55
Fractional Calculus in the Mathematical Modelling Emilia Bazhlekova Institute of Mathematics and Informatics Bulgarian Academy of Sciences [email protected] Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015.

Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

  • Upload
    lytu

  • View
    267

  • Download
    6

Embed Size (px)

Citation preview

Page 1: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Fractional Calculus

in the Mathematical Modelling

Emilia Bazhlekova

Institute of Mathematics and InformaticsBulgarian Academy of Sciences

[email protected]

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015.

Page 2: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Outline

• Motivation: linear viscoelasticity

• Introduction to Fractional Calculus

• Ordinary differential equations of fractional order

- Slow relaxation

- Damped oscillations

- Mittag-Leffler functions

• Fractional diffusion-wave equation: diffusion in complex media

• Fractional models in the linear viscoelasticity

• Other fractional derivative models

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 2/55

Page 3: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Motivation: linear viscoelasticity

The use of fractional derivatives for the mathematical modelling of viscoelasticmaterials is quite natural:

σ(t) - stress, ε(t) - strain (at time t)

Constitutive equations give the relation between σ and ε.

Mathematical models for an ideal solid material and for an ideal fluid:

Solids (Hooke’s law): σ(t) = Eε(t); Newtonian fluids: σ(t) = ηdε(t)

dt.

E - elastic modulus, η - viscosity (material parameters)

Real materials combine properties of those two limit cases and lie somewherebetween ideal solids and ideal fluids.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 3/55

Page 4: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Intrger-order models for viscoelastic materials

Solids (Hooke’s law): σ(t) = Eε(t); Newtonian fluids: σ(t) = ηdε(t)

dt.

Maxwell model:σ(t)

η+

1

E

dσ(t)

dt=dε(t)

dt(σ = const ⇒ dε(t)

dt= const)

Voigt-Kelvin model: σ(t) = Eε(t) + ηdε(t)

dt( ε = const ⇒ σ = const

⇒ does not reflect the experimentally observed stress relaxation)

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 4/55

Page 5: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Fractional-order models for viscoelastic materials

Hooke element: σ(t) = Eε(t); Newton element: σ(t) = ηdε(t)

dt

Idea: viscoelastic materials are ”intermediate” ⇒

stress may be proportional to the ”intermediate” (non-integer) derivative of strain(Scott-Blair element):

σ(t) = aDαt ε(t), 0 < α < 1.

Fractional generalizations of the classical models:

Generalized Maxwell model: σ(t) + a1Dαt σ(t) = b0ε(t).

Generalized Voigt model: σ(t) = b0ε(t) + b1Dαt ε(t).

Fractional derivative models:

provide a higher level of adequacy, preserving linearity.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 5/55

Page 6: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Introduction to Fractional Calculus

D1t =

d

dt, Dn

t =dn

dtn, n = 1, 2, 3, ...

In a letter to L’Hopital in 1695 Leibniz raised the question:”Can the meaning of derivatives with integer order be generalized to

derivatives with noninteger orders?”

L’Hopital was somewhat curious and replied with another question to Leibniz:”What if the order will be 1/2?”

Leibniz, in a letter dated September 30, 1695 - the exact birthday of the FractionalCalculus - replied:

”It will lead to a paradox, from which one day usefulconsequences will be drawn.”

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 6/55

Page 7: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

In the last years: a vast amount of research publications in the area of FractionalCalculus (exponential growth is observed of the number of publications).

Journal:

Fractional Calculus and Applied Analysis

Founding Publisher (1998 - 2010) and Supporting Organization (1998 - now):Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Managing Editor: Prof. Virginia Kiryakova

Thomson Reuters announced in 2013 JCR Sci. Ed. the first Impact Factorof FCAA - it is IF (2013) = 2.974, and places the journal at 4th place incategory ”Mathematics, Interdisciplinary” (among 95) and at 5th place in category”Mathematics, Applied” (among 250).

