62
Modern Methods in Heterogeneous Catalysis Research Photoelectron Spectroscopy Axel Knop ([email protected])

Photoelectron Spectroscopy - FHI · Handbook of Photoelectron Spectroscopy etc.*) • Clean materials (pure ... chemical/physical model of the sample!!! ... extrapolation of Schram's

Embed Size (px)

Citation preview

Modern Methods in Heterogeneous Catalysis

Research

Photoelectron Spectroscopy

Axel Knop ([email protected])

Outline

Photoelectron Spectroscopy: General Principle

Surface sensitivity

Instrumentation

Background subtraction

PES peaks, loss features

Binding energy calibrationBinding energy calibration

Chemical state

Peak fitting

Quantitative Analysis

High pressure XPS

examples

Problem: What is the (chemical) composition of a surface

Me0 Me2+

Photoelectron Spectroscopy: General Principle

Excitation of Photoelectron

General Principle

- Detection of photoelectrons from the valence band region and core levels

- Detection of Auger electrons and X-Ray Fluorescence

Binding Energy out of:

hν = Evsp + Ekin

hν = Ekin + Evsa+ Φsp - Φsa

hν = Ekin + EF + Φsp

Evsa

Evsp

X-ray twin anode

Parallel plate mirror analyser

HalbkugelanalysatorHalbkugelanalysatorElektronen werden zu-nächst um bestimmten

Energiebetragabgebremst

Nur Elektronen mit be-Nur Elektronen mit be-stimmter"Passenergie"

können Detektorerreichen

Je kleiner die "Passener-gie" desto genauer die

Messung

Detector: Channeltron

XP spectra: two different anode materials

Where do the electrons come from?

Distance electron can travel in solids depends on:

• Material• Electron kinetic energy

� Measure attenuation of electrons by covering surface electrons by covering surface with known thickness of element

Sampling Depth

Disregarding elastic scattering:

Sampling depth:

For normal takeoff angle, cosΘ=1:

• When d=λ: -ln(I/I0)=0.367, i.e. 63.3% from within λ• When d=2λ: -ln(I/I0)=0.136, i.e. 86.4% from within 2λ• When d=3λ: -ln(I/I0)=0.050, i.e. 95.0% from within 3λ

Mean Free Path of Electrons in Solids

• IMFP is average distance between inelastic collisions• Minimum λ of 5-10Å for KE ~ 50-100 eV� Maximum surface sensitivity

Origin of background

Background of scattered electrons due to limited IMFP� Higher for low KE

Background Correction

Background substraction

� Choose suitable energy range for substraction� Baseline on high KE side

Background Correction

Several ways to substract background:

- Stepwise- Linear- Method of Tougaard

�Most common:

Method of Shirley et al.:

worst

Always use same background substraction method for all peaks!

D.A. Shirley, Phys. Rev. B, 5, S. 4709, 1972.

best

Spectral features: PE Peaks

Orbital peaks used to identify Orbital peaks used to identify different elements in sample

Observation: • s orbitals are not spin-orbit splitted � singlet in XPS• p, d, f.. Orbitals are spin-orbit splitted � doublets in XPS

Spectral features: PE Peaks

Spectral features: Auger Peaks

Auger peaks:

Result from excess energy of atom during relaxation (after core hole creation)

• always accompany XPS• broader and more complex structure than PES peaks

KE energy independent of incident hν

Spectral features: Loss Peaks

After Emission of PE the remaining electrons rearrange (Secondary peaks ):

• Relaxation by excitation of valence electron to higher state (shake up )

� loss of kinetic energy of PE leads to new peaks shifted in BE with respect to main peak

• Relaxation by ionisation of valence electron (shake off )� broad shoulder to main peak

• Plasmon losses

Spectral features: Loss Peaks

Loss peaks can be used to identify chemical composition

Problem:References needed (theoretical or experimental)

Relationship between the degree of core level asymmetry and the density of states at the Fermi

level (BE=0)

Analyzing the data: Calibration of Binding Energies

Identification of FE:

Easy for high density of states near EF, but may be ambigeous for samples with low DOS near EF, band gap or charged samples

Line profile modification by charging

Mo oxide on silica

real catalyst is powder sample after impregnation and calcination.and calcination.

Analyzing the data: Calibration of Binding Energies

Identification of FE:

In case of low DOS near EF, band gap or charged samples (spectrum will move in this case!)

� Look for reference peaks with known BE (be sure about that!!!)� Works for any PE or Auger peak, e.g. peaks originating from substrate

Chemical Shift

BE of core electrons depends on the electron densit y of the atom (screening of the core electrons), affected by the electronegativity of neighboring atoms

For unknown BE:

• Calculation of Pauling´s Charge (easy, but not always true)• More elaborate calculations (theorists, also not always true)

References:

• Use of data bases (NIST, Handbook of Photoelectron Spectroscopy etc.*)

• Clean materials (pure metals, well defined substrates, „untreated“ samples etc.)

Analyzing the data: Chemical States

samples etc.)

• Literature about similar topics

*„Handbook of Photoelectron Spectroscopy“, Perkin-Elmer, 1992G. Ertl, J. Küppers;´´Low Energy Electrons and Surface Chemistry´´; VCH Verlag, 1985S. Hüfner; ´´Photoelectronspectroscopy´´; Springer, 1995.D. Briggs, M.P. Seah;´´Practical Surface Analysis´´, Vol. 1; Wiley + Sons, 1990.

Analyzing the data: Peak Fitting

Several influences on peak shape:

• Broadening mainly due to excitating light (natural), structural and thermal effects

• Asymmetry due to final state effects

• Species with similar BE

These effects have to be considered when fitting by reasonable chemical/physical model of the sample!!!

Analyzing the data: Peak Fitting

Asymmetric Peak shapes modeled by

Most fitting programs provide useful tools:

Levenberg-Marquardt algorithm to minimize the χ2

M: measured spectrumN: energy valuesS: synthesized spectrumP: parameter values

β: peak parameterM: mixing ratioα: asymmetry parameter

Doniach-Sunjic functions (convoluted with Gaussian profiles)

α: asymmetry parameterh: peak heightα � 0: Lorentzian profile

Convolution of Lorentz (or D.S.) Gaussian profiles suited best!!

� Voigt function

Strategy:

• Use of references for asymmetry and broadening

• Reasoning of most likely chemical composition

Analyzing the data: Peak Fitting

pure Au

graphitic

CNT

disordered

Peak broadening and asymmetry should be the same for same component in different spectra

But: both may differ for different components � discrepancy for different peaks should always be based on physical reasons

Quantitative Analysis

Me0 Me2+

Quantitative Analysis: First Steps

In general:

IX = B × σ × λtot × T × nX

B: all instrumental contributionsσ: ionisation cross section for given photon energyλtot: total escape depthT: transmission through surfacenX: atomic density of analyzed species in sample

σ= σ × f(X,α) λ = E(X) × 1/a[ln(E(X)-b)*σ= σtot × f(X,α)

with f(X,α) = 1+(β(X)/4) (1-3cos2α)*σtot: total ionisation cross sectionf: form function accounting for asymmetry of peakβ: asymmetry parameterα: angle between photon beam and emitted electron (different for standard x-ray source and synchrotron)

*Yeh and Lindau, Atomic data nucl. data tables32(1985)1

λtot = E(X) × 1/a[ln(E(X)-b)*

E: KE of electrona, b: parameters dependent on dielectric function and concentration of host

*Penn, J.of Electr.Spectr. And Rel. Phen. 9(1976)29

Cross section changes with energy of incident beam!!!

Quantitative Analysis: Cross Section

Calculated changes of Cross section beam energy(Yeh, Lindau; Atomic data and nuclear data tables 32 (1985) 1)

Quantitative Analysis

In most cases the sample surface is quite heterogeneous

� Need of models to extract an accurate approximation of composition out of spectral intensities

RuO2

Ru 3d5/2-map of the chemical states on Ru(0001) after pre-treatment with O

RuxOy

after pre-treatment with Operformed with Scanning Photoelectron Microscopy (ELETTRA):

Quantitative Analysis: Useful Examples

with the formulas above follows

a : „radius of A“

A. Heterogeneous mixture (e.g. alloy):

andaA: „radius of A“

���� Mol fraction

IA,B0: reference of

clean materialfollows

Quantitative Analysis: Useful Examples

B. Partial Coverage (e.g. adsorbat):

Contribution of B:

(attenuated by A) (direct)

For signals of A and ΘΘΘΘA: coverage

ΘΘΘΘ: angle between surface normal and emitted electron

For signals of A and B follows

ΘΘΘΘA: coverage of A on B

Which givesIA,B

0 : reference of clean material

Quantitative Analysis: Useful Examples

C. Thin layer of A on B (e.g. oxide):

Contribution of B:

Contribution of A:

���� Special case:

i.e.

