53
Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY Binghampton Bob Sekerka, CMU Peter Voorhees, NWU Adam Wheeler, U Southampton, UK July 9, 2001 Gravitational Effects in Physico-Chemical Systems: Interfacial Effects NASA Microgravity Research Program

Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Embed Size (px)

Citation preview

Page 1: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Phase-Field Methods

Jeff McFadden NIST

Dan Anderson, GWUBill Boettinger, NISTRich Braun, U DelawareJohn Cahn, NISTSam Coriell, NISTBruce Murray, SUNY BinghamptonBob Sekerka, CMUPeter Voorhees, NWUAdam Wheeler, U Southampton, UK

July 9, 2001

Gravitational Effects in Physico-Chemical Systems: Interfacial Effects

NASA Microgravity Research Program

Page 2: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Outline

1. Background

2. Surface Phenomena in Diffuse-Interface Models

• Surface energy and surface energy anisotropy

• Surface adsorption

• Solute trapping

• Multi-phase wetting in order-disorder transitions

3. Recent phase-field applications

• Monotectic growth

• Phase-field model of electrodeposition

Page 3: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Phase-Field ModelsMain idea: Solve a single set of PDEs over the entire domain

Phase-field model incorporates both bulk thermodynamics of multiphase systems and surface thermodynamics (e.g., Gibbs surface excess quantities).

Two main issues for a phase-field model:

Bulk Thermodynamics Surface Properties

Page 4: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Phase-Field ModelThe phase-field model was developed around 1978 by J. Langer at CMU as a computational technique to solve Stefan problems for a pure material. The model combines ideas from:

•Van der Waals (1893)

•Korteweg (1901)

•Landau-Ginzburg (1950)

•Cahn-Hilliard (1958)

•Halperin, Hohenberg & Ma (1977)

Other diffuse interface theories:

The enthalpy method

(Conserves energy)

The Cahn-Allen equation

(Includes capillarity)

Page 5: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Cahn-Allen Equation

J. Cahn and S. Allen (1977)

M. Marcinkowski (1963)

• Anti-phase boundaries in BCC system

• Motion by mean curvature:

• Surface energy:

• “Non-conserved” order parameter:

Page 6: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Ordering in a BCC Binary Alloy

Page 7: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Parameter Identification

• 1-D solution:

• Interface width:

• Surface energy:

• Curvature-dependence (expand Laplacian):

Page 8: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Phase-Field Model

• Introduce the phase-field variable:

J.S. Langer (1978)

• Introduce free-energy functional:

• Dynamics

Page 9: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Free Energy Function

Page 10: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Phase-Field Equations

Governing equations: • First & second laws

• Require positive entropy production

Penrose & Fife (1990), Fried & Gurtin (1993), Wang et al. (1993)

Thermodynamic derivation• Energy functionals:

Page 11: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Sharp Interface Asymptotics

• Consider limit in which

• Different distinguished limits possible.Caginalp (1988), Karma (1998), McFadden et al (2000)

• Can retrieve free boundary problem with

Page 12: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Outline

1. Background

2. Surface Phenomena in Diffuse-Interface Models

• Surface energy and surface energy anisotropy

• Surface adsorption

• Solute trapping

• Multi-phase wetting in order-disorder transitions

3. Recent phase-field applications

• Monotectic solidification

• Phase-field model of electrodeposition

Page 13: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Anisotropic Equilibrium Shapes

W. Miller & G. Chadwick (1969)

Hoffman & Cahn (1972)

Page 14: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Cahn-Hoffman -Vector

Taylor (1992)

Page 15: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Cahn-Hoffman -Vector

Equilibrium Shape is given by:

Force per unit length in interface:

Cahn & Hoffmann (1974)

Page 16: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Diffuse Interface Formulation

Kobayashi(1993), Wheeler & McFadden (1996), Taylor & Cahn (1998)

Page 17: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Corners & Edges In Phase-Field

• Steady case: where

• Noether’s Thm:

• where

• interpret as a “stress tensor”

• changes type when -plot is concave.