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 7/55

Page 8: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Fractional integration

Jtf(t) =

∫ t

0

f(τ) dτ,

J2t f(t) =

∫ t

0

(∫ t1

0

f(t2) dt2

)dt1

=

∫ t

0

(∫ t

t2

dt1

)f(t2) dt2 =

∫ t

0

(t− t2)f(t2) dt2

Jnt f(t) =

∫ t

0

dt1

∫ t1

0

dt2...

∫ tn−1

0

f(tn) dtn, n ∈ N.

By induction:

⇒ Jnt f(t) =1

(n− 1)!

∫ t

0

(t− τ)n−1f(τ) dτ, n ∈ N.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 8/55

Page 9: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Riemann-Liouville fractional integral

Jnt f(t) =1

(n− 1)!

∫ t

0

(t− τ)n−1f(τ) dτ, n ∈ N.

What if n = α > 0 - noninteger?

Γ(·) - Gamma function: Γ(α) =

∫ ∞0

e−ttα−1 dt, <α > 0.

Properties: Γ(1) = 1, Γ(α+ 1) = αΓ(α).

Proof: Γ(α+ 1) =

∫ ∞0

e−ttα dt =[−e−ttα

]t=∞t=0

+ α

∫ ∞0

e−ttα−1 dt = αΓ(α).

⇒ Γ(n) = (n− 1)!

Jαt - fractional Riemann-Liouville integral of order α > 0:

Jαt f(t) =1

Γ(α)

∫ t

0

(t− τ)α−1f(τ) dτ.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 9/55

Page 10: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Fractional differentiation

Riemann-Liouville fractional integral of order α > 0:

Jαt f(t) =1

Γ(α)

∫ t

0

(t− τ)α−1f(τ) dτ.

Riemann-Liouville fractional derivative Dαt of order α > 0:

Dαt = Dn

t Jn−αt , where n = dαe ; (dαe = [α] + 1).

For example if α ∈ (0, 1)⇒ Dαt = D1

tJ1−αt

In particular: D1/2t f(t) = D1

tJ1/2t f(t) =

1√π· ddt

∫ t

0

f(τ)

(t− τ)1/2dτ.

Caputo fractional derivative Dαt of order α > 0:

Dαt = Jn−αt Dn

t , n = dαe .

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 10/55

Page 11: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Fractional differentiation

Riemann-Liouville fractional derivative Dαt of order α > 0:

Dαt = Dn

t Jn−αt , n = dαe .

Caputo fractional derivative Dαt of order α > 0:

Dαt = Jn−αt Dn

t , n = dαe .

Introduced in the framework of the theory of elasticity and seismic waves:Michele Caputo, Elasticita e Dissipazione, Zanichelli, Bologna, 1969.

Integer-order differentiation: local character.

Fractional differentiation: nonlocal character → appropriate for modelling ofmaterials and processes with memory.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 11/55

Page 12: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Basic properties of the operators of Fractional Calculus

Jαt Jβt = Jα+βt , α, β > 0, − semigroup property,

Jαt {tγ} =Γ(γ + 1)

Γ(α+ γ + 1)tγ+α, γ > −1,

Dαt {tγ} = Dα

t {tγ} =Γ(γ + 1)

Γ(γ − α+ 1)tγ−α, γ > 0.

Dαt {c} ≡ 0, ∀α > 0, Dα

t {c} =ct−α

Γ(1− α)6= 0, α > 0, α /∈ N.

In general: DαtD

βt 6= Dα+β

t

Example: if 0 < α < 1/2 then Dαt tα = Γ(α+ 1) and thus Dα

t (Dαt tα) = 0, but

D2αt t

α =Γ(1 + α)

Γ(1− α)t−α ⇒ Dα

t (Dαt tα) 6= D2α

t tα.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 12/55

Page 13: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Also: Dαt (fg) 6= (Dα

t f)g + f(Dαt g) (there is no useful formula of this type!)

