Phase Diagrams

Embed Size (px)

DESCRIPTION

Phase Diagrams—EquilibriumMicrostructuralDevelopment

Citation preview

  • CHAPTER9Phase Diagrams

    EquilibriumMicrostructural

    Development

    The microstructure of a slowly cooled eutec-tic soft solder ( 38 wt % Pb wt % Sn)consists of a lamellar structure of tin-rich solidsolution (white) and lead-rich solid solution(dark), 375X. (From ASM Handbook, Vol.3: Alloy Phase Diagrams, ASM International,Materials Park, Ohio, 1992.)

  • Figure 9-1 Single-phase microstructure of commerciallypure molybdenum, 200. Although there are manygrains in this microstructure, each grain has the same,uniform composition. (From Metals Handbook, 8thed., Vol. 7: Atlas of Microstructures, American Societyfor Metals, Metals Park, Ohio, 1972.)

  • Figure 9-2 Two-phase microstructure of pearlite found ina steel with 0.8 wt % C, 500. This carbon content isan average of the carbon content in each of the alter-nating layers of ferrite (with
  • TemperatureGas

    Liquid

    Solid

    1 atmPressure (log scale)

    (a) (b)

    Water

    Ice

    Steam100

    0

    T( C)

    Figure 9-3 (a) Schematic representation of the one-component phase diagram for H2O.(b) A projection of the phase diagram information at 1 atm generates a temperaturescale labeled with the familiar transformation temperatures for H2O (melting at 0Cand boiling at 100C).

  • Temperature

    Gas Liquid

    1 atmPressure (log scale)

    (a) (b)

    Liquid

    T(C)

    15381394

    910

    Figure 9-4 (a) Schematic representation of the one-component phase diagram for pureiron. (b) A projection of the phase diagram information at 1 atm generates a tempera-ture scale labeled with important transformation temperatures for iron. This projectionwill become one end of important binary diagrams such as Figure 919.

  • Tem

    pera

    ture

    Melting pointof A

    Melting pointof B

    A B0 20 40 60 80 100 wt % B

    100 80 60 40 20 0 wt % A

    Composition (wt %)

    L + SS

    Liquidus

    Solidus

    SS

    L

    Figure 9-5 Binary phase diagram showing complete solid solution. The liquid-phase eld is labeled L and the solid solution is designated SS. Note thetwo-phase region labeled L C SS.

  • A B

    Compositionof SS at T1

    Compositionof L at T1

    Statepoint

    Systemcomposition

    L + SS

    Systemtemperature

    X1

    SS

    L

    T1

    Figure 9-6 The compositions of the phases in a two-phase region of the phasediagram are determined by a tie line (the horizontal line connecting the phasecompositions at the system temperature).

  • Composition

    Temperature

    A B

    F = C P + 1

    F = 2 1 + 1 = 2 F = 1 2 + 1 = 0

    F = 2 1 + 1 = 2

    F = 2 2 + 1 = 1

    Figure 9-7 Application of Gibbs phase rule (Equation 9.2) to various pointsin the phase diagram of Figure 95.

  • A B

    Systemcomposition

    Temperature

    T1L1

    Lsystem

    Composition

    SS1

    SSsystem

    All liquid (Lsystem)

    Crystallites of SS1in matrix of L1

    Polycrystalline solid(SSsystem)

    Figure 9-8 Various microstructures characteristic of different regions inthe complete solid-solution phase diagram.

  • Cu 20 4010

    10

    1084.87

    C

    14551500

    1400

    1300

    1200

    1100

    1000

    900

    800

    700

    600

    500

    20 30 40 50 60 70 80 90

    30 50Weight percentage nickel

    Atomic percentage nickel

    70 9060 80 Ni

    L

    Figure 9-9 CuNi phase diagram. (After Metals Handbook, 8th ed., Vol. 8:Metallography, Structures, and Phase Diagrams, American Society forMetals, Metals Park, Ohio, 1973, and Binary Alloy Phase Diagrams, Vol.1, T. B. Massalski, ed., American Society for Metals, Metals Park, Ohio,1986.)