Fried & Gurtin (1993), Wheeler & McFadden 97

Page 18: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

• Jump conditions give:

• where

• and

Corners/Edges

(force balance)

Bronsard & Reitich (1993), Wheeler & McFadden (1997)

Page 19: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Corners and Edges

Eggleston, McFadden, & Voorhees (2001)

Page 20: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Outline

1. Background

2. Surface Phenomena in Diffuse-Interface Models

• Surface energy and surface energy anisotropy

• Surface adsorption

• Solute trapping

• Multi-phase wetting in order-disorder transitions

3. Recent phase-field applications

• Monotectic solidification

• Phase-field model of electrodeposition

Page 21: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Cahn-Hilliard Equation

Cahn & Hilliard (1958)

Page 22: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Phase Field Equations - Alloy

V

C dVcTcfF2

22

2

22),,(

0 22

fF

constant c- 22 Cc f

cF

Coupled Cahn-Hilliard & Cahn-Allen Equations

22

fM

t

-)1( 22 cc f

ccMtc

CC

R'Τ

DpDp M

cMMcM

LSC

BA

())(-1(

)-1(where{

Wheeler, Boettinger, & McFadden (1992)

Page 23: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Alloy Free Energy Function

)())(1()1(

ln)1ln()1(

),(),()1( T)c,,(

ppcc

ccccTR

Tf cTf-cf

LS

BA

Ideal Entropy

L and S are liquid and solid regular solution parameters

One possibility

Page 24: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

W. George & J. Warren (2001)

•3-D FD 500x500x500

•DPARLIB, MPI

•32 processors, 2-D slices of data

Page 25: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Surface Adsorption

McFadden and Wheeler (2001)

Page 26: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Surface Adsorption1-D equilibrium:

Differentiating, and using equilibrium conditions, gives

where

Cahn (1979), McFadden and Wheeler (2001)

Page 27: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Surface Adsorption

Ideal solution model Surface free energy Surface adsorption

Page 28: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Outline

1. Background

2. Surface Phenomena in Diffuse-Interface Models

• Surface energy and surface energy anisotropy

• Surface adsorption

• Solute trapping

• Multi-phase wetting in order-disorder transitions

3. Recent phase-field applications

• Monotectic solidification

• Phase-field model of electrodeposition

Page 29: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Solute Trapping

N. Ahmad, A. Wheeler, W. Boettinger, G. McFadden (1998)

At high velocities, solute segregation becomes small (“solute trapping”)

Increasing V

Page 30: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

D

DE

VV

VVkVk

/1

/)(

L

E

E

L

SD

D

)k(

)/k(

D

DV

1

1ln1

16

3

Nonequilibrium Solute Trapping

• Numerical results (points) reproduce Aziz trapping function

• With characteristic trapping speed, VD, given by

Page 31: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

0 2 4 6 8

ln k E /(k E -1 )

0

20

40

60

VD

(m

/s)

A l-In

A l-C uA l-G e

A l-S n

S i-B i

S i-S n

S i-G eS i-A s

S i-G a

S i-In

S i-S b

V D m easu rem en ts fro m S m ith & A ziz (1 9 9 5 )

Nonequilibrium Solute Trapping (cont.)