Let α > 0, n = dαe. Fractional integration and differentiation are related by:

Dαt J

αt f(t) = Dα

t Jαt f(t) = f(t)

Jαt Dαt f(t) = f(t)−

n−1∑k=0

f (k)(0) · tk

k!

Jαt Dαt f(t) = f(t)−

n−1∑k=0

(Jn−αt f

)(k)(0) · tα+k−n

Γ(α+ k − n+ 1).

The Caputo and R-L derivatives are related by the identity:

Dαt f(t) = Dα

t

(f(t)−

n−1∑k=0

f (k)(0) · tk

k!

)

= Dαt f(t)−

n−1∑k=0

f (k)(0) · tk−α

Γ(k − α+ 1).

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 13/55

Page 14: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Laplace transform and fractional operators

Laplace transform:

L{f(t)}(s) = f(s) =

∫ ∞0

e−stf(t) dt

If α > 0, n = dαe, then:

L{Jαt f}(s) = s−αL{f}(s),

L{Dαt f}(s) = sαL{f}(s)−

n−1∑k=0

f (k)(0) · sα−1−k,

L{Dαt f}(s) = sαL{f}(s)−

n−1∑k=0

(Jn−αt f

)(k)(0) · sn−1−k.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 14/55

Page 15: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Ordinary fractional differential equations: slow relaxation

The simplest case: Fractional relaxation equation

Dαt u(t) + λu(t) = 0, 0 < α ≤ 1, λ > 0, t > 0;

u(0) = 1.

Solution:α = 1: u(t) = exp(−λt) - ordinary (exponential) relaxation,

0 < α ≤ 1: u(t) = Eα(−λtα), where

Eα(z) =

∞∑k=0

zk

Γ(αk + 1)− Mittag-Leffler function

It is a generalization of the exponential function:

E1(z) =

∞∑k=0

zk

k!= ez

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 15/55

Page 16: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

α ∈ (0, 1): Fractional (slow) relaxation

Plots of Eα(−tα) for different values of α ∈ (0, 1].α = 1 - exponential decay, α ∈ (0, 1) - algebraic decay (t−α).

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 16/55

Page 17: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Fractional relaxation-oscillation equation

Dαt u(t) + λu(t) = 0, 1 < α ≤ 2, λ > 0, t > 0;

u(0) = 1, u′(0) = 0.

Solution:

α = 1: u(t) = exp(−λt) - ordinary (exponential) relaxation,

α = 2: u(t) = cos(√λt) - oscillations.

1 < α ≤ 2: u(t) = Eα(−λtα) - damped oscillations.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 17/55

Page 18: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

α ∈ (1, 2): Fractional (damped) oscillations

Plots of Eα(−tα) for different values of α ∈ (1, 2].

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 18/55

Page 19: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Mittag-Leffler functions

Eα(z) = Eα,1(z), where

Eα,β(z) =

∞∑k=0

zk

Γ(αk + β)− two-parameter Mittag-Leffler function

Entire function. Asymptotic expansion:

Eα,β(−t) =t−1

Γ(β − α)+O(t−2), t→ +∞, α ∈ (0, 2), β ∈ R.

Laplace transform:

L{tβ−1Eα,β(−λtα)

}=

sα−β

sα + λ

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 19/55

Page 20: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Completely monotone functions

A function f : (0,∞)→ R is called completely monotone function (CMF) if

(−1)nf (n)(t) ≥ 0, for all t > 0, n = 0, 1, ...

The simplest example: f(t) = e−t

Mittag-Leffler function (α, β ∈ R, α > 0):

Eα,β(−t) =

∞∑k=0

(−t)k

(αk + β), Eα(−t) = Eα,1(−t).

E1(−t) = e−t ∈ CMF

Eα(−t) ∈ CMF , iff 0 < α < 1 (Pollard, 1948)

Eα,β(−t) ∈ CMF , iff 0 ≤ α ≤ 1, α ≤ β (Schneider, 1996; Miller, 1999)

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 20/55

Page 21: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Inhomogeneous fractional relaxation equation

Let λ > 0, 0 < α ≤ 1.

