49
Sharp estimates in harmonic analysis Paata Ivanisvili Kent State University 2017 University of California, Irvine Paata Ivanisvili Kent State University Sharp estimates

PaataIvanisvili KentStateUniversity 2017 …pivanisv/bellman.pdfPaata Ivanisvili Kent State University Sharp estimates Otherapplications Theorem(Ivanisvili–Jaye–Nazarov) Foranyp

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Sharp estimates in harmonic analysis

    Paata Ivanisvili

    Kent State University

    2017

    University of California, Irvine

    Paata Ivanisvili Kent State University Sharp estimates

  • Bellman function for extremal problems in BMO.(joint with N. Osipov, D. Stolyarov, P. Zatitskiy, V. Vasyunin)

    Paata Ivanisvili Kent State University Sharp estimates

  • Surface of minimal area k1 + k2 = 0.

    Paata Ivanisvili Kent State University Sharp estimates

  • Minimal concave function k1k2 = 0

    Paata Ivanisvili Kent State University Sharp estimates

  • Find the minimal concave function

    B(x , y) is minimal concave function on Ω with B|∂Ω = f .

    ProblemGiven a wire find B .

    Paata Ivanisvili Kent State University Sharp estimates

  • Projection

    Paata Ivanisvili Kent State University Sharp estimates

  • Foliation

    This we call foliation.

    Problem (equivalent)

    Given a wire find foliation.

    Paata Ivanisvili Kent State University Sharp estimates

  • Foliation

    This we call foliation.

    Problem (equivalent)

    Given a wire find foliation.

    Paata Ivanisvili Kent State University Sharp estimates

  • Concave envelope

    Paata Ivanisvili Kent State University Sharp estimates

  • Foliation

    Paata Ivanisvili Kent State University Sharp estimates

  • Angle and Cup

    Demonstrate

    Paata Ivanisvili Kent State University Sharp estimates

  • Angle and Cup

    DemonstratePaata Ivanisvili Kent State University Sharp estimates

  • Boundary value problem: homogeneous Monge–Ampère

    B(x , y) is minimal concave function on Ω with B|∂Ω = f .

    What if B(x , y) is minimal concave function on Ω \ D?

    Paata Ivanisvili Kent State University Sharp estimates

  • Boundary value problem: homogeneous Monge–Ampère

    B(x , y) is minimal concave function on Ω with B|∂Ω = f .What if B(x , y) is minimal concave function on Ω \ D?

    Paata Ivanisvili Kent State University Sharp estimates

  • Erasing a hole

    Will not be minimal!

    Paata Ivanisvili Kent State University Sharp estimates

  • Erasing a hole

    Will not be minimal!

    Paata Ivanisvili Kent State University Sharp estimates

  • Erasing a hole: Ω \ D

    HessB ≤ 0 on Ω \ DB|∂Ω = f .B is minimal among all such solutions.det(Hess B) = 0 on Ω \ D;

    Paata Ivanisvili Kent State University Sharp estimates

  • Erasing a hole: Ω \ D

    HessB ≤ 0 on Ω \ D

    B|∂Ω = f .B is minimal among all such solutions.det(Hess B) = 0 on Ω \ D;

    Paata Ivanisvili Kent State University Sharp estimates

  • Erasing a hole: Ω \ D

    HessB ≤ 0 on Ω \ DB|∂Ω = f .

    B is minimal among all such solutions.det(Hess B) = 0 on Ω \ D;

    Paata Ivanisvili Kent State University Sharp estimates

  • Erasing a hole: Ω \ D

    HessB ≤ 0 on Ω \ DB|∂Ω = f .B is minimal among all such solutions.

    det(Hess B) = 0 on Ω \ D;

    Paata Ivanisvili Kent State University Sharp estimates

  • Erasing a hole: Ω \ D

    HessB ≤ 0 on Ω \ DB|∂Ω = f .B is minimal among all such solutions.det(Hess B) = 0 on Ω \ D;