  • 2800

    2600

    2400

    2200

    2000

    C

    NiO 20 40 60

    L + SS

    SS

    L

    80 MgO

    Mole % MgO

    Figure 9-10 NiOMgO phase diagram. (After PhaseDiagrams for Ceramists, Vol. 1, American CeramicSociety, Columbus, Ohio, 1964.)

  • AL

    A + LL + B

    A + B

    B

    Eutectictemperature

    EutecticComposition

    Tem

    pera

    ture

    Composition

    Liquidus

    Solidus

    Figure 9-11 Binary eutectic phase diagram showing no solid so-lution. This general appearance can be contrasted to the op-posite case of complete solid solution illustrated in Figure 95.

  • A BComposition

    Leutectic

    Temperature

    Crystallites of Ain matrix of L1

    All liquid (Leutectic)

    Crystallites of Bin matrix of L2

    Eutectic microstructurefine, alternating layers ofA and B

    L1 L2

    Figure 9-12 Various microstructures characteristic of different regions in a binary eutectic phase di-agram with no solid solution.

  • 300

    400

    500

    600

    1.6 12.6577

    1414

    C

    700660.452

    800

    900

    1000

    1100

    1200

    1300

    1400

    1500

    A1 10 20 30 40 50 60 70 80 90

    10 20 30 40 50 60 70 80 90

    Si

    Weight percentage, silicon

    Atomic percentage, silicon

    L

    Figure 9-13 AlSi phase diagram. (After Binary Alloy Phase Diagrams, Vol.1, T. B. Massalski, ed., American Society for Metals, Metals Park, Ohio,1986.)

  • LA B

    Tem

    pera

    ture

    Composition

    Figure 9-14 Binary eutectic phase diagram withlimited solid solution. The only differencefrom Figure 911 is the presence of solid-solutionregions and .

  • Leutectic

    A B

    Temperature

    Composition

    All liquid (Leutectic)

    L1 L2

    Figure 9-15 Various microstructures characteristic of different regions in the binary eutectic phase di-agram with limited solid solution. This illustration is essentially equivalent to Figure 912 exceptthat the solid phases are now solid solutions ( and ) rather than pure components (A and B).

  • 10400C

    327.502

    300

    200

    100

    0Pb 10 20 30 40

    L

    50 60 70 80 90 Sn

    20 30 40 50 60

    Atomic percentage tin

    Weight percentage tin

    70 80 90

    19 183 61.9 97.5

    231.9681

    13

    Figure 9-16 PbSn phase diagram. (After Metals Handbook, 8th ed., Vol. 8: Metallogra-phy, Structures, and Phase Diagrams, American Society for Metals, Metals Park, Ohio,1973, and Binary Alloy Phase Diagrams, Vol. 2, T. B. Massalski, ed., American Societyfor Metals, Metals Park, Ohio, 1986.)

  • LA B

    Temperature

    Eutectoidtemperature

    Eutectictemperature

    Eutectoidcomposition

    Eutecticcomposition

    Composition

    Figure 9-17 This eutectoid phase diagram contains both a eutectic reaction (Equa-tion 9.3) and its solid-state analog, a eutectoid reaction (Equation 9.4).

  • A B

    Temperature

    Composition

    Figure 9-18 Representative microstructures for the eutectoid diagram of Figure 917.

  • Atomic percentage carbonC 2 5

    L

    10 15 20 251700

    15381495

    1394

    1148

    2.11 4.30

    L + Fe3C

    Fe

    Weight percentage carbon

    1 2 3 4 5 6 7

    727

    0.02 0.77

    6.69

    1227C

    912

    1600

    1500

    1400

    1300

    1200

    1100

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

    0

    Fe3C(cementite)

    Figure 9-19 FeFe3C phase diagram. Note that the composi-tion axis is given in weight percent carbon even though Fe3C,and not carbon, is a component. (After Metals Handbook,8th ed., Vol. 8: Metallography, Structures, and Phase Di-agrams, American Society for Metals, Metals Park, Ohio,1973, and Binary Alloy Phase Diagrams, Vol. 1, T. B. Mas-salski, ed., American Society for Metals, Metals Park, Ohio,1986.)

  • Atomic percentage carbon

    15381495

    1394

    1154

    4.26

    L + C

    Weight percentage carbon

    738

    2.08

    0.02 0.68

    912

    C(graphite)

    2C2200

    2100

    2000

    1900

    1800

    1700

    1600

    1500

    1400

    1300

    1200

    1100

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

    0Fe 1 2 3 4 5 6 99 100

    5 10 15 20 25

    Figure 9-20 FeC phase diagram. The left side of this dia-gram is nearly identical to that for the FeFe3C diagram(Figure 919). In this case, however, the intermediate com-pound Fe3C does not exist. (After Metals Handbook, 8thed., Vol. 8: Metallography, Structures, and Phase Dia-grams, American Society for Metals, Metals Park, Ohio,1973, and Binary Alloy Phase Diagrams, Vol. 1, T. B.Massalski, ed., American Society for Metals, Metals Park,Ohio, 1986.)

  • A AB

    A + AB

    AB + B

    L + B

    L + ABA + L

    L

    B

    Temperature

    Composition ofliquid formed upon

    melting of AB

    Composition

    Figure 9-21 Peritectic phase diagram showing a peritec-tic reaction (Equation 9.5). For simplicity, no solidsolution is shown.

  • A AB

    Crystallites of Bin matrix of L1

    Polycrystalline solid(compound AB)

    L

    B

    Temperature

    Composition

    Figure 9-22 Representative microstructures for the peritectic diagram ofFigure 921.

  • 2200

    2100L

    2000

    1900

    1726

    1587

    1890

    2054

    1800

    1700

    1600

    1500

    140010 20 30 40 50 60 70 80 90 Al2O3

    Mole % Al2O3

    C

    SiO2 (cristobalite) + L

    SiO2 (cristobalite) + mullite(SS)

    SiO2

    mul

    lite(

    SS)

    Al2O3 + mullite(SS)

    L + Al2O3

    L + mullite(SS)

    Figure 9-23 Al2O3SiO2 phase diagram. Mullite is an intermediate com-pound with ideal stoichiometry 3Al2O3 2SiO2. (After F. J. Klug, S.Prochazka, and R. H. Doremus, J. Am. Ceram. Soc. 70, 750 (1987).)

  • Figure 9-24 (a) Binary phase dia-gram with a congruently meltingintermediate compound, AB. Thisdiagram is equivalent to two sim-ple binary eutectic diagrams (theAAB and ABB systems). (b)For analysis of microstructure foran overall composition in the ABB system, only that binary eutecticdiagram need be considered.

    Tem

    pera

    ture

    A

    A + L

    A + ABAB + B

    L + ABAB + L B + L

    AB

    L

    B

    Composition

    (a)

    Tem

    pera

    ture

    A

    AB + B

    AB + L B + L

    AB

    L

    B

    Composition

    (b)

    L + ABA + L

    A + AB

  • Temperature

    Composition(a)

    A A2B AB AB2 AB4 B

    L

    Temperature

    Composition

    A A2B AB AB2 AB4 B

    L

  • 10 30 5020 40 60 8070 90MgO Al2O3

    Spinal (SS) + Al2O3

    L + Al2O3

    Mole % Al2O3

    3000

    2500

    Periclase (SS)+ L

    Periclase (SS)

    Periclase (SS) + spinel (SS)

    L + spinel (SS)

    L

    2000

    1500

    1000

    C

    Spinel (SS)

    Figure 9-26 MgOAl2O3 phase diagram. Spinel is an intermediate com-pound with ideal stoichiometry MgO Al2O3. (After Phase Diagramsfor Ceramists, Vol. 1, American Ceramic Society, Columbus, Ohio,1964.)

  • Atomic percentage, copper

    Weight percentage, copper

    300

    400

    500

    600

    700

    800

    900

    1000

    1100

    Al 10

    0 10 20 30 40 50 60 70 80 90 100

    20 30 40 50 60 70 80 90 Cu

    L

    660.452

    5.65 32.7548.2

    53.5

    52.5567

    1084.87

    C

    1

    Figure 9-27 AlCu phase diagram. (After Binary Alloy Phase Diagrams, Vol. 1, T. B. Massalski,ed., American Society for Metals, Metals Park, Ohio, 1986.)

  • Atomic percentage, magnesium

    Weight percentage, magnesium

    100

    200

    300

    400

    500

    600

    700

    Al 10

    10

    660.452 650

    87.436.1

    17.1

    45035.6

    59.8437

    66.7

    20 30 40 50 60 70 80 90 100

    20 30 40 50 60 70 80 90

    C

    L

    d

    455

    Mg

    Figure 9-28 AlMg phase diagram. (After Binary Alloy Phase Diagrams, Vol. 1, T. B.Massalski, ed., American Society for Metals, Metals Park, Ohio, 1986.)

  • 4501 2 3

    400

    350

    300

    250

    200

    150

    1001

    Cu

    130010 20 30 40 50 60 70 80 90

    1250

    1200

    1150

    1100 1084.87

    37.5

    59.8

    80.5

    56.5

    69.8

    36.832.5

    39.0

    C

    L

    1050

    1000

    950

    900

    850

    800

    750

    700

    650

    600

    550

    500

    450

    400

    350

    300

    250

    200

    150

    100

    50

    010 205 15 25 35 45 55 65 75 85 9530 40 50

    Weight percentage, zinc

    Atomic percentage, zinc

    60 70 80 90 Zn

    Weight percentage Cu

    Atomic percentage Cu

    Zn 2 3

    2.7

    L 1.7 424

    903

    835

    73.0

    74.1

    87.5

    98.3

    78.6 598

    45646848.9

    45.5

    99.7%at 100

    419.58

    42497.3

    700

    558

    Figure 9-29 CuZn phase diagram. (After Metals Hand-book, 8th ed., Vol. 8: Metallography, Structures, andPhase Diagrams, American Society for Metals, MetalsPark, Ohio, 1973, and Binary Alloy Phase Diagrams,Vol. 1, T. B. Massalski, ed., American Society for Met-als, Metals Park, Ohio, 1986.)

  • CubicZrO2SS + ZrCaO3

    Cub

    ic Z

    rO2S

    S

    Tetr

    agon

    al Z

    rO2S

    S

    Tetr

    agon

    al Z

    rO2S

    S +

    Cub

    ic Z

    rO2S

    S

    Mon

    oclin

    ic Z

    rO2S

    S +

    Cub

    ic Z

    rO2S

    S

    4

    2500

    2000

    1500

    1000

    500

    0

    8 12CaO (wt %)

    16 20 24 28C

    ZrO2 10 20 30 40 50CaO (mol %)

    Figure 9-30 CaOZrO2 phase diagram. The dashed linesrepresent tentative results. (After Phase Diagrams forCeramists, Vol. 1, American Ceramic Society, Colum-bus, Ohio, 1964.)

  • Te

    m

    p

    e

    r

    a

    t

    u

    r

    e

    Composition

    A A2B AB AB2 AB4 B

    L

  • Temperature

    A

    0 30 50 80 100

    L

    T1

    L + SS

    SS

    BComposition (wt % B)mL + mSS = mtotal0.30mL + 0.80mSS = 0.50mtotal

    fi mL = 0.60mtotalmSS = 0.40mtotal

    Figure 9-31 A more quantitative treatment of the tie lineintroduced in Figure 96 allows the amount of eachphase (L and SS) to be calculated by means of a massbalance (Equations 9.6 and 9.7).

  • (a)

    (b)Fulcrum

    Figure 9-32 The lever rule is a mechanical anal-ogy to the mass balance calculation. The(a) tie line in the two-phase region is analo-gous to (b) a lever balanced on a fulcrum.

  • Temperature

    A

    T1

    T2

    T3

    SSsystem

    SS3

    SS2

    SS1

    Lsystem

    L3

    L2

    L1

    BComposition

    100% liquid(Lsystem)

    10% SS1 inmatrix of L1

    40% SS2 inmatrix of L2

    90% SS3 inmatrix of L3

    100% Solid(SSsystem)

    Figure 9-33 Microstructural development during the slow cooling of a50% A50% B composition in a phase diagram with complete solidsolution. At each temperature, the amounts of the phases in the mi-crostructure correspond to a lever rule calculation. The microstruc-ture at T2 corresponds to the calculation in Figure 931.

  • 100% liquid(Leutectic)

    Leutectic

    Temperature

    T1

    T2

    CompositionA B

    *The only differences from the T1 microstructure arethe phase compositions and the relative amounts ofeach phase. For example, the amount of b will beproportional to

    Figure 9-34 Microstructural development during the slow coolingof a eutectic composition.

  • 100% liquid(Lsystem = 80% B)

    Temperature

    T2 (= Teutectic + 1 )T3 (= Teutectic 1 )

    0 30 60 9080Composition (wt % B)A

    100B

    Lsystem

    L2 L1

    Figure 9-35 Microstructural development during the slow cooling of a hypereutectic com-position.

  • 100% liquid(Lsystem = 40% B)

    Temperature

    T2 (= Teutectic + 1 )T3 (= Teutectic 1 )

    0 30 60 9040Composition (wt % B)A

    100B

    Lsystem

    L1

    Figure 9-36 Microstructural development during the slow cooling of a hypoeutectic com-position.

  • 100% liquid(Lsystem = 10% B)

    100% liquid(Lsystem = 20% B)uid

    (Lsystem = 20%

    Temperature

    0 10

    (a)

    Composition (wt % B)A

    100

    B

    Lsystem

    L1

    Temperature

    0 10 20

    (b)

    Composition (wt % B)A

    100

    B

    Lsystem

    L1

    Figure 9 37 Mi t t l d l t f t iti th t id th

  • Temperature

    100% liquid(3% C)

    0 3.0

    Weight percentage carbon

    6.7

    L1

    Figure 9-38 Microstructural development for white cast iron (of compo-sition 3.0 wt % C) shown with the aid of the FeFe3C phase diagram.The resulting (low-temperature) sketch can be compared with a mi-crograph in Figure 111a.

  • Temperature

    0 0.77 6.7Weight percentage carbon

    Figure 9-39 Microstructural development for eutectoid steel (ofcomposition 0.77 wt % C). The resulting (low-temperature)sketch can be compared with the micrograph in Figure 92.

  • Temperature

    Proeutectoid cementite+ pearlite

    Weight percentage carbon

    0 1.13 6.7

    Figure 9-40 Microstructural development for a slowly cooled hypereutectoid steel(of composition 1.13 wt % C).

  • Temperature

    Proeutectoid ferrite+ pearlite

    0 0.50

    Weight percentage carbon

    6.7

    Figure 9-41 Microstructural development for a slowly cooled hypoeutectoid steel(of composition 0.50 wt % C).

  • Temperature

    0 3 100

    Weight percentage carbon

    C flakes (from eutecticand eutectoid reactions)in matrix of ferrite

    L1

    100% liquid(3% C)

    Figure 9-42 Microstructural development for gray cast iron (of compo-sition 3.0 wt % C) shown on the FeC phase diagram. The resultinglow-temperature sketch can be compared with the micrograph inFigure 111b. A dramatic difference is that, in the actual microstruc-ture, a substantial amount of metastable pearlite was formed at theeutectoid temperature. It is also interesting to compare this sketchwith that for white cast iron in Figure 938. The small amount ofsilicon added to promote graphite precipitation is not shown in thistwo-component diagram.

  • TThe phase diagram for this alloy system is

    A B