Dαt u(t) + λu(t) = f(t), t > 0,

u(0) = 1.

The solution is obtained by applying Laplace transform and is given by:

u(t) = Eα(−λtα) +

∫ t

0

τα−1Eα,α(−λτα)f(t− τ) dτ.

Eα(−λtα) and tα−1Eα,α(−tα) are completely monotone functions.

Eα(−λtα) = O(1/tα) as t→∞

tα−1Eα,α(−tα) = O(1/tα+1) as t→∞

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 21/55

Page 22: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Plots of tα−1Eα,α(−tα) for different values of α ∈ (0, 1].Completely monotone functions. Algebraic decay ∼ 1/tα+1 as t→∞.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 22/55

Page 23: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Multi-term fractional relaxation equation

Dαt u(t) +

m∑j=1

λjDαjt u(t) + λu(t) = f(t), t > 0,

u(0) = 1,

where 0 < αm < ... < α1 < α ≤ 1, λ, λj > 0, j = 1, ...,m, m ∈ N.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 23/55

Page 24: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

By applying Laplace transform we can find the solution:

u(t) = u0(t) +

∫ t

0

uδ(t− τ)f(τ) dτ,

where

L{u0}(s) =sα−1 +

∑mj=1 λjs

αj−1

sα +∑mj=1 λjs

αj + λ, L{uδ}(s) =

1

sα +∑mj=1 λjs

αj + λ.

Note that

L{Eα(−λtα)}(s) =sα−1

sα + λ, L{tα−1Eα,α(−λtα)}(s) =

1

sα + λ.

u0(t) and uδ(t) - generalizations of the Mittag-Leffler type functions

Eα(−λtα) and tα−1Eα,α(−λtα)

Aim: Study the properties of u0(t) and uδ(t)

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 24/55

Page 25: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Theorem.

u0(t) =

∫ ∞0

e−rtK0(r) dr and uδ(t) =

∫ ∞0

e−rtKδ(r) dr, where

K0(r) =λ

πr· B(r)

(A(r) + λ)2 + (B(r))2and Kδ(r) =

1

π· B(r)

(A(r) + λ)2 + (B(r))2

A(r) = rα cosαπ +

m∑j=1

λjrαj cosαjπ, B(r) = rα sinαπ +

m∑j=1

λjrαj sinαjπ.

Proof: Take the inverse Laplace integral of u0(s) and uδ(s), i.e.

u0(t) =1

2πi

∫Br

estsα−1 +

∑mj=1 λjs

αj−1

sα +∑mj=1 λjs

αj + λds,

(and similarly for uδ(t)), where Br = {s; Re s = σ, σ > 0} is the Bromwich path.

Remark: The obtained representations of u0(t) and uδ(t) are appropriate fornumerical computation.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 25/55

Page 26: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Other properties

Theorem. The functions u0(t) and uδ(t) have the following properties

0 < u0(t) < 1, uδ(t) > 0, strictly decreasing for t > 0, (1)

u0(0) = 1, uδ(0) = +∞, (2)

u0(t) and uδ(t) are completely monotone functions for t > 0, (3)

u′0(t) = −λuδ(t), t > 0, (4)∫ T

0

uδ(t) dt <1

λ, T > 0, (5)

u0(t) ∼ 1− λ tα

Γ(α+ 1), uδ(t) ∼

tα−1

Γ(α), t→ 0, (6)

u0(t) ∼λmt

−αm

λΓ(1− αm), uδ(t) ∼ −

λmt−αm−1

λ2Γ(−αm), t→ +∞. (7)

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 26/55

Page 27: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Solution u0(t) (black) of the two-term equation with α = 0.75, α1 = 0.25

Dαt u0(t) + Dα1

t u0(t) + u0(t) = 0, t > 0, u0(0) = 1,

compared to the functions Eα(−tα) for α = 0.75 (green) and α = 0.25 (red).For t→ 0 the asymptotic behavior of u0 is determined by the largest order (0.75),and for t→∞ by the smallest order (0.25).