    Paata Ivanisvili Kent State University Sharp estimates

  • Evolution of the surface

    Paata Ivanisvili Kent State University Sharp estimates

  • Annulus and parabolic strips

    Ω \D

    Paata Ivanisvili Kent State University Sharp estimates

  • Left tangent lines 2D

    x1

    x2

    x2 = x21

    x2 = x21 + ε

    2

    Paata Ivanisvili Kent State University Sharp estimates

  • Left tangent lines 3D

    Paata Ivanisvili Kent State University Sharp estimates

  • Right tangent lines 2D

    x1

    x2

    x2 = x21

    x2 = x21 + ε

    2

    Paata Ivanisvili Kent State University Sharp estimates

  • Right tangent lines 3D

    Paata Ivanisvili Kent State University Sharp estimates

  • Cup

    x1

    x2

    x2 = x21

    x2 = x21 + ε

    2

    A0

    B0

    U1 U2

    Ωcup

    ΩRΩL

    Paata Ivanisvili Kent State University Sharp estimates

  • Cup

    Paata Ivanisvili Kent State University Sharp estimates

  • Angle

    x1

    x2

    V

    x2 = x21

    x2 = x21 + ε

    2

    Paata Ivanisvili Kent State University Sharp estimates

  • Angle

    Paata Ivanisvili Kent State University Sharp estimates

  • Angle and cup

    x1

    x2

    U−

    U+

    A

    B

    V

    Paata Ivanisvili Kent State University Sharp estimates

  • Angle and cup

    Paata Ivanisvili Kent State University Sharp estimates

  • Angle and cup: evolution

    Paata Ivanisvili Kent State University Sharp estimates

  • Two cups

    Paata Ivanisvili Kent State University Sharp estimates

  • Two cups

    Paata Ivanisvili Kent State University Sharp estimates

  • Two cups: evolution

    Paata Ivanisvili Kent State University Sharp estimates

  • John–Nirenberg inequality and BMO space

    supI⊆[0,1]

    1|I |

    ∣∣∣∣{t ∈ I : ∣∣∣∣ϕ(t)− 1|I |∫Iϕ

    ∣∣∣∣ ≥ λ}∣∣∣∣ ≤ c1e−c2λ/‖ϕ‖BMO2([0,1])

    where

    ‖ϕ‖2BMO2([0,1])def= sup

    I⊆[0,1]

    1|I |

    ∫I

    ∣∣∣∣ϕ− 1|I |∫Iϕ

    ∣∣∣∣2 .QuestionFind sharp constants c1, c2 > 0.

    Paata Ivanisvili Kent State University Sharp estimates

  • John–Nirenberg inequality and BMO space

    supI⊆[0,1]

    1|I |

    ∣∣∣∣{t ∈ I : ∣∣∣∣ϕ(t)− 1|I |∫Iϕ

    ∣∣∣∣ ≥ λ}∣∣∣∣ ≤ c1e−c2λ/‖ϕ‖BMO2([0,1])where

    ‖ϕ‖2BMO2([0,1])def= sup

    I⊆[0,1]

    1|I |

    ∫I

    ∣∣∣∣ϕ− 1|I |∫Iϕ

    ∣∣∣∣2 .

    QuestionFind sharp constants c1, c2 > 0.

    Paata Ivanisvili Kent State University Sharp estimates

  • John–Nirenberg inequality and BMO space

    supI⊆[0,1]

    1|I |

    ∣∣∣∣{t ∈ I : ∣∣∣∣ϕ(t)− 1|I |∫Iϕ

    ∣∣∣∣ ≥ λ}∣∣∣∣ ≤ c1e−c2λ/‖ϕ‖BMO2([0,1])where

    ‖ϕ‖2BMO2([0,1])def= sup

    I⊆[0,1]

    1|I |

    ∫I

    ∣∣∣∣ϕ− 1|I |∫Iϕ

    ∣∣∣∣2 .QuestionFind sharp constants c1, c2 > 0.

    Paata Ivanisvili Kent State University Sharp estimates

  • Extremal problems on BMO: I & II

    Bε(x1, x2)def= sup

    ϕ : ‖ϕ‖BMO≤ε

    {∫ 10

    f (ϕ(t))dt :

    ∫ 10ϕ = x1,

    ∫ 10ϕ2 = x2,

    }

    Example: f (t) = 1(−∞,−λ)∪(λ,∞)(t) - John–Nirenberg inequality.

    Main results (IOSVZ):1. Bε is minimal concave function on Ω0 \ Ωε with B|∂Ω0 = f

    where Ωε = {(x1, x2) ⊂ R2 : x2 ≥ x21 + ε2}2. For each ε we find Bε (stationary algorithm).3. We described evolution of Bε, ε ≥ 0 (dynamical approach).

    The torsion of (t, t2, f (t)) changes sign finitely many times.