Which gives

follows

General problem here: proper background substraction

Fundamental limit:

elastic and inelastic scattering of electrons in the gas phase

In situ XPS: obstaclesIn situ XPS: obstacles

30x10-21

25

20

15

10

Ioni

zatio

n cr

oss

sect

ion

(m2 )

in situEXAFSin situ

O2 exp. data from Schram et al. (1965) extrapolation of Schram's data

Technical issues: - Differential pumping to keep analyzer in high vacuum- Sample preparation and control in a flow reactor

5

0

Ioni

zatio

n cr

oss

sect

ion

(m

101

102

103

104

105

106

Electron kinetic energy (eV)

in situSEM

in situTEM

EXAFSin situXPS

• Photons enterthrough a window

• Electrons and a gas

In situ XPS: basic conceptIn situ XPS: basic concept

• Electrons and a gasjet escape throughan aperture tovacuum

• H. Siegbahn et al. (1973- )• M.W. Roberts et al. (1979)• M. Faubel et al. (1987) • M. Grunze et al. (1988)• P. Oelhafen (1995)

In situ XPS instruments: previous designsIn situ XPS instruments: previous designs

H. Siegbahn et al., J. Electron Spectrosc. Relat. Phenom. , 319 (1973)2

H. Siegbahn et al., J. Electron Spectrosc. Relat. Phenom. , 205 (1981)24

In situ XPS using differentially pumped electrostat ic lensesIn situ XPS using differentially pumped electrostat ic lenses

to pump to pump

D.F. Ogletree, H. Bluhm, G. Lebedev, C.S. Fadley, Z. Hussain, M. Salmeron, Rev. Sci. Instrum. 73 (2002) 3872.

X-rays from synchrotron

Gas phase composition can be measured by XPS.gas phase signal: 1 torr·mm ~ a few monolayers

CloseClose--up of sampleup of sample--first aperture regionfirst aperture region

hνp0

gas

z

de-1.0

0.5

0.0-2 -1 0 1 2

z [d]

p/p 0

z=2 mm

d=1 mm

In situ XPS systemIn situ XPS system

X-rays enter the cell at 55° incidence through an SiNx window (thickness ~ 1000 Å)

Analyzer input lens

Focal point

Hemisphercalelectronanalyzer(10-9p0)

mass spectrometerand additional

Experimental cellsupplied by gas lines (p0)

Focal point of analyzerinput lens

First differentialpumping stage (10-4p0)

Second differentialpumping stage (10-6p0)

Third differentialpumping stage (10-8p0)

mass spectrometerand additional pumping

Partial oxidation: CH3OH + ½O2 CH2O + H2O

Total oxidation: CH3OH + O2 CO2 + 2H2O

Cu

Cu32

Application of in situ XPS to catalysis: methanol o xidation on CuApplication of in situ XPS to catalysis: methanol o xidation on Cu

Onset of catalyticactivity at T>200 °C0,7

0,8

0,9

1,0

Y CH2O

What is the state of the surface under reaction conditions?

Reaction profile isidentical at 1 atm.

activity at T>200 °C

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 50 100 150 200 250 300 350 400 450

Temperature / °C

Yie

ld

Y CO2

CO + H O2 2

CH OH3

CH OH3

CH OH

CO+ H2

In situ NEXAFS

I.E. Wachs & R.J. Madix, Surf. Sci. 76, 531 (1978); A. F. Carley et al., Catal. Lett. 37, 79 (1996).UHV XPS

O-(a) + 2CH3OH(g) 2CH3O-(a) + H2O(g)

CH3O-(a) CH2O(g) + H+(a)

Partial oxidation of methanolPartial oxidation of methanol

CH O+ H2 2O

O+ O

CH OH3CH OH3

CH O+ H2 2

O2

Cu 0

Oxsurf

Oxbulk

Subox

Ovol

A. Knop-Gericke et al., Topics Catal. 15, 27 (2001).

In situ NEXAFS

Questions for in situ XPS: - Quantitative analysis of surface species- Carbon species on the surface- Depth-dependent analysis

CH3OH + O2 ~ 0.5 mbar

suboxide phase: - only present in situ

Experimental conditionsExperimental conditions

sample: polycrystalline Cu foil

Variations of mixing ratios: CH3OH : O2 = 1:2, 3:1, 6:1; T = 400 °C; p = 0.6 mbar

Temperature series: gas mixture at room temperature: CH3OH : O2 = 3:1; p = 0.6 mbar; temperature: 25 °C → 450 °C

flow rates: 10 ... 20 sccm

XPS measurements Beam line U49/2-PGM1 at BessyEnergy range 100...1500 eVtotal spectral resolution 0.1 eV @ 500 eV

O 1s, C 1s, Cu 3p, Cu 2p: KE ~ 180 eVValence Band: KE ~ 260 eV

Depth profiling with KEs 180 eV, 350 eV,500 eV, 750 eV

VB

∆ ~ 2 eV

160

140

120

100

Nor

mal

ized

cou

nt r

ate

(cps

/mA

)

CH

3OH

(g)CH

2O (

g)H

2O (

g)

CO

2(g

)

O2 (g) Cu2O

?

?

Methanol oxidation on Cu: O1s spectraMethanol oxidation on Cu: O1s spectra

400 °C, 0.5 torr

CH3OH:O2

O 1s

8 6 4 2 0 -2Binding energy (eV)

80

60

40

20

0

Nor

mal

ized

cou

nt r

ate

(cps

/mA

)

542 540 538 536 534 532 530 528 526

Binding energy (eV)

1:2

3:1

6:1

O1s depth profilingO1s depth profiling

1.3

1.2

1.1

1.0

0.952

9.9

eV /

531

.5 e

V p

eak

area

rat

io

14

12

10

8

6

Inel

astic

mea

n fr

ee p

ath

in C

u (Å

)

from: Tanuma at al., SIA 17, 911 (1991).

CH3OH : O2 = 3:1

Nor

mal

ized

cou

nt r

ate

(a.u

.) sub-surfaceoxygen

surfaceoxygen

A

350 eV

500 eV

750 eV

0.8

0.7

529.

9 eV

/ 5

31.5

eV

pea

k ar

ea r

atio

14121086Inelastic mean free path (Å)

I529.9/I531.5=n529.9/n531.5·exp[-(z531.5-z529.9)/λ]

∆z = 3 Ǻ, n529.9/n531.5 = 1.6

6

Inel

astic

mea

n fr

ee p

ath

in C

u (Å

)

800600400200Kinetic energy (eV)

Nor

mal

ized

cou

nt r

ate

(a.u

.)

534 532 530 528 526

Binding energy (eV)

180 eV

350 eV

Methanol oxidation on Cu: C1s spectraMethanol oxidation on Cu: C1s spectra

CO

2(g

)

CH

3OH

(g)

CH

2O (

g)

Camorph

C 1s160

140

120

100

Nor

mal

ized

cou

nt r

ate

(cps

/mA

)

CH

3OH

(g)CH

2O (

g)H

2O (

g)

CO

2(g

)

O2 (g) Cu2Osub-surface

oxygensurfaceoxygen

400 °C

CH3OH:O2

O 1s

292 288 284 280

Binding energy (eV)

80

60

40

20

0

Nor

mal

ized

cou

nt r

ate

(cps

/mA

)

542 540 538 536 534 532 530 528 526

Binding energy (eV)

1:2

3:1

6:1

Metastability of the SubMetastability of the Sub--Surface OxygenSurface Oxygen

CH

3OH

(g)

sub-surfaceoxygensurface

oxygen

H2O

(g)

CH

2O (

g)

CH3OH:O2=6:1

CH

3OH

(g)

sub-surfaceoxygensurface

oxygen

H2O

(g)

CH

2O (

g)

CH3OH:O2=6:1

536 534 532 530 528

Binding energy (eV)

CH3OH:O2=6:1

CH3OH only

difference

536 534 532 530 528

Binding energy (eV)

CH3OH:O2=6:1

CH3OH only

difference

Correlation of catalytic activity and surface speciesCorrelation of catalytic activity and surface species

CH2O yield vs sub-surface oxygen peak area

0.20

0.15

3:1

6:1

O p

artia

l pre

ssur

e (m

bar) mixing ratio series

(T = 400 °C)400 °C

400 °C temperature series(CH OH:O =3:1)

0.10

0.05

0.00

543210

normalized sub-surface oxygen peak area

1:2

CH

2O p

artia

l pre

ssur

e (m

bar)

250 °C

300 °C450 °C

150 °C

200 °C

temperature series(CH3OH:O2=3:1)

Open questions: What is the nature of the sub-surface oxygen species?What is its role in the catalytic reaction?

Depth profilingDepth profiling

0.6

0.5

0.4

sub-

surfa

ce o

xyge

n : C

u pe

ak ra

tio CH3OH:O2 = 3:1

CH3OH:O2 = 6:1

(calculated from Cu 3p and sub-surface O 1s)

Reducing conditions

0.3

0.2

0.1

0.0sub-

surfa

ce o

xyge

n : C

u pe

ak ra

tio

14121086Inelastic mean free path (Å)

Open questions: What is the nature of the sub-surface oxygen species?What is its role in the catalytic reaction?

IntroductionIntroduction

Literature

[ ]+ H2

54

carbon laydown selective hydrogenation“similar” catalysts different activity & selectivity

(structure sensitivity?)

Selectivity issue: what defines selectivity?

InIn--situ XPS: situ XPS: Pd 3d (hPd 3d (hνννννννν: : 720 eV)720 eV)

InIn--situ XPS: situ XPS: Pd 3d depth profilingPd 3d depth profiling

Not only adsorbate-induced surface core level surface core level

shift !

But on-top location!

InIn--situ XPS: situ XPS: C1s (Switching off experiments)C1s (Switching off experiments)

1: reaction mix.

2: C5 off2: C5 off

3: H2 off

4: C5 gas-phase

InIn--situ XPS: situ XPS: Pd 3d (Switching off experiments)Pd 3d (Switching off experiments)

1: reaction mix.

2: C5 off2: C5 off

3: H2 off

InIn--situ XPS: situ XPS: Pd vs. C depth profilingPd vs. C depth profiling

60

65

70A

Palladium Inelastic Mean Free Path [Å]

Experiment: 358 K Model: 358 K

5.25 7.15 9.05 15.15

65

70

75100 200 300 400 500 600 700 800

Electron Kinetic Energy [eV]

B

0.3 nm

1.4 nm

14 nm

100 200 300 400 500 600 700 80020

25

30

35

40

45

50

55

60

Car

bon

Con

tent

[%]

Electron Kinetic Energy [eV]

Model: 3.5 ML Experiment: C5 off Model: C5 off

20

25

30

35

40

45

50

55

60

65

22.3513.2510.25

Car

bon

cont

ent [

%]

Carbon Inelastic Mean Free Path [Å]

Epxeriment: 523K Model: 523K Model: 4.2 ML

7.25

ModelModel

core statesatom specificquantitativecomplex final state effects chemical shift concept

Summary

chemical shift concept theoretically difficult accessiblecan be applied in the mbar rangesurface sensitivedepth profiling

1. W. Göpel, Chr. Ziegler: Struktur der Materie: Grundlagen, Mikroskopie undSpektroskopie , Teubner Verlagsgesellschaft, Stuttgart-Leipzig, 19912. M. Henzler, W. Göpel: Oberflächenphysik des Festkörpers , TeubnerVerlagsgesellschaft, Stuttgart-Leipzig, 19913. W. Göpel, Chr. Ziegler : Einführung in die Materialwissenschaften , TeubnerVerlagsgesellschaft, Stuttgart-Leipzig, 19964. D. Briggs, M. P. Seah: Practical Surface Analysis, Volume 1: Auger and X-R ayPhotoelectron Spectroscopy , 2. Auflage, John Wiley & Sons, Chichester, 19905. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg: Handbookof X-Ray Photoelectron Spectroscopy , Physical Electronics Division, Perkin-ElmerCorporation, Eden Prairie, Minnesota, 19796. H. Lüth: Surfaces and Interfaces of Solid Materials , 3. Auflage, Springer Verlag,Berlin, 1995

Literature

Berlin, 19957. G. Ertl, J. Küppers: Low Energy Electrons and Surface Chemistry , VCHVerlagsgesellschaft, Weinheim, 19858. K. Siegbahn, C. Nording et al.: ESCA Applied to Free Molecules , North-Holland,Amsterdam, 19719. M. Cardona, L. Ley: Photoemission of Solids , Topics in Applied Physics, Band 26und 27, Springer Berlin, 197810. M. Grasserbauer, H. J. Dudek, M. F. Ebel: Angewandte Oberflächenanalyse mitSIMS, AES und XPS , Springer Berlin, 197911. D. Briggs and J. T. Grant: Surface Analysis by Auger and Photoelectron Spectroscopy , Surface Spectra and IM Publications 2003