Outline Fractional calculus: basic theory and · PDF fileFractional calculus: basic theory and applications ... the close connection between fractional calculus (in ... Fractional

Embed Size (px)

Citation preview

  • Fractional calculus:

    basic theory and applications(Part I)

    Diego del-Castillo-Negrete

    Oak Ridge National LaboratoryFusion Energy Division

    P.O. Box 2008, MS 6169

    Oak Ridge, TN 37831-6169

    phone: (865) 574-1127

    FAX: (865) 576-7926

    e-mail: [email protected]

    Lectures presented at the

    Institute of Mathematics

    UNAM. August 2005

    Mexico, City. Mexico

    Outline

    1. Introduction

    2. Fractional calculus

    3. Fractional diffusion and random walks

    4. Numerical methods

    5. Applications:

    a) Turbulent transport

    b) Transport in fusion plasmas

    c) Reaction-diffusion systems

    6. Some references

  • 1. Introduction

    Here we introduce the notion of fractional integral as a straightforward

    generalization of the standard, integer-order integral, and define the

    fractional derivative as the inverse operation. To motivate the concept we

    discuss two examples: Abels equation and heat diffusion. The concepts

    discussed here are further elaborated in the next section.

    What is a fractional derivative?

    Leibniz (1695):

    This is an apparent paradox from which, one day, useful

    consequences will be drawn

    LHopital (1695):

    What if n=1/2?

    dn f

    dxn

    It is a usual practice to extend mathematical operations,

    originally defined for a set of objects, to a wider set of objects

    r r !R+

    " s s !R

    n! n !N+

    " #(s) s!R

    !x

    n

    " n #N+

    $ !x

    %" % #C

    This mathematical games have, eventually, important

    physical applications

  • Fractional integrals

    !

    aDx

    "n # = dx1

    a

    x

    $ dx2a

    x1

    $ L dxna

    xn"1

    $ # xn( )

    !

    a Dx"n # =

    1

    (n "1)!x " y( )

    n"1# y( ) dy

    a

    x

    $

    !

    a Dx"# $ =

    1

    %(#)x " y( )

    # "1$ y( ) dy

    a

    x

    &

    Riemann-Liouville fractional integral

    !

    0Dx

    "#x

    =$( +1)

    $( + # +1)x

    +#Example:

    Integer order integration

    Interchanging the order

    of integration this can be

    rewritten as

    Extending this expression for non-integer n=! we get

    Fractional derivatives

    !

    a Dx" # =

    1

    $(m %")&xm # y( )

    x % y( )"+1%m

    dya

    x

    '

    Riemann-Liouville fractional derivative

    !

    0Dx

    x" =

    #(" +1)

    #(" $ +1)x"$

    Examples:

    !

    aDx

    " =dN

    dxN a

    Dx

    #$ "[ ] N = smallest integer > ! = N "

    !

    aDx

    m " =dN

    dxN a

    Dx

    #(N#m )"[ ] =dm

    dxm"

    !

    m "1

  • An example: Abels equation

    g

    x

    y

    v

    (x,h) Let T(h) be the time it takes a particle

    to go down sliding on the curve

    What is the relation between the function

    T(h) and "(y) ?

    Energy

    conservation

    !

    1

    2v2 = g h " y( )

    !

    v =ds

    dt=1+ "'2dy

    dt

    !

    1+ "'2

    2g(h # y)0

    h

    $ dy = dt = T0

    T

    $

    !

    f (y) =1

    2g1+ " '2

    !

    T(h) =f (y)

    h " y0

    h

    # dy

    !

    T = "0Dh

    #1/ 2f

    !

    f =1

    "0Dy1/ 2T

    !

    x = "(y)

    Heat diffusion

    !

    "(t) = 2#0Dt

    $1/ 2S(t)

    x Consider a bar that is heated on one

    end by a time dependent source S(t).

    What is the relation between S(t) and

    the temperature T(x,t) of the bar?

    T(x,t)

    S(t)

    !

    "tT =# "

    x

    2T

    Heat diffusion equation

    !

    T(x = 0,t) = S(t)

    !

    T(x, t = 0) = 0

    Boundary conditions Initial conditions

    Laplace transform

    !

    T (x,s) = e" s t

    T(x, t) dt0

    #

    $

    !

    s T =" #x

    2 T

    !

    T =x

    2"#e$

    x2

    4# ( t$% ) S(%)

    t $ %( )3 / 2

    0

    t

    & d%

    !

    "(t) = T(x,t)dx0

    #

    $

  • 2. Fractional calculus

    Here we present the precise definitions of the left and right Riemann-

    Liouville (RL) fractional integrals and derivatives, and briefly discuss

    some of the main properties of these operators. Of particular interest is

    the singular behavior of the RL operators at the boundaries, and the

    definition of the fractional derivatives in the Caputo sense. Further details

    on the material discussed here can be found in [Samko-etal-1993],

    [Podlubny-1999] and references therein.

    Riemann-Liouville integrals

    !

    a Dx"# $ =

    1

    %(#)x " y( )

    #"1$ y( ) dy

    a

    x

    &

    !

    x Db"# $ =

    1

    %(#)y " x( )

    #"1$ y( ) dy

    x

    b

    &

    Left integral

    Right integral

    a bx

    !

    x > a

    !

    x < b

    !

    " > 0

    !

    Q " (x) = " (a + b # x)

    !

    Q aDx"# $[ ] = xDb"# Q $[ ]

    !

    Q xDb"# $[ ] = aDx"# Q $[ ]

    Given the reflection operator

  • !

    Q aDx"# $[ ] =

    1

    %(#)

    $ u( )

    a + b " x " u( )1"#

    dua

    a+b"x

    &

    !

    =1

    "(#)

    $ a + b % z( )

    z % x( )1%#

    dz=xDb%#Q $[ ]

    x

    b

    &!

    z = "u + a + b

    Semi-group property

    !

    aDx

    "#

    aDx

    "$ % =aDx

    "#"$ %

    !

    " > 0

    !

    " > 0

    The fractional integrals satisfy the following important semigroup

    property

    !

    xDb

    "#

    xDb

    "$ % =xDb

    "#"$ %

    !

    aDx

    "#aDx

    "$ % =1

    &(#)

    1

    &($)

    dw

    (x " w)1"#a

    x

    '%(u)

    (w " u)1"$a

    w

    ' du

    w

    u

    u=w

    x

    !

    dw

    a

    x

    " duL =a

    w

    " dua

    x

    " dwLu

    x

    "

    !

    =1

    "(#)

    1

    "($)du

    a

    x

    % &(u)dw

    (x ' w)1'# (w ' u)1'$u

    x

    %

    !

    B ",#( )

    x $ u( )1$"$#

    !

    B ",#( ) =$(") $(#)

    $(" + #)

    !

    =1

    "(# + $)

    %(u)

    (x & u)1&$a

    x

    ' du = aDx&(#+$ )%

    Beta function

    Fubinis theorem

  • Riemann-Liouville derivatives

    !

    aDx

    " # =1

    $(n %")

    & n

    & xn# u( )

    x % u( )"%n+1

    du

    a

    x

    'Left derivative

    Right derivative

    !

    n = ["]+1

    a bx

    !

    xDb

    " # =$1( )

    n

    %(n $")

    & n

    & xn# u( )

    u $ x( )"$n+1

    du

    x

    b

    '

    [#]=integral part of #

    !

    aDx

    "aDx

    #"$ =1

    %(")%(n #")

    & n

    & xndz du

    a

    z

    '$ u( )

    x # z( )"#n+1

    z # u( )1#"

    a

    x

    '

    Exchanging the order of the integrals and using the definition of the

    Beta function we get:

    !

    =1

    "(#)"(n $#)

    % n

    % xndu & u( )

    B #,n $#( )(x $ u)1$n

    '

    ( )

    *

    + ,

    a

    x

    -

    !

    =1

    "(n)

    # n

    # xndu

    $ u( )(x % u)1%n

    a

    x

    &

    !

    1

    (n "1)!du

    # u( )(x " u)1"n

    a

    x

    $ =aDx"nusing

    !

    =" n

    " xnaDx

    #n$ = $

    !

    aDx

    "

    aDx

    #"$ = $

    Reciprocity

  • However

    !

    a Dx"#

    aDx#$ = $(x) " a Dx

    #" j$[ ]j=1

    k

    %x= a

    x " a( )#" j

    & # " j +1( )

    !

    j "1#$ < j

    !

    aDx

    "

    aDx

    #$% =aDx

    "#$%

    The previous formulae can be generalized as

    !

    a Dx"#

    aDx$% = aDx

    $ "#%(x) " a Dx$ " j%[ ]

    j=1

    k

    &x= a

    x " a( )#" j

    ' # " j +1( )!

    " # $ # 0

    Composition of fractional derivatives

    !

    a Dx" #

    n$

    # xn%

    & '

    (

    ) * = aDx

    "+n$(x) +$ ( j )(a) x + a( )

    j+"+n

    , 1+ j +" + n( )j= 0

    n+1

    -!

    " n

    " xnaDx

    # $[ ]=aDxn+# $

    !

    " # 0

    !

    a Dx"

    a Dx#$[ ] = aDx"+#$(x) % a Dx# % j$[ ]x= a

    x % a( )% j%"

    & 1%" % j( )j=1

    m

    '

    !

    a Dx" # j$[ ]

    x= a= 0

    !

    a Dx"# j$[ ]

    x= a= 0

    !

    aDx

    "

    aDx

    #$[ ] = aDx# a Dx"$[ ]

    !

    m "1#$ < m!

    n "1# $ < n

    In particular, fractional

    derivatives commute if and only if

    !

    j =1,Lm

    !

    j =1,Ln

  • Behavior near the lower terminal

    !

    "(x) =" (k )(a)

    k!k= 0

    #

    $ x % a( )kLet

    !

    aDx

    " # =# (k )(a)

    k!k= 0

    $

    % aDx" x & a( )k&"

    !

    aDx

    "x # a( )

    k

    =$ k +1( )

    $ k +1#"( )x # a( )

    k#"

    using

    !

    aDx

    " # = # (k )(a)x $ a( )

    k$"

    % k +1$"( )k= 0

    &

    '

    !

    limx"a aDx

    # $ = limx"a

    $ (k )(a)

    % k +1( )k= 0

    m&1

    '1

    x & a( )#&k

    !

    limx"a aDx

    # $ =% unless

    !

    " (k )(a) = 0

    !

    k =1,Lm "1!

    m "1#$ < m

    Fourier-Laplace transforms

    !

    " (s) = e# s t "(t)dt0

    $

    %

    !

    " (k) = eikx "(x)dx#$

    $

    %

    !

    "(x) =1

    2#e$ikx " (k) dx

    $%

    %

    &

    !

    F "#Dx$ %[ ] = "i k( )

    $ % (k)

    !

    FxD+"

    # $[ ] = i k( )# $ (k)

    !

    "(t) = est " (s) dsc# i$

    c+ i$

    %

    !

    L0Dt

    " #[