    Paata Ivanisvili Kent State University Sharp estimates

  • Extremal problems on BMO: I & II

    Bε(x1, x2)def= sup

    ϕ : ‖ϕ‖BMO≤ε

    {∫ 10

    f (ϕ(t))dt :

    ∫ 10ϕ = x1,

    ∫ 10ϕ2 = x2,

    }

    Example: f (t) = 1(−∞,−λ)∪(λ,∞)(t) - John–Nirenberg inequality.

    Main results (IOSVZ):1. Bε is minimal concave function on Ω0 \ Ωε with B|∂Ω0 = f

    where Ωε = {(x1, x2) ⊂ R2 : x2 ≥ x21 + ε2}2. For each ε we find Bε (stationary algorithm).3. We described evolution of Bε, ε ≥ 0 (dynamical approach).

    The torsion of (t, t2, f (t)) changes sign finitely many times.

    Paata Ivanisvili Kent State University Sharp estimates

  • Extremal problems on BMO: I & II

    Bε(x1, x2)def= sup

    ϕ : ‖ϕ‖BMO≤ε

    {∫ 10

    f (ϕ(t))dt :

    ∫ 10ϕ = x1,

    ∫ 10ϕ2 = x2,

    }

    Example: f (t) = 1(−∞,−λ)∪(λ,∞)(t) - John–Nirenberg inequality.

    Main results (IOSVZ):1. Bε is minimal concave function on Ω0 \ Ωε with B|∂Ω0 = f

    where Ωε = {(x1, x2) ⊂ R2 : x2 ≥ x21 + ε2}2. For each ε we find Bε (stationary algorithm).3. We described evolution of Bε, ε ≥ 0 (dynamical approach).

    The torsion of (t, t2, f (t)) changes sign finitely many times.

    Paata Ivanisvili Kent State University Sharp estimates

  • Extremal problems on BMO: I & II

    Bε(x1, x2)def= sup

    ϕ : ‖ϕ‖BMO≤ε

    {∫ 10

    f (ϕ(t))dt :

    ∫ 10ϕ = x1,

    ∫ 10ϕ2 = x2,

    }

    Example: f (t) = 1(−∞,−λ)∪(λ,∞)(t) - John–Nirenberg inequality.

    Main results (IOSVZ):1. Bε is minimal concave function on Ω0 \ Ωε with B|∂Ω0 = f

    where Ωε = {(x1, x2) ⊂ R2 : x2 ≥ x21 + ε2}2. For each ε we find Bε (stationary algorithm).3. We described evolution of Bε, ε ≥ 0 (dynamical approach).

    The torsion of (t, t2, f (t)) changes sign finitely many times.

    Paata Ivanisvili Kent State University Sharp estimates

  • Other applications

    Theorem (Ivanisvili–Jaye–Nazarov)

    For any p > 1 and n ≥ 1 there exists A(p, n) > 1 such that∫Rn

    (supB3x

    1|B|

    ∫B|f (y)|dy

    )pdx ≥ A(p, n)

    ∫Rn|f (x)|pdx , ∀f ∈ Lp

    NO for centered maximal function p > nn−2 . f (x) = min{|x |n−1, 1}.

    Theorem (P.I.)

    supεI∈{−1,1}

    ∫ 10

    (∑I∈D

    εI 〈f , hI 〉hI)2

    + τ2f 2

    p/2 dx ≤ C ∫ 10|f |pdx

    Settles an open problem of Boros–Janakiraman–Volberg

    Paata Ivanisvili Kent State University Sharp estimates

  • Other applications

    Theorem (Ivanisvili–Jaye–Nazarov)

    For any p > 1 and n ≥ 1 there exists A(p, n) > 1 such that∫Rn

    (supB3x

    1|B|

    ∫B|f (y)|dy

    )pdx ≥ A(p, n)

    ∫Rn|f (x)|pdx , ∀f ∈ Lp

    NO for centered maximal function p > nn−2 .

    f (x) = min{|x |n−1, 1}.

    Theorem (P.I.)

    supεI∈{−1,1}

    ∫ 10

    (∑I∈D

    εI 〈f , hI 〉hI)2

    + τ2f 2

    p/2 dx ≤ C ∫ 10|f |pdx

    Settles an open problem of Boros–Janakiraman–Volberg

    Paata Ivanisvili Kent State University Sharp estimates

  • Other applications

    Theorem (Ivanisvili–Jaye–Nazarov)

    For any p > 1 and n ≥ 1 there exists A(p, n) > 1 such that∫Rn

    (supB3x

    1|B|

    ∫B|f (y)|dy

    )pdx ≥ A(p, n)

    ∫Rn|f (x)|pdx , ∀f ∈ Lp

    NO for centered maximal function p > nn−2 . f (x) = min{|x |n−1, 1}.

