Phan Phoi Xac Suat.pdf

Embed Size (px)

Citation preview

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Cc phn phi xc sut thng gp

    Nguyn Th Hng Nhung

    Ngy 16 thng 11 nm 2013

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Table of contents

    1 Cc phn phi ri rcPhn phi BernoulliPhn phi nh thcPhn phi Poisson

    2 Cc phn phi lin tcPhn phi uPhn phi mPhn phi chun haPhn phi chunHm phn phi GammaPhn phi StudentPhn phi Chi bnh phng

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Bin ngu nhin Bernoulli

    nh ngha 1 (Bin ngu nhin Bernoulli)

    Thc hin mt php th, ta quan tm n bin c A. Nu binc A xy ra ( thnh cng) th X nhn gi tr l 1 (X = 1), ngcli bin ngu nhin X nhn gi tr 0. Php th ny gi l phpth Bernoulli. Gi s xc sut xy ra bin c A l p, 0 < p < 1

    P(A) = P(X = 1) = p

    vP(A) = P(X = 0) = 1 p = q.

    khi , bin ngu nhin X c gi l bin ngu nhin c phnphi Bernoulli vi tham s p, k hiu X B(1; p).

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi Bernoulli

    V d 1

    Cc php th sau y cho kt qu l mt bin ngu nhinBernoulli

    Tung ngu nhin mt ng xu: X = 1 nu xut hin mtsp, X = 0 nu xut hin mt nga.

    Mua v s: X = 0 nu khng trng s, X = 1 nu trng s.

    Tr li ngu nhin mt cu trc nghim : X = 0 nu tr ling, X = 1 nu tr li sai.

    Nhn xt 1

    Mi th nghim ngu nhin c hai kt qu u c phn phiBernoulli.

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi Bernoulli

    Bng phn phi xc sut

    Bng phn phi xc sut ca bin ngu nhin X B(1; p) cdng

    X 1 0

    P p q

    vi q = 1 p.Da vo bng phn phi xc sut ca bin ngu nhin X ta c

    E(X ) = p

    Var(X ) = pq.

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi nh thc

    nh ngha 2 (Binomial distribution)

    Thc hin n php th Bernoulli c lp vi xc sut thnh cngtrong mi php th l p. Gi X l s ln thnh cng ( bin c Axy ra) trong n php th th

    X = X1 + X2 + ...+ Xn

    vi Xi , (i = 1, 2, ..., n), l bin ngu nhin c phn phi Bernoullivi cng tham s p.Khi X l bin ngu nhin ri rc vi min gi trS = {0, 1, ...., n} v xc sut

    P(X = k) = C kn pkqnk , k S

    X c gi l c phn phi nh thc vi tham s n, p k hiuX B(n, p).

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi nh thc- V d

    V d 2

    Mt l thuc, c t l hng p = 0.2 . Ta ly ngu nhin 5 l. GiX l s l hng trong s l ly ra. Tm hm mt xc sut caX .

    Bi gii 1

    Quan st l thuc trong 5 ln c lp. P(h) = p = .2.Gi X l s l b hng trong 5 l ly ra. Vy X {0, 1, 2, .., 5}v X B(5; 0.2) vi hm phn phi

    f (h) =

    {Ch5(0.2)

    h(1 0.2)5h, h = 0, 1, ..., 50 ni khc

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi nh thc- V d

    Ta c bng phn phi xc sut

    H 0 1 2 3 4 5

    P(H = h) 0.32768 .4096 .2048 0.0512 .0064 0.0032

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi nh thc- V d

    V d 3

    Trong mt nh my sn xut vi mch in t, bit rng t l vimch khng t cht lng l 5%. Kim tra ngu nhin 15 vimch. Tnh xc sut

    a C ng 7 vi mch khng t cht lng

    b C t nht 1 vi mch khng t cht lng

    V d 4

    Mt gia nh c 5 ngi con. Tnh xc sut gia nh ny

    i C ng 2 con trai

    ii c nhiu nht 2 con trai

    iii c t nht 2 con trai.

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi nh thc

    nh l 1 (Cc c trng ca BNN c phn phi nh thc)

    Nu X l bin ngu nhin c phn phi nh thc B(n; p) th

    i E(X ) = np.ii Var(X ) = npq.iii Vi x , h l hai s nguyn dng th

    P(x X x + h) = P(X = x) + P(X = x + 1) + ...... +P(X = x + h)

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi Poisson

    nh ngha 3 (Poisson distribution)

    Bin ngu nhin ri rc X nhn cc gi tr t 0, 1, 2, ... gi l cphn phi Poisson vi tham s , k hiu X P() nu hmmt xc sut c dng

    f (x) = P(X = x) =ex

    x!, x = 0, 1, 2, ...

    vi > 0.

    nh l 2 (Cc c trng ca bin ngu nhin c phn phiPoisson)

    Nu bin ngu nhin X c phn phi Poisson vi tham s ,X P() th k vng v phng sai ca X ln lt bng

    E(X ) = ,Var(X ) = .

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Xp x phn phi nh thc bng phn phi Poisson

    nh l 3

    Cho X B(n, p), nu n v p 0 sao cho np th

    P(X = x) =ex

    x!.

    Trong thc t, phn phi Poisson s xp x tt cho phn phinh thc khi n 100 v np 20, p 0.01.