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 27/55

Page 28: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Fractional relaxation of distributed order

∫ 1

0

µ(β)Dβt u(t) dβ = −λu(t), t > 0, λ > 0, u(0) = 1.

µ ∈ C[0, 1], µ(β) ≥ 0, β ∈ [0, 1], and µ(β) 6= 0 on a set of a positive measure.

Applying Laplace transform:

u(s) =h(s)

s(h(s) + λ), where h(s) =

∫ 1

0

µ(β)sβ dβ.

u(t) is again completely monotone function; the main difference: in the asymptoticbehaviour at t→∞

Example: uniform distribution µ(β) = 1. Then

h(s) =s− 1

log s⇒ u(t) ∼ 1

λ log t, t→∞

Ultraslow relaxation: logarithmic decay.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 28/55

Page 29: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Two-term fractional relaxation-oscillation equation

Let 1 < α ≤ 2, 0 < β < α, c ≥ 0.

Dαt G(t) + cDβ

tG(t) = −ωG(t),

G(0) = 1, G′(0) = 0.

By applying Laplace transform it follows

G(s) =sα−1 + csβ−1

sα + csβ + ω

G(t) = 1−∞∑n=0

n∑p=0

(−1)n(np

)cpωn−p+1 tαn−βp+α

Γ(αn− βp+ α+ 1)

G(t) ∼ t−α

ωΓ(1− α)+

ct−β

ωΓ(1− β), t→∞.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 29/55

Page 30: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Plots of G(t) for ω = 1, c = 0 and different values of α.

Plots of G(t) for ω = c = 1, α = 2 and different values of β.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 30/55

Page 31: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Plots of G(t) for ω = c = 1, α = 1.75 and different values of β.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 31/55

Page 32: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Transition from ODE to PDE

An example: a time-fractional diffusion-wave equation

Let 1 < α ≤ 2. Consider the IBVP on (0, 1)× (0,∞):

Dαt u(x, t) = uxx(x, t),

ux(0, t) = 0, u(0, t) = u(1, t),

u(x, 0) = f(x), ut(x, 0) = 0.

f(x) is a given sufficiently smooth function, satisfying the compatibility conditions

f(0) = f(1), f ′(0) = 0.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 32/55

Page 33: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Solution for α = 2, f(x) = x sin(2πx)

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 33/55

Page 34: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Solutions for α = 1.75 and α = 1.5, f(x) = x sin(2πx)

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 34/55

Page 35: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Observation: the time evolution of solution of a PDE is determined by thebehaviour of solution of corresponding ODE, obtained by replacing of the operatoracting in space by a constant (eigenvalue)

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 35/55

Page 36: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Time-fractional diffusion equation (TFDE)

Describes diffusion in complex media: porous, highly heterogeneous (e.g.underground diffusion of contaminants), amorphous; in colloids, dielectrics,biological systems, polymers, etc.

Diffusion of contaminants under the ground → impact for the environment: bettersimulations and predictions of the density of the contaminant over time is needed(the real size is in kilometers; laboratory experiments with meter sizes)

Classical diffusion-convection equation:

ρ(x)∂u

∂t(x, t) = div(p(x)∇u(x, t)) + b(x).∇u(x, t),

where u(x, t) denotes the density at time t and the location x.

Field data show anomalous diffusion in heterogeneous aquifer which can not beinterpreted by the classical convection-diffusion equation:

E.E. Adams and L.W. Gelhar, Field study of dispersion in a heterogeneous aquifer2. spatial moments analysis, Water Resources Research 28 (1992) 3293 3307.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 36/55

Page 37: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Pollutants take longer times to travel than expected from classical diffusion, dueto trapping caused by stagnant regions of zero velocity of the mean flow of thegroundwater.

The diffusion is observed to be slower than the prediction on the basis of theclassical convection-diffusion equation, and such anomalous diffusion is calledslow diffusion.