Page 32: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Outline

1. Background

2. Surface Phenomena in Diffuse-Interface Models

• Surface energy and surface energy anisotropy

• Surface adsorption

• Solute trapping

• Interface structure in order-disorder transitions

3. Recent phase-field applications

• Monotectic solidification

• Phase-field model of electrodeposition

Page 33: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Disordered

phase

CuAu

G. Tonaglu, R. Braun, J. Cahn, G. McFadden, A. Wheeler

FCC Binary Alloy

Page 34: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Ordering in an FCC Binary Alloy

Page 35: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Free Energy Functional

Page 36: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Equilibrium States in FCC

Page 37: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Wetting in Multiphase SystemsM. Marcinkowski (1963)

Kikuchi & Cahn CVM for fcc APB (Cu-Au)

R. Braun, J. Cahn, G. McFadden, & A. Wheeler (1998)

Phase-field model with 3 order parameters

Page 38: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Interphase Boundaries

Antiphase Boundaries

G. Tonaglu, R. Braun, J. Cahn, G. McFadden, A. Wheeler

Adsorption in FCC Binary Alloy

Page 39: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Outline

1. Background

2. Surface Phenomena in Diffuse-Interface Models

• Surface energy and surface energy anisotropy

• Surface adsorption

• Solute trapping

• Multi-phase wetting in order-disorder transitions

3. Recent phase-field applications

• Monotectic solidification

• Phase-field model of electrodeposition

Page 40: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Monotectic Binary Alloy

A liquid phase can “solidify” into both a solid and a different liquid phase.

Nestler, Wheeler, Ratke & Stocker 00

Expt: Grugel et al.

Page 41: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Incorporation of L2 into the solid phase

2L S 1L

Expt: Grugel et al.

Page 42: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Nucleation in L1 and incorporation of L2 into solid

1L

2L

S

2L2L

Expt: Grugel et al.

Page 43: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Outline

1. Background

2. Surface Phenomena in Diffuse-Interface Models

• Surface energy and surface energy anisotropy

• Surface adsorption

• Solute trapping

• Multi-phase wetting in order-disorder transitions

3. Recent phase-field applications

• Monotectic solidification

• Phase-field model of electrodeposition

Page 44: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Superconformal Electrodeposition

• Note the bumps over the filled features.

• Cross-section views of five trenches with different aspect ratios

– filled under a variety of conditions.

D. Josell, NIST

Page 45: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Phase-Field Model of Electrodeposition

J. Guyer, W. Boettinger, J. Warren, G. McFadden (2002)

Page 46: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY
Page 47: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

1-D Equilibrium Profiles

Page 48: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

1-D Dynamics

Page 49: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

• Phase-field models provide a regularized version of Stefan problems for computational purposes

• Phase-field models are able to incorporate both bulk and surface thermodynamics

• Can be generalised to:

• include material deformation (fluid flow & elasticity)

• models of complex alloys

• Computations:

• provides a vehicle for computing complex realistic microstructure

Conclusions

Page 50: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

(b) t = 10 sfs = 0.70

(a) t = 0 sfs = 0.00

(e) t = 210 sfs = 0.97

(f) t = 1500 sfs = 0.98

(c) t = 30 sfs = 0.82

(d) t = 75 sfs = 0.94

125 m

Photo: W. Kurz, EPFL

Experimental Observation of Dendrite Bridging Process

Page 51: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

Dendrite side arm bridging

Y

X

•Collision of offset arms - Delayed bridging

Page 52: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

0

0,2

0,4

0,6

0,8

1

-2,E-08 -1,E-08 0,E+00 1,E-08 2,E-08

Coalescence of two Grains Using Multi-Grain ModelCoalescence of two Grains Using Multi-Grain Model

0

0,2

0,4

0,6

0,8

1

-2,E-08 -1,E-08 0,E+00 1,E-08 2,E-08

gbgb = 0.3 = 0.3 sl sl = 0.1= 0.1

T = 0 KT = 0 K

gbgb = 0.3 = 0.3 sl sl = 0.1= 0.1

T = 50 KT = 50 K

xx

Large misorientationLarge misorientation > 0> 0

grains “repel”grains “repel”

; Disjoining Pressure

W. Boettinger (NIST) & M. Rappaz (EPFL)W. Boettinger (NIST) & M. Rappaz (EPFL)

Page 53: Phase-Field Methods Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware John Cahn, NIST Sam Coriell, NIST Bruce Murray, SUNY

-Tensor Derivation