Particle Radiation and Cosmic Rays from Cosmic 6/ Radiation and Cosmic Rays from Cosmic Strings ... Quadratic coupling: ... Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Published on
    20-May-2018

  • View
    214

  • Download
    1

Embed Size (px)

Transcript

<ul><li><p>Particle Radiation and Cosmic Rays from Cosmic Strings</p><p>Eray SabancilarPhysics Department, Arizona State University,</p><p>Tempe AZ.</p><p>2014 ASU-Tufts Joint Workshop on Cosmic StringsTempe, AZ,</p><p>February 4th, 2014.</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Particle Radiation</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Thank you!</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Particle Radiation</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Scalar Particle Radiation</p><p> Quadratic coupling: Srednicki, Theisen 87 Not significant!</p><p>L </p><p>d2 2. (1)</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Scalar Particle Radiation</p><p> Quadratic coupling: Srednicki, Theisen 87 Not significant!</p><p>L </p><p>d2 2. (2)</p><p> Linear coupling: Dilaton ( = 1) Damour, Vilenkin 97 ,Moduli ( &amp; 1) ES 09; Berezinsky, ES, Vilenkin 10; ES, Lunardini 12</p><p>L </p><p>mp</p><p>d2 . (3)</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Scalar Particle Radiation</p><p> Quadratic coupling: Srednicki, Theisen 87 Not significant!</p><p>L </p><p>d2 2. (4)</p><p> Linear coupling: Dilaton ( = 1) Damour, Vilenkin 97 ,Moduli ( &amp; 1) ES 09; Berezinsky, ES, Vilenkin 10; ES, Lunardini 12</p><p>L </p><p>mp</p><p>d2 . (5)</p><p> Higgs condensate Vachaspati 10 , Higgs condensate on dark strings Hyde, Long, Vachaspati 13</p><p>L </p><p>d2 . (6)</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Scalar Particle Radiation</p><p> Quadratic coupling: Srednicki, Theisen 87 Not significant!</p><p>L </p><p>d2 2. (7)</p><p> Linear coupling: Dilaton ( = 1) Damour, Vilenkin 97 ,Moduli ( &amp; 1) ES 09; Berezinsky, ES, Vilenkin 10; ES, Lunardini 12</p><p>L </p><p>mp</p><p>d2 . (8)</p><p> Higgs condensate Vachaspati 10 , Higgs condensate on dark strings Hyde, Long, Vachaspati 13</p><p>L </p><p>d2 . (9)</p><p>Tune in for JEFF HYDES and ANDREW LONGS talks after lunch!</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Scalar Particle Radiation</p><p>This talk Scalar Fields with &amp; 1 ES 09; Berezinsky, ES, Vilenkin 10; ES, Lunardini 12</p><p>L </p><p>mp</p><p>d2 . (10)</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Radiation Power Spectrum</p><p>dPn</p><p>d=</p><p>G2</p><p>2nk|T (k, n)|2, n =</p><p>k2 + m2 = 4n/L. (11)</p><p>T (k, n) = 4</p><p>L</p><p>d4x</p><p>dd</p><p>4[x X(, )]e ikX</p><p> (,). (12)</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Radiation Power Spectrum</p><p>dPn</p><p>d=</p><p>G2</p><p>2nk|T (k, n)|2, n =</p><p>k2 + m2 = 4n/L. (13)</p><p>T (k, n) = 4</p><p>L</p><p>d4x</p><p>dd</p><p>4(x X(, ))e ikX</p><p> (,). (14)</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Significant Radiation</p><p> Small Loops P 2G2 Exponentially suppressed unless L . 1/m, emitted atrest isotropically: = 4. Damour,Vilenkin 97; ES 09</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Significant Radiation</p><p> Small Loops P 2G2 Exponentially suppressed unless L . 1/m, emitted atrest isotropically: = 4. Damour,Vilenkin 97; ES 09</p><p> Cusps P 2G2/mL, Highly boosted particles (E m</p><p>mL), emitted into a</p><p>narrow cone: /2. Berezinsky, ES, Vilenkin 10; Vachaspati 10</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Significant Radiation</p><p> Small Loops P 2G2 Exponentially suppressed unless L . 