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi Poisson

    Mt s bin ngu nhin m t cc s kin sau thng cxem l tun theo phn phi Poisson

    i S li in trong mt ( hoc mt s) trang sch.

    ii S ngi sng lu trn 100 tui trong mt cng ng dnc.

    iii S ngi n mt bu in no trong mt ngy.

    iv S tai nn hoc s c giao thng xy ra ti mt im giaothng trong mt ngy....

    Cc bin ngu nhin c s dng m t, " m" s ln xyra ca mt bin c, s kin no xy ra trong mt khong thigian v tha mt s iu kin ( cc iu kin ny thng thatrong thc t ) thng c m t bng phn phi Poisson.

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi Poisson- V d

    V d 5

    Gi s s li in trong mt trang sch no ca quyn sch cphn phi Poisson vi tham s = 12 . Tnh xc sut c t nhtmt li in trong trang ny.

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi Poisson- V d

    V d 6

    S cuc in thoi gi n mt tng i in thoi trong mtgi c phn phi Poisson vi = 10. Tnh xc sut

    i c 5 cuc in thoi gi n trong mt gi.

    ii C nhiu nht 3 cuc in thoi gi n trong mt gi.

    iii C 15 cuc gi n trong hai gi.

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi Poisson- V d

    V d 7

    Trong mt t tim chng cho tr em mt khu vc, bit xcsut mt tr b phn ng vi thuc sau khi tim l 0, 001. Thchin tim cho 2000 tr. Tnh xc sut c nhiu nht 1 tr bphn ng vi thuc sau khi tim.

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi u

    nh ngha 4 (Uniform distribution)

    Bin ngu nhin lin tc X c gi l c phn phi u trnon [a; b], k hiu X U([a; b]), nu hm mt xc sut caX c dng

    f (x) =1

    b a , khi x [a; b]

    v

    f (x) = 0,x / [a; b]T nh ngha trn ta c th tnh c hm phn phi xc

    sut ca X U([a; b]) nh saux < a,F (x) = 0x [a, b],F (x) = xaba ,x > b,F (x) = 1.

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    K vng v phng sai ca phn phi u

    nh l 4 (Cc c trng ca bin ngu nhin c phn phi u)

    Cho X l bin ngu nhin c phn phi u trn [a, b] ( tc lX U([a, b])) th

    i K vng E(X ) = a+b2 .

    ii Phng sai Var(X ) = (ba)2

    12 .

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi m

    nh ngha 5 (Exponential distribution)

    Bin ngu nhin T (t > 0) gi l c phn phi m, k hiuT Exp(), nu n c hm mt xc sut

    f (t) = et , t > 0,

    trong

    : s bin c trung bnh xy ra trong mt n v thi gian.

    t: s n v thi gian cho bin c k tip.

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Cc c trng ca phn phi m

    Hm phn phi ca T :

    F (t) = P(T t) = 1 et , t > 0.

    nh l 5

    Nu T Exp() th k vng v phng sai ca T ln lt l

    E(T ) =1

    Var(T ) =1

    2

    nh l 6

    Nu T l bin ngu nhin c phn phi m th,

    P(T < t1 + t2|T > t1) = P(T < t2)

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi chun ha

    nh ngha 6

    Cho bin ngu nhin X lin tc, X c phn phi chun ha, khiu X N (0, 1), khi hm mt c dng sau

    f (x) =12pi

    ex22 .

    nh l 7

    Bin ngu nhin X N (0, 1) c k vng E(X ) = 0 v phngsai Var(X ) = 1.

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi chun ha-hm mt

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi chun ha-hm phn phi

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi chun ha

    nh l 8 (Hm phn phi)

    (x) = P(X < x) = x

    12pi

    et22 dt.

    Vi gi tr c th ca x , ta tra bng tm gi tr (x).

    V d 8

    Cho bin ngu nhin X N (0, 1). Tnh cc xc sut sauP(X < 1.55)P(X < 1.45)P(1 X < 1.5)

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi chun

    nh ngha 7 (Normal distribution)

    Bin ngu nhin lin tc X nhn gi tr trong khong(,+) c gi l c phn phi chun vi tham s , nuhm mt xc sut c dng

    f (x) =1

    2pi

    exp

    ((x )

    2

    22

    ), < x 0, <

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi chun- Tnh cht

    * th c dng hnh chung

    * Phn phi i xng

    * Trung bnh = trung v (median)= Mode

    * V tr ca phn phi c xc nh bi k vng

    * phn tn c xc nh bi lch tiu chun

    * Xc nh trn R.

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi chun- Hm mt

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi chun- Hm phn phi

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi chun

    nh l 9

    Nu X N (, 2) th X ,.

    H qu 1

    Nu X N (, 2) th

    P(X < a) = (a

    ).

    H qu 2

    Nu X N (, 2) th

    P(a X < b) = (b

    )

    (a

    ).

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Hm phn phi Gamma

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi Student

  • Cc phnphi xcsut

    thng gp

    NguynTh HngNhung

    Cc phnphi ri rc

    Phn phiBernoulli

    Phn phi nhthc

    Phn phiPoisson

    Cc phnphi lintc

    Phn phi u

    Phn phi m

    Phn phi chunha

    Phn phi chun

    Hm phn phiGamma

    Phn phiStudent

    Phn phi Chibnh phng

    Phn phi Chi bnh phng

    Cc phn phi ri rac Phn phi BernoulliPhn phi nhi thcPhn phi Poisson

    Cc phn phi lin tucPhn phi uPhn phi muPhn phi chun haPhn phi chunHm phn phi GammaPhn phi StudentPhn phi Chi bnh phng