40
se-Field Models of Solidification McFadden Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST Bruce Murray, SUNY Binghampton Bob Sekerka, CMU Jim Warren, NIST Adam Wheeler, U Southampton, UK Outline • Background • Phase-Field Models • Numerical Computations NASA Microgravity Research Program

Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Embed Size (px)

Citation preview

Page 1: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Phase-Field Models of Solidification

Jeff McFadden NIST

Dan Anderson, GWUBill Boettinger, NISTRich Braun, U DelawareSam Coriell, NISTJohn Cahn, NISTBruce Murray, SUNY BinghamptonBob Sekerka, CMUJim Warren, NISTAdam Wheeler, U Southampton, UK

Outline• Background• Phase-Field Models• Numerical Computations

NASA Microgravity Research Program

Page 2: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Atomistic scaleAtomistic scaleÅ

Dendrite scaleDendrite scalem

Grain scaleGrain scalemm

Component scaleComponent scalecm - m

How to connect these various scales ?How to connect these various scales ?

Modeling at various length scalesModeling at various length scales

2 nm

40 m 10 mm

M. Rappaz, EPFL

Page 3: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Liquid decanted during freezing Polished and etched microstructure after freezing

Dendritic Microstructure

Page 4: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Freezing a Pure Liquid

Dendrite

Glicksman

Hele Shaw

Saffman & Taylor

Page 5: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Stefan Problem

Solid

Liquid

• Interface is a surface; • No thickness;• Physical properties:

•Surface energy, kinetics

• Conservation of energy

Page 6: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Surface Energy

• Critical Nucleus and Coarsening

• Grain Boundary Grooves

• Wavelength of instabilities

Page 7: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Critical Nucleus and Coarsening

P. Voorhees & R. Schaefer (1987)

Critical Nucleus:

Coarsening:

Minimize the total surface energy

for a given volume of inclusions

Page 8: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Grain Boundary Grooves

S.C. Hardy (1977)

Page 9: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Wavelength of Instabilities

S. Hardy and S. Coriell (1968)

Ice cylinder growing into

supercooled water, MTT

Instability wavelength

depends on surface energy:

Page 10: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Morphological Instability

Mullins & Sekerka (1963, 1964)

“Point effect” “Constitutional supercooling”

Page 11: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Phase-Field ModelThe phase-field model was developed around 1978 by J. Langer at CMU as a computational technique to solve Stefan problems for a pure material. The model combines ideas from:

•Van der Waals (1893)

•Korteweg (1901)

•Landau-Ginzburg (1950)

•Cahn-Hilliard (1958)

•Halperin, Hohenberg & Ma (1977)

Other diffuse interface theories:

The enthalpy method

(Conserves energy)

The Cahn-Allen equation

(Includes capillarity)

Page 12: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Cahn-Allen Equation

J. Cahn and S. Allen (1977)

M. Marcinkowski (1963)

• Description of anti-phase boundaries (APBs)

• Motion by mean curvature:

• Surface energy:

• “Non-conserved” order parameter:

Page 13: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Ordering in a BCC Binary Alloy

Page 14: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Parameter Identification

• 1-D solution:

• Interface width:

• Surface energy:

• Curvature-dependence (expand Laplacian):

Page 15: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Phase-Field ModelsMain idea: Solve a single set of PDEs over the entire domain

Phase-field model incorporates both bulk thermodynamics of multiphase systems and surface thermodynamics (e.g., Gibbs surface excess quantities).

Two main issues for a phase-field model:

Bulk Thermodynamics Surface Thermodynamics

L

Page 16: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Phase-Field Model

• Introduce the phase-field variable:

• Introduce free-energy functional:

J.S. Langer (1978)

• Dynamics

Page 17: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Free Energy Function

Page 18: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Phase-Field Equations

Governing equations: • First & second laws

• Require positive entropy production

Penrose & Fife (1990), Fried & Gurtin (1993), Wang et al. (1993)

Thermodynamic derivation• Energy functionals:

Page 19: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Planar Interface

where

• Particular phase-field equation

• Exact isothermal travelling wave solution:

where

when

Page 20: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Sharp Interface Asymptotics

• Consider limit in which

• Different distinguished limits possible.Caginalp (1988), Karma (1998), McFadden et al (2000)

• Can retrieve free boundary problem with

• Or variation of Hele-Shaw problem...

Page 21: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Numerics

• Advantages - no need to track interface - can compute complex interface shapes

• Disadvantage - have to resolve thin interfacial layers

• State-of-the-art algorithms (C. Elliot, Provatas et al.) useadaptive finite element methods

• Simulation of dendritic growth into an undercooled liquid...

Page 22: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Provatas, Goldenfeld & Dantzig (1999) Dendrite Simulation

Page 23: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Anisotropic Equilibrium Shapes

Cahn & Hoffmann (1972)

W. Miller & G. Chadwick (1969)

Page 24: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Sharp Interface Formulation

• Sharp interface limit:• McFadden & Wheeler (1996)

• is a natural extension of the Cahn-Hoffman of sharp interface theory

• Cahn & Hoffman (1972, 1974)

• is normal to the -plot:

• Isothermal equilibrium shape given by

• Corners form when -plot is concave;

Page 25: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Diffuse Interface Formulation

• Recall:

• Suggests:

where:

• Phase-field equation:

where the so-called -vector is defined by:

Page 26: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Corners and Edges

Taylor & Cahn (1998), Wheeler & McFadden (1997)

Eggleston, McFadden, & Voorhees (2001)

Page 27: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Cahn-Hilliard Equation

Cahn & Hilliard (1958)

Page 28: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Phase Field Equations - Alloy

V

C dVcTcfF2

22

2

22),,(

0 22

fF

constant c- 22 Cc f

cF

Coupled Cahn-Hilliard & Cahn-Allen Equations

22

fM

t

-)1( 22 cc f

ccMtc

CC

R'Τ

DpDp M

cMMcM

LSC

BA

())(-1(

)-1(where{

Wheeler, Boettinger, & McFadden (1992)

Page 29: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Alloy Free Energy Function

)())(1()1(

ln)1ln()1(

),(),()1( T)c,,(

ppcc

ccccTR

Tf cTf-cf

LS

BA

Ideal Entropy

L and S are liquid and solid regular solution parameters

One possibility

Page 30: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST
Page 31: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Inclusion of Surface Properties

•Surface Adsorption

•Wetting in Multiphase Systems

•Solute Trapping

(More than a computational device)

Examples:

Page 32: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Surface Adsorption

McFadden and Wheeler (2001)

Page 33: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Solute Trapping

N. Ahmad, A. Wheeler, W. Boettinger, G. McFadden (1998)

At high velocities, solute segregation becomes small (“solute trapping”)

Results agree well with other trapping models (Aziz 1988)

Page 34: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Wetting in Multiphase SystemsM. Marcinkowski (1963)

Kikuchi & Cahn CVM for fcc APB (CuAu)

R. Braun, J. Cahn, G. McFadden, & A. Wheeler (1998)

Phase-field model with 3 order parameters

Page 35: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Early Phase-Field Calculations

•G. Caginalp & E. Socolovsky (1991, 1994)

•R. Kobayashi (1993, 1994)

• A. Wheeler, B. Murray, R. Schaefer (1993)

•2nd order accurate finite differences on 2-D uniform mesh

•Explicit time-stepping for phase-field equation

•Implicit (ADI) for energy equation

•Mesh convergence an issue

•Vector machines (Cray)

•Roldan Pozo (benchmarks on PC cluster at NIST)

Page 36: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

Adaptive Meshing

•R. Braun, B. Murray, & J. Soto (1997)

º VLUGR2, vectorized, adaptive finite difference solver

•R. Almgren & A. Almgren (1996)

º 2-D, second-order accurate, semi-implicit

•N. Provatis, N. Goldenfeld, & J. Dantzig (1999)

º 2D, Galerkin FE, dynamically adaptive, quadtree

•M. Plapp & A. Karma (2000)

º Hybrid FD Mesh/diffusion Monte Carlo method

Page 37: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

A. Karma & W.-J. Rappel (1997)

•Uniform 300x300x300 mesh

•Grid-corrected anisotropy

Page 38: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

W. George & J. Warren (2001)

•3-D FD 500x500x500

•DPARLIB, MPI

•32 processors, 2-D slices of data

Page 39: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

J. Jeong, N. Goldenfeld, & J. Dantzig (2001)

Charm++ FEM framework, hexahedral elts, octree, 32 processors, METIS

Page 40: Phase-Field Models of Solidification Jeff McFadden NIST Dan Anderson, GWU Bill Boettinger, NIST Rich Braun, U Delaware Sam Coriell, NIST John Cahn, NIST

• Phase-field models provide a regularized version of Stefan problems for computational purposes

• Phase-field models are able to incorporate both bulk and surface thermodynamics

• Can be generalised to:

• include material deformation (fluid flow & elasticity)

• models of complex alloys

• Computations:

• provides a vehicle for computing complex realistic microstructure

Conclusions