1/m, emitted atrest isotropically: = 4. Damour,Vilenkin 97; ES 09</p><p> Cusps P 2G2, Highly boosted particles (E mmL), emitted into a narrow</p><p>cone: /2. ES 09; Berezinsky, ES, Vilenkin 10; Vachaspati 10</p><p> Kinks P 2G2 log (ms/m), Highly boosted particles (E mmL), emitted</p><p>into into a narrow ribbon: 2/. ES, Lunardini 12</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Cosmological Constraints on Moduli Radiation from Small Loops (L . 1/m)</p><p> Abundance of moduli are constrained by diffuse gamma ray background, BBN, darkmatter abundance. Damour, Vilenkin 97; ES 09</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Cosmological Constraints on Moduli Radiation from Small Loops (L . 1/m)</p><p> Abundance of moduli are constrained by diffuse gamma ray background, BBN, darkmatter abundance. Damour, Vilenkin 97; ES 09</p><p> Gravitationally coupled scalar fields ( = 1) are constrained significantly. Damour,Vilenkin 97</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Cosmological Constraints on Moduli Radiation from Small Loops (L . 1/m)</p><p> Abundance of moduli are constrained by diffuse gamma ray background, BBN, darkmatter abundance. ES 09</p><p> Gravitationally coupled scalar fields ( = 1) are constrained significantly.Damour, Vilenkin97</p><p> Scalar fields with stronger coupling ( &gt; 1) are less constrained because loopsdisappear more quickly! ES 09</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Ultra High Energy Neutrinos from Cusps and Kinks</p><p> Scalar particles are emitted from cusps and kinks with Lorentz factors ofc </p><p>mL &gt;&gt; 1 into a narrow opening angle c 1/c .</p><p> The rate of particle bursts that occur at redshift z in the interval (z, z + dz):</p><p>dNb =n(L, z) dL</p><p>L/2</p><p>4</p><p>dV (z)</p><p>1 + z. (15)</p><p> The diffuse flux of neutrinos from bursts originating at redshifts z:</p><p>J(E ; z) =(1 + z)</p><p>4</p><p>dNb</p><p>dz(E , k)</p><p>dN(k)</p><p>k r2(z). (16)</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Particle Radiation from Superconducting String Cusps</p><p> Superheavy charge carriers are ejected from parts of strings, where the current issaturated: Easily achieved at cusps. Berezinsky, Olum, ES, Vilenkin 09.</p><p>dNX</p><p>dt 2I 2/e Imax , (17)</p><p>I . Imax ice, ic . 1. (18)</p><p> String tension: G 2/m2p .</p><p> Mass of the charge carrier: mX ic.</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>Fragmentation Function for Neutrinos</p><p> The neutrinos are produced via pions produced from hadronic cascades.</p><p> The fragmentation function: dN/dE E2Berezinsky, Kachelriess 01.</p><p> The minimum neutrino energy: Emin (1GeV)/(1 + z).</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li><li><p>UHE Neutrino Fluxes, Detectability Limits, Upper BoundsFigure from Lunardini, ES, Yang 13</p><p>109 1011 1013 101510-11</p><p>10-9</p><p>10-7</p><p>10-5</p><p>0.001</p><p>EGeV</p><p>E2JHELHGeVcm-2s-1sr-1 L</p><p>E (GeV) </p><p>E2J(E</p><p>) (Ge</p><p>V cm</p><p>-2 s-</p><p>1 sr</p><p>-1) </p><p>Necklaces SHDM Cusps Kinks </p><p>SCSC AGN Cosmogenic </p><p>FORTE </p><p>NuMoon ANITA </p><p>RICE </p><p>SKA </p><p>LOFAR </p><p>JEM-EUSO nadir </p><p>JEM-EUSO Itled </p><p>Cosmic Necklaces:Berezinsky, Martin, Vilenkin 97; Super Heavy Dark Matter (SHDM):Berezinsky, Kachelriess, Vilenkin 98; Kuzmin,</p><p>Rubakov 98: Cosmic String Cusps:Berezinksy, ES, Vilenkin 11; Cosmic String Kinks:Lunardini, ES 12; Superconducting Cosmic</p><p>Strings:Berezinsky, ES, Olum, Vilenkin 09; Active Galactic Nuclei:Kalashev, Kuzmin, Semikoz, Sigl 02: Cosmogenic</p><p>Neutrinos:Berezinsky, Zatsepin 69; Engel, Seckel, Stanev 01.</p><p>Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings</p></li></ul>