Particle Radiation and Cosmic Rays from Cosmic 6/ Radiation and Cosmic Rays from Cosmic Strings ... Quadratic coupling: ... Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • View
    214

  • Download
    1

Embed Size (px)

Transcript

  • Particle Radiation and Cosmic Rays from Cosmic Strings

    Eray SabancilarPhysics Department, Arizona State University,

    Tempe AZ.

    2014 ASU-Tufts Joint Workshop on Cosmic StringsTempe, AZ,

    February 4th, 2014.

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Particle Radiation

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Thank you!

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Particle Radiation

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Scalar Particle Radiation

    Quadratic coupling: Srednicki, Theisen 87 Not significant!

    L

    d2 2. (1)

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Scalar Particle Radiation

    Quadratic coupling: Srednicki, Theisen 87 Not significant!

    L

    d2 2. (2)

    Linear coupling: Dilaton ( = 1) Damour, Vilenkin 97 ,Moduli ( & 1) ES 09; Berezinsky, ES, Vilenkin 10; ES, Lunardini 12

    L

    mp

    d2 . (3)

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Scalar Particle Radiation

    Quadratic coupling: Srednicki, Theisen 87 Not significant!

    L

    d2 2. (4)

    Linear coupling: Dilaton ( = 1) Damour, Vilenkin 97 ,Moduli ( & 1) ES 09; Berezinsky, ES, Vilenkin 10; ES, Lunardini 12

    L

    mp

    d2 . (5)

    Higgs condensate Vachaspati 10 , Higgs condensate on dark strings Hyde, Long, Vachaspati 13

    L

    d2 . (6)

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Scalar Particle Radiation

    Quadratic coupling: Srednicki, Theisen 87 Not significant!

    L

    d2 2. (7)

    Linear coupling: Dilaton ( = 1) Damour, Vilenkin 97 ,Moduli ( & 1) ES 09; Berezinsky, ES, Vilenkin 10; ES, Lunardini 12

    L

    mp

    d2 . (8)

    Higgs condensate Vachaspati 10 , Higgs condensate on dark strings Hyde, Long, Vachaspati 13

    L

    d2 . (9)

    Tune in for JEFF HYDES and ANDREW LONGS talks after lunch!

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Scalar Particle Radiation

    This talk Scalar Fields with & 1 ES 09; Berezinsky, ES, Vilenkin 10; ES, Lunardini 12

    L

    mp

    d2 . (10)

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Radiation Power Spectrum

    dPn

    d=

    G2

    2nk|T (k, n)|2, n =

    k2 + m2 = 4n/L. (11)

    T (k, n) = 4

    L

    d4x

    dd

    4[x X(, )]e ikX

    (,). (12)

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Radiation Power Spectrum

    dPn

    d=

    G2

    2nk|T (k, n)|2, n =

    k2 + m2 = 4n/L. (13)

    T (k, n) = 4

    L

    d4x

    dd

    4(x X(, ))e ikX

    (,). (14)

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Significant Radiation

    Small Loops P 2G2 Exponentially suppressed unless L . 1/m, emitted atrest isotropically: = 4. Damour,Vilenkin 97; ES 09

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Significant Radiation

    Small Loops P 2G2 Exponentially suppressed unless L . 1/m, emitted atrest isotropically: = 4. Damour,Vilenkin 97; ES 09

    Cusps P 2G2/mL, Highly boosted particles (E m

    mL), emitted into a

    narrow cone: /2. Berezinsky, ES, Vilenkin 10; Vachaspati 10

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Significant Radiation

    Small Loops P 2G2 Exponentially suppressed unless L . 1/m, emitted atrest isotropically: = 4. Damour,Vilenkin 97; ES 09

    Cusps P 2G2, Highly boosted particles (E mmL), emitted into a narrow

    cone: /2. ES 09; Berezinsky, ES, Vilenkin 10; Vachaspati 10

    Kinks P 2G2 log (ms/m), Highly boosted particles (E mmL), emitted

    into into a narrow ribbon: 2/. ES, Lunardini 12

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Cosmological Constraints on Moduli Radiation from Small Loops (L . 1/m)

    Abundance of moduli are constrained by diffuse gamma ray background, BBN, darkmatter abundance. Damour, Vilenkin 97; ES 09

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Cosmological Constraints on Moduli Radiation from Small Loops (L . 1/m)

    Abundance of moduli are constrained by diffuse gamma ray background, BBN, darkmatter abundance. Damour, Vilenkin 97; ES 09

    Gravitationally coupled scalar fields ( = 1) are constrained significantly. Damour,Vilenkin 97

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Cosmological Constraints on Moduli Radiation from Small Loops (L . 1/m)

    Abundance of moduli are constrained by diffuse gamma ray background, BBN, darkmatter abundance. ES 09

    Gravitationally coupled scalar fields ( = 1) are constrained significantly.Damour, Vilenkin97

    Scalar fields with stronger coupling ( > 1) are less constrained because loopsdisappear more quickly! ES 09

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Ultra High Energy Neutrinos from Cusps and Kinks

    Scalar particles are emitted from cusps and kinks with Lorentz factors ofc

    mL >> 1 into a narrow opening angle c 1/c .

    The rate of particle bursts that occur at redshift z in the interval (z, z + dz):

    dNb =n(L, z) dL

    L/2

    4

    dV (z)

    1 + z. (15)

    The diffuse flux of neutrinos from bursts originating at redshifts z:

    J(E ; z) =(1 + z)

    4

    dNb

    dz(E , k)

    dN(k)

    k r2(z). (16)

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Particle Radiation from Superconducting String Cusps

    Superheavy charge carriers are ejected from parts of strings, where the current issaturated: Easily achieved at cusps. Berezinsky, Olum, ES, Vilenkin 09.

    dNX

    dt 2I 2/e Imax , (17)

    I . Imax ice, ic . 1. (18)

    String tension: G 2/m2p .

    Mass of the charge carrier: mX ic.

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • Fragmentation Function for Neutrinos

    The neutrinos are produced via pions produced from hadronic cascades.

    The fragmentation function: dN/dE E2Berezinsky, Kachelriess 01.

    The minimum neutrino energy: Emin (1GeV)/(1 + z).

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings

  • UHE Neutrino Fluxes, Detectability Limits, Upper BoundsFigure from Lunardini, ES, Yang 13

    109 1011 1013 101510-11

    10-9

    10-7

    10-5

    0.001

    EGeV

    E2JHELHGeVcm-2s-1sr-1 L

    E (GeV)

    E2J(E

    ) (Ge

    V cm

    -2 s-

    1 sr

    -1)

    Necklaces SHDM Cusps Kinks

    SCSC AGN Cosmogenic

    FORTE

    NuMoon ANITA

    RICE

    SKA

    LOFAR

    JEM-EUSO nadir

    JEM-EUSO Itled

    Cosmic Necklaces:Berezinsky, Martin, Vilenkin 97; Super Heavy Dark Matter (SHDM):Berezinsky, Kachelriess, Vilenkin 98; Kuzmin,

    Rubakov 98: Cosmic String Cusps:Berezinksy, ES, Vilenkin 11; Cosmic String Kinks:Lunardini, ES 12; Superconducting Cosmic

    Strings:Berezinsky, ES, Olum, Vilenkin 09; Active Galactic Nuclei:Kalashev, Kuzmin, Semikoz, Sigl 02: Cosmogenic

    Neutrinos:Berezinsky, Zatsepin 69; Engel, Seckel, Stanev 01.

    Eray Sabancilar Particle Radiation and Cosmic Rays from Cosmic Strings