๐€

10

โ€ข The vector potential is not unique. A gradient ๐›๐›V of a scalar function can be added to ๐€๐€ without affecting the curl, since the curl of a gradient is zero.

A few more essential concepts:

Page 11: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

Electric Field

Force on a test charge ๐‘„๐‘„ due to a single point charge ๐‘ž๐‘ž is:

๐…๐… =1

4๐œ‹๐œ‹๐œ–๐œ–0 ๐‘ž๐‘ž ๐‘„๐‘„r2

rฬ‚

๐œ–๐œ–0 = 8.85 ร— 10โˆ’12C2

N โ‹… m2 Permittivity of free space

Force on a test charge Q due to a collection of point charges is:

๐…๐… ๐ซ๐ซ =1

4๐œ‹๐œ‹๐œ–๐œ–0 ๐‘ž๐‘ž1 ๐‘„๐‘„r1

2 r1 ๏ฟฝ +๐‘ž๐‘ž2 ๐‘„๐‘„r2

2 r2 ๏ฟฝ +

๐‘ž๐‘ž3 ๐‘„๐‘„r3

2 r3 ๏ฟฝ + โ‹ฏ

(in the units of Newton)

๐„๐„(๐ซ๐ซ) =1

4๐œ‹๐œ‹๐œ–๐œ–0 ๐‘ž๐‘ž1r1

2 r1 ๏ฟฝ +๐‘ž๐‘ž2r2

2 r2 ๏ฟฝ +

๐‘ž๐‘ž3r3

2 r3 ๏ฟฝ + โ‹ฏ

Q: What is field (a vector function), physically? A: We donโ€™t really know. At this level, field is just a mathematical concept which is consistent with the physical theory (electrodynamics). Also, we know how to calculate a field. 11

Coulombโ€™s Law

= ๐‘„๐‘„๐„๐„(๐ซ๐ซ)

Page 12: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

๐„๐„(๐ซ๐ซ) =1

4๐œ‹๐œ‹๐œ–๐œ–0๐‘ž๐‘žr2

rฬ‚

Electric field due to a single point charge ๐‘ž๐‘ž is:

๐„๐„(๐ซ๐ซ) =1

4๐œ‹๐œ‹๐œ–๐œ–0๏ฟฝ๐‘‘๐‘‘๐‘ž๐‘žr2

rฬ‚

For a line charge ๐‘‘๐‘‘๐‘ž๐‘ž = ๐œ†๐œ† ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘ For a surface charge ๐‘‘๐‘‘๐‘ž๐‘ž = ๐œŽ๐œŽ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘Ž๐‘Ž For a volume charge ๐‘‘๐‘‘๐‘ž๐‘ž = ๐œŒ๐œŒ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘

We know how to calculate electric fields due a charge distribution, using Coulombโ€™s law. Weโ€™ll now explore some tricks for calculating the field more efficiently. 12

๐„๐„(๐ซ๐ซ) =1

4๐œ‹๐œ‹๐œ–๐œ–0 ๐‘ž๐‘ž1r1

2 r1 ๏ฟฝ +๐‘ž๐‘ž2r2

2 r2 ๏ฟฝ +

๐‘ž๐‘ž3r3

2 r3 ๏ฟฝ + โ‹ฏ

Electric field due to a collection of point charges is:

Electric Field

Electric field due to a continuous charge distribution is:

Page 13: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

Electric Flux and Gaussโ€™s Law:

๐„๐„(๐ซ๐ซ) =1

4๐œ‹๐œ‹๐œ–๐œ–0๐‘ž๐‘žr2

rฬ‚

Electric field ๐„๐„(๐ซ๐ซ) due to a single point charge ๐‘ž๐‘ž at origin is:

13

Electric field is a vector field. One way to represent a vector field is by drawing a vectors of given magnitude and directions.

(i) Field lines emanate from the positive charge and end

up on the negative charge or go up to infinity.

Another way to represent a vector field is by drawing the field lines:

(ii) The density is the filed lines is proportional to the strength of the field.

Page 14: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

The electric flux is defined as

ฮฆ๐ธ๐ธ = ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข

๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š is proportional the number of field lines passing through an area element ๐‘‘๐‘‘๐š๐š When the area ๐‘‘๐‘‘๐š๐š is perpendicular to the field ๐„๐„ the dot product is zero.

14

Electric Flux and Gaussโ€™s Law:

๐„๐„(๐ซ๐ซ) =1

4๐œ‹๐œ‹๐œ–๐œ–0๐‘ž๐‘žr2

rฬ‚

Electric field ๐„๐„(๐ซ๐ซ) due to a single point charge ๐‘ž๐‘ž at origin is:

Page 15: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

The electric flux due to a point charge ๐‘ž๐‘ž at origin through a spherical shell of radius R.

ฮฆ๐ธ๐ธ = ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข= ๏ฟฝ ๏ฟฝ

14๐œ‹๐œ‹๐œ–๐œ–0

๐‘ž๐‘ž๐‘…๐‘…2

rฬ‚2๐œ‹๐œ‹

๐œ™๐œ™=0

๐œ‹๐œ‹

๐œƒ๐œƒ=0โ‹… ๐‘…๐‘…2sin๐œƒ๐œƒ๐‘‘๐‘‘๐œƒ๐œƒ๐‘‘๐‘‘๐‘‘๐‘‘rฬ‚ =

๐‘ž๐‘ž๐œ–๐œ–0

15

Electric Flux and Gaussโ€™s Law:

๐„๐„(๐ซ๐ซ) =1

4๐œ‹๐œ‹๐œ–๐œ–0๐‘ž๐‘žr2

rฬ‚

Electric field ๐„๐„(๐ซ๐ซ) due to a single point charge ๐‘ž๐‘ž at origin is:

Page 16: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

The electric flux due to a point charge ๐‘ž๐‘ž at origin through any enclosing closed surface is

ฮฆ๐ธ๐ธ = ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข=๐‘ž๐‘ž๐œ–๐œ–0

16

Electric Flux and Gaussโ€™s Law:

๐„๐„(๐ซ๐ซ) =1

4๐œ‹๐œ‹๐œ–๐œ–0๐‘ž๐‘žr2

rฬ‚

Electric field ๐„๐„(๐ซ๐ซ) due to a single point charge ๐‘ž๐‘ž at origin is:

Page 17: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข=๐‘„๐‘„enc๐œ–๐œ–0

This is the Gaussโ€™s law in the integral form: The flux through a surface is equal to the total charge enclosed by the surface divided by ๐œ–๐œ–0

17

The electric flux due to a collection of point charges through any enclosing closed surface.

= ๏ฟฝ

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๏ฟฝ๐„๐„๐’Š๐’Š

๐’๐’

๐’Š๐’Š=๐Ÿ๐Ÿ

.๐‘‘๐‘‘๐š๐š = ๏ฟฝ ๐’๐’

๐’Š๐’Š=๐Ÿ๐Ÿ

๏ฟฝ

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐„๐„๐’Š๐’Š.๐‘‘๐‘‘๐š๐š = ๏ฟฝ

๐‘ž๐‘ž๐‘–๐‘–๐œ–๐œ–0

๐’๐’

๐’Š๐’Š=๐Ÿ๐Ÿ

Electric Flux and Gaussโ€™s Law:

๐„๐„(๐ซ๐ซ) =1

4๐œ‹๐œ‹๐œ–๐œ–0๐‘ž๐‘žr2

rฬ‚

Electric field ๐„๐„(๐ซ๐ซ) due to a single point charge ๐‘ž๐‘ž at origin is:

ฮฆ๐ธ๐ธ = ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข=? ?

Page 18: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข=๐‘„๐‘„enc๐œ–๐œ–0

Using divergence theorem

๏ฟฝ ๐›๐› โ‹… ๐„๐„ ๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข

๐‘‰๐‘‰๐‘œ๐‘œ๐‘œ๐‘œ ๏ฟฝ ๐›๐› โ‹… ๐„๐„ ๐‘‘๐‘‘๐‘‘๐‘‘ =

๐‘„๐‘„enc๐œ–๐œ–0

๐‘‰๐‘‰๐‘œ๐‘œ๐‘œ๐‘œ

๐‘„๐‘„enc = ๏ฟฝ๐œŒ๐œŒ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘

๏ฟฝ ๐›๐› โ‹… ๐„๐„ ๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ

1๐œ–๐œ–0๐œŒ๐œŒ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘

๐‘‰๐‘‰๐‘œ๐‘œ๐‘œ๐‘œ

For a volume Charge density

๐›๐› โ‹… ๐„๐„ =๐œŒ๐œŒ ๐œ–๐œ–0

This is the Gaussโ€™s law in differential form

18

Or,

Or,

Electric Flux and Gaussโ€™s Law:

Gaussโ€™s law doesnโ€™t have any information that the Coulombโ€™s does not contain. The importance of Gaussโ€™s law is that it makes calculating electric field much simpler and provide a deeper understanding of the field itself.

This is the Gaussโ€™s law in integral form.

Page 19: PHY103A: Lecture # 4home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103_Lec_4.โ€ฆย ยท โ€ข Dirac delta function is a special function, which is defined as: ๐›ฟ๐›ฟ๐‘‘๐‘‘= 0,

๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข=๐‘„๐‘„enc๐œ–๐œ–0

This is the Gaussโ€™s law in integral form.

Q: (Griffiths: Ex 2.10): What is the flux through the shaded face of the cube due to the charge ๐‘ž๐‘ž at the corner

Answer:

๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข=

124

๐‘ž๐‘ž๐œ–๐œ–0

19

Electric Flux and Gaussโ€™s Law:

๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข ? ?

24๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข=๐‘ž๐‘ž๐œ–๐œ–0