    Theorem (P.I.)

    supεI∈{−1,1}

    ∫ 10

    (∑I∈D

    εI 〈f , hI 〉hI)2

    + τ2f 2

    p/2 dx ≤ C ∫ 10|f |pdx

    Settles an open problem of Boros–Janakiraman–Volberg

    Paata Ivanisvili Kent State University Sharp estimates

  • Other applications

    Theorem (Ivanisvili–Jaye–Nazarov)

    For any p > 1 and n ≥ 1 there exists A(p, n) > 1 such that∫Rn

    (supB3x

    1|B|

    ∫B|f (y)|dy

    )pdx ≥ A(p, n)

    ∫Rn|f (x)|pdx , ∀f ∈ Lp

    NO for centered maximal function p > nn−2 . f (x) = min{|x |n−1, 1}.

    Theorem (P.I.)

    supεI∈{−1,1}

    ∫ 10

    (∑I∈D

    εI 〈f , hI 〉hI)2

    + τ2f 2

    p/2 dx ≤ C ∫ 10|f |pdx

    Settles an open problem of Boros–Janakiraman–Volberg

    Paata Ivanisvili Kent State University Sharp estimates

  • The end

    Thank you

    Paata Ivanisvili Kent State University Sharp estimates

    0.0: 0.1: 0.2: 0.3: 0.4: 0.5: 0.6: 0.7: 0.8: 0.9: 0.10: 0.11: 0.12: 0.13: 0.14: 0.15: 0.16: 0.17: 0.18: 0.19: 0.20: 0.21: 0.22: 0.23: 0.24: 0.25: 0.26: 0.27: 0.28: 0.29: 0.30: anm0: 0.EndLeft: 0.StepLeft: 0.PauseLeft: 0.PlayLeft: 0.PlayPauseLeft: 0.PauseRight: 0.PlayRight: 0.PlayPauseRight: 0.StepRight: 0.EndRight: 0.Minus: 0.Reset: 0.Plus: 1.0: 1.1: 1.2: 1.3: 1.4: 1.5: 1.6: 1.7: 1.8: 1.9: 1.10: 1.11: 1.12: 1.13: 1.14: 1.15: 1.16: 1.17: 1.18: 1.19: 1.20: 1.21: 1.22: 1.23: 1.24: 1.25: 1.26: 1.27: 1.28: 1.29: 1.30: 1.31: 1.32: 1.33: 1.34: 1.35: 1.36: 1.37: 1.38: 1.39: 1.40: 1.41: 1.42: 1.43: 1.44: 1.45: 1.46: 1.47: 1.48: 1.49: 1.50: 1.51: 1.52: 1.53: 1.54: 1.55: 1.56: 1.57: 1.58: 1.59: 1.60: anm1: 1.EndLeft: 1.StepLeft: 1.PauseLeft: 1.PlayLeft: 1.PlayPauseLeft: 1.PauseRight: 1.PlayRight: 1.PlayPauseRight: 1.StepRight: 1.EndRight: 1.Minus: 1.Reset: 1.Plus: 2.0: 2.1: 2.2: 2.3: 2.4: 2.5: 2.6: 2.7: 2.8: 2.9: 2.10: 2.11: 2.12: 2.13: 2.14: 2.15: 2.16: 2.17: 2.18: 2.19: 2.20: 2.21: 2.22: 2.23: 2.24: 2.25: 2.26: 2.27: 2.28: 2.29: 2.30: 2.31: 2.32: 2.33: 2.34: 2.35: 2.36: 2.37: 2.38: 2.39: 2.40: 2.41: 2.42: 2.43: 2.44: 2.45: 2.46: 2.47: 2.48: 2.49: 2.50: 2.51: 2.52: 2.53: 2.54: anm2: 2.EndLeft: 2.StepLeft: 2.PauseLeft: 2.PlayLeft: 2.PlayPauseLeft: 2.PauseRight: 2.PlayRight: 2.PlayPauseRight: 2.StepRight: 2.EndRight: 2.Minus: 2.Reset: 2.Plus: