34
Chapter 3. Photoelectron spectroscopy- UPS & XPS <ref> 1. Introduction to photoelectron spectroscopy / P.K. Ghosh, Wiley, 1983 2. http://sciborg.uwaterloo.ca/course_notes/chemistry/chem 129/pdfs/ c129notes_chapter_04.pdf 3. Chimia 55 (2001) 759–762

Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS 1. Introduction to photoelectron spectroscopy

Embed Size (px)

Citation preview

Page 1: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

Chapter 3. Photoelectron spectroscopy- UPS & XPS

<ref>1. Introduction to photoelectron spectroscopy / P.K. Ghosh,

Wiley, 19832. http://sciborg.uwaterloo.ca/course_notes/chemistry/chem

129/pdfs/ c129notes_chapter_04.pdf3. Chimia 55 (2001) 759–762

Page 2: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

The Photoelectric Effect• Albert Einstein considered electromagnetic energy to

be bundled into little packets called photons.Energy of photon = E = hv

Where, h = Planck constant ( 6.62 x 10-34 J s ) v = frequency (Hz) of the radiation

– Photons of light hit surface electrons and transfer their energy

hv = B.E. + K.E.

– The energized electrons overcome their attraction and escape from the surface

• Photoelectron spectroscopy detects the kinetic energy of the electron escaped from the surface.

hve- (K.E.)

Page 3: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

KE = h? - BE

Page 4: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

• X-ray Photoelectron Spectroscopy (XPS) - using soft x-ray (200-2000 eV) radiation to

examine core-levels.

• Ultraviolet Photoelectron Spectroscopy (UPS) - using vacuum UV (10-45 eV) radiation to

examine valence levels.

Photoelectron spectroscopy- a single photon in/ electron out process

Page 5: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy
Page 6: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

Light sources: a Helium lamp emitting at 21.2 eV (He I radiation)or 40.8 eV (He II radiation)

Ultraviolet Photoelectron Spectroscopy(UPS)

Koopmans’Theorem

For a closed-shell molecule, the ionization energy of an electron in a particular orbital is approximately equal to the orbital energy.

I.E. = Eorbital = B.E.

such as H2 ? H2+ + e-

.... ,....

EKhvEIorEIhvEK−=

−=

Page 7: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

Vibrational Fine Structure in PES

Page 8: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

Vibrational energy states

)v'(....

)21

v()21

v()v( 2

+∆+=−⇒

+−+=

vib

eee

EEIEKhv

xhvhvE

where ΔEvib+(v’) = E+(v = v’) - E+(v = 0) is the extra (i.e., energy above

v = 0) vibrational energy of the ion.Lines corresponding to different vibrational energy levels of H2

+ , v = 0, 1, 2, 3, . . .,

Page 9: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

Figure 4.4: He(I) UPS spectrum of HCl gas.

1. Loss of a bonding electron decreases the bond order, increasing the bond length in the resulting cation compared to the parent molecule.

2. Loss of a nonbonding electron has no effect on bond order or bond length.

3. Loss of an antibonding electron increases the bond order, decreasing the bond length of the cation compared to the parent molecule.

Page 10: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

ΔN = N+ – J”where N+ and J”represent the rotational quantum numbers of the ion and the neutral, respectively.

Page 11: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

1.074 °A(σ1s)2(σ1s*)2 (σ2s)2

(σ2s*)1 (π2p)4(σ2p)2N2

+ (B)

1.1749 °A(σ1s)2(σ1s*)2 (σ2s)2

(σ2s*)2 (π2p)3(σ2p)2N2

+ (A)

1.11642 °A(σ1s)2(σ1s*)2 (σ2s)2

(σ2s*)2 (π2p)4(σ2p)1N2

+ (X)

1.09769 °A(σ1s)2(σ1s*)2 (σ2s)2

(σ2s*)2 (π2p)4(σ2p)2N2

Bond LengthElectronic Configuration

Molecule

Page 12: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

Vibrational frequencies from UPS spectra of CO and N2

1706CO+ (B)

1549CO+ (A)

2200 ? weakly antibondingCO+ (X)2157COυ (cm-1)molecule

1936N2+ (A)

2331N2

Page 13: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

UPS of the valence bands of solid H2O moleculeJ. Phys. C: Solid State Phys., 15 (1982) 2549-2558.

•Peak shift- charging effect•Broadening- molecular solid bonding and relaxation effects.

Page 14: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

UPS of the valence bands of solid CO2 moleculeJ. Phys. C: Solid State Phys., 15 (1982) 2549-2558.

Page 15: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy
Page 16: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy
Page 17: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

Commonly employed x-ray sources :

Al Kα radiation : hν = 1486.6 eVMg Kα radiation : hν = 1253.6 eV

Page 18: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

Ek = hν – Eb – ϕϕ = work function

Ek(KL1L2) = [Eb(K) – Eb(L1)] – Eb(L2) – ϕ

X-ray

Page 19: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

http://www.chem.qmw.ac.uk/surfaces/scc/scat5_3.htm

XPS spectrum obtained from a Pd metal sample

4d,5s4p

4s

Page 20: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

Spin-Orbit Splitting

in the region of the 3d emission(1s)2(2s)2(2p)6(3s)2(3p)6(3d)10 ....

→ (1s)2(2s)2(2p)6(3s)2(3p)6(3d)9 ....

L = 2 and S = 1/2 ? J = 5/2 and 3/2

Ground state

Page 21: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

1. the formal oxidation state of the atom 2. the local chemical and physical environment

Chemical Shifts

Page 22: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy
Page 23: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy
Page 24: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy
Page 25: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

Pt metal

Pt(0)

Pt(II)

Pt(IV)

Page 26: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy
Page 27: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy
Page 28: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

XPS and UPS Characterization of the TiO2/ZnPcGly Heterointerface: Alignment of Energy Levels

J. Phys. Chem. B 2002, 106, 5814-58

Molecular structure of dye ZnPcGly

Page 29: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

Figure 1. X-ray photoelectron spectra of (a) TiO2 film and (b) TiO2/ ZnPcGlyinterface deposited on transparent conducting oxide (TCO) glass.

Page 30: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

Figure 2. X-ray photoelectron spectra in the Ti2p region (a) and O1s region (b) for unsputtered and sputtered surface of TiO2 film. Spectra from bottom to top correspond to cases where TiO2 was unsputtered, after sputtering for 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 6.0, 8.5, and 9.0 min, respectively.

2p3/2 (459.4 eV)Ti(IV) 2p1/2 (465.1 eV)

Ti(II)

Ti(III) 531.5 eV- hydroxyl groups or defective oxides 533.1eV- adsorbed water

Page 31: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

Figure 4. XPS core level spectra of the TiO2 substrate and the dye (ZnPcGly) overlayer. (a,b) Ti 2p and O 1s level of TiO2 film (spectra a) and TiO2/ZnPcGly interface (spectra b); (c-e) C 1s, N 1s, and Zn 2p emission of the dye ZnPcGly.

Page 32: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

Figure 3. (a) Ultraviolet photoelectron spectra (He I) for the surface of unsputteredand sputtered TiO2 films. (b) Ultraviolet photoelectron spectra (He II) for the surface of unsputtered and sputtered TiO2 films.

VCB: valence band maximum(3.28 eV)Eg = 3.28 eV

SO: secondary electron onset(17.1 eV)EF = 21.2 – 17.1 = 4.1 eV

Defect Ti3+ 3d at ca. 0.8 eV

Page 33: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

Figure 5. (a) Ultraviolet photoelectron spectra (He I) for surface of bareTiO2 and TiO2/ZnPcGly. Inset: UPS in the valence band region for TiO2 and TiO2/ZnPcGly. (b) Ultraviolet photoelectron spectra (He II) for surface of bare TiO2 and TiO2/ZnPcGly. Inset: UPS in the valence band region for TiO2 and TiO2/ZnPcGly.

HOMOmax = 1.62 eV

Eg (ZnPcGly) = 1.82 eV from a optical measurements.? LUMOmax = -0.20 eV

Page 34: Chapter 3. Photoelectron spectroscopy- UPS & XPSsfcheng/HTML/UPS-XPS.pdf · Chapter 3. Photoelectron spectroscopy- UPS & XPS  1. Introduction to photoelectron spectroscopy

Figure 6. Energy diagram for nanoporous TiO2 surface and TiO2/ ZnPcGly interface determined from XPS and UPS measurements.