The continuous-time random walk is a microscopic model for the anomalousdiffusion, and by an argument similar to the derivation of the classical diffusionequation from the random walk, one can derive fractional diffusion models.

References:

Y. Hatano, N. Hatano, Dispersive transport of ions in column experiments: anexplanation of long-tailed profiles, Water Resources Research 34 (1998) 1027 1033.

R. Metzler, J. Klafter, The random walks guide to anomalous diffusion:a fractionaldynamics approach, Phyics Reports 339 (2000) 177.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 37/55

Page 38: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Time-fractional diffusion equationon a bounded domain

Dαt u(x, t) = Lxu(x, t) + F (x, t), (x, t) ∈ G× (0, T ),

u(x, t) = 0, x ∈ ∂G, t ∈ (0, T ),

u(x, 0) = a(x), x ∈ G.

0 < α ≤ 1;

G ⊂ Rd - bounded domain with sufficiently smooth boundary ∂G;

Lx - symmetric uniformly elliptic operator;

Lx(u) = div(p(x)∇u)− q(x)u,

where p ∈ C1(G), q ∈ C(G), p(x) > 0, q(x) ≥ 0, x ∈ G,

F (x, t), a(x) - given functions.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 38/55

Page 39: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Eigenfunction expansion of the solution

{µn(x)}n∈N - eigenvalues of −Lx, 0 < µ1 ≤ µ2 ≤ ... ,{ϕn(x)}n∈N - eigenfunctions form orthonormal basis in L2(G).Eigenfunction decomposition implies:

u(x, t) =

∞∑n=1

(anEα(−µntα) +

∫ t

0

Fn(t− τ)τα−1Eα,α(−µnτα) dτ

)ϕn(x),

an = (a, ϕn), Fn(t) = (F (., t), ϕn), (., .) - inner product in L2(G).(Prove convergence of the series!)

Eigenfunction expansion is useful for:- study of the qualitative properties of the solution (e.g asymptotic behavior)related to different parameters,- obtaining regularity estimates for the solution, necessary for error estimates innumerical methods (e.g. FEM),- study of inverse problems: identification of source term F (x) from giveninitial and final data, parameter identification (e.g. α ∼ anomaly of diffusion,p(x)∼heterogeneity of the medium), or problems backward in time.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 39/55

Page 40: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Main characteristics of TFDE:

Although the time-fractional diffusion equation inherits certain properties from theclassical diffusion equation, it differs considerably from it, especially in the sense of

• slow decay in time,

• limited smoothing effect in space.

Regularity in space is determined by estimates of the form

‖∆u‖L2(G) + ‖Dαt u‖L2(G) ≤ Ct−α‖a‖L2(G)

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 40/55

Page 41: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Fractional Thornley’s problem

Model of spiral phyllotaxis in botany: u(x, t) - morphogen concentration

Dαt u(x, t) = uxx(x, t)− γ2u(x, t), 0 < α ≤ 1, x ∈ (0, 1), t > 0,

ux(0, t) = g(t), u(0, t) = u(1, t), u(x, 0) = f(x),

(g(t) = −12S0(t), S0 - strength of morphogen source at x = 0)

g(t) = −1 g(t) = − exp(−t)

α = 1/2 (solid line) compared to α = 1 (dashed line).

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 41/55

Page 42: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Other fractional differential equations

-Fractional diffusion equation of distributed order:

in TFDE replace Dαt , α ∈ (0, 1), with

∫ 1

0

µ(β)Dβt dβ.

-Multi-term fractional diffusion equation:

take µ(β) = δ(β − α) +∑mj=1 λjδ(β − αj), 0 < αj < α ≤ 1, λj > 0 :

Dαt u(x, t) +

m∑j=1

λjDαjt u(x, t) = Lxu(x, t) + F (x, t).

-Fractional telegraph equation (diffusion-wave equation with damping):

Dαt u(x, t) + cDβ

t u(x, t) = auxx, 1 < α ≤ 2, 0 < β < α, a, c > 0.

-Fractional cable equation (describes electrodiffusion in nerve cells):

ut = Dαt (uxx)− γDβ

t u, 0 < α, β < 1, γ > 0.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 42/55

Page 43: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Modelling of flows of viscoelastic fluids

Many industrial and natural processes can be modelled as viscoelastic flows: frompolymer extrusion to processes in geophysics.

The main reason for the theoretical development is the wide use of polymers invarious fields of engineering.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 43/55

Page 44: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Polymer crystallization

Crystallization of polymers is a process associated with partial alignment of theirmolecular chains.Crystallization structure depends on flow strength and affects optical, mechanical,thermal and chemical properties of the polymer.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 44/55

Page 45: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

The application of fractional calculus in linear viscoelasticity leads to generalizationsof the classical mechanical models: the basic Newton element (σ = ηε) issubstituted by the more general Scott-Blair element (σ = aDα

t ε).

The fractional Burgers model is a linear fractional model of viscoelastic fluids,which can be represented as the combination in series of a fractional KelvinVoigtelement and a fractional Maxwell element. The constitutive equation for generalizedBurgers fluid is given by:

(1 + λα1D

αt + λα2D

2αt

)σ(t) = µ

(1 + λβ3D

βt + λβ4D

2βt

)ε(t),

where σ, ε are shear stress, rate of shear strain, µ > 0, λi ≥ 0, i = 1, 2, 3, 4, arematerial constants, the fractional parameters α and β satisfy 0 < α ≤ β ≤ 1.

Substituting this constitutive equation in the momentum equation leads in the caseof unidirectional flow to the following equation for the velocity field u(x, t):

(1 + λα1D

αt + λα2D

2αt

)ut = µ

(1 + λβ3D

βt + λβ4D

2βt

)∆u,

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 45/55

Page 46: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Fractional Burgers’ fluid:(1 + λα1D

αt + λα2D

2αt

)ut = µ

(1 + λβ3D

βt + λβ4D

2βt

)∆u,

where u(x, t) - velocity distribution; µ, λi - material parameters;∆ - Laplace operator acting on space variables.

Particular cases:- Newtonian fluid: all λi = 0.- Generalized second grade fluid: λ1, λ2, λ4 = 0, λ3 6= 0;- Fractional Maxwell model: λ2, λ3, λ4 = 0, λ1 6= 0;- Fractional Oldroyd-B model: λ2, λ4 = 0, λ1, λ3 6= 0.

Introducing fractional derivatives in the constitutive equation → better descriptionof viscoelastic and memory effects in some materials (e.g polymers and biologicalliquids). For example: fractional Oldroyd-B model: at least appropriate to describethe behaviour of Xantan gum and Sesbonia gel.Reference:Song DY, Jiang TQ, Study on the constitutive equation with fractional derivativefor the viscoelastic fluid-modified Jeffreys model and its applications, Rheol. Acta37 (1998) 512-517.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 46/55

Page 47: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Example: Consider the following Rayleigh-Stokes problem for the fractional secondgrade fluid

ut = (1 +Dβt )uxx,

u(0, t) = φ(t), u(1, t) = 0, u(x, 0) = 0.

It models velocity distribution of a flow between two parallel plates, one of whichis moving. The flow is initially at rest.

Two cases: the flow is induced by oscillations (φ(t) = sin(4πt), left) or by alinear acceleration (φ(t) = t2, right) of the moving plate, together with a no-slipcondition; β = 0.5.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 47/55

Page 48: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

Numerical methods

Nonlocal character of fractional derivatives → ability to model more adequatelyphenomena with memory. On the other hand, the same nonlocality property makesit difficult to design fast and accurate numerical techniques for fractional orderdifferential equations.

x ∈ [0, 1], t ∈ [0, T ]; M , N - number of time and space nodes, τ = T/M - timestep, h = 1/N space step; xj = jh, j = 0, 1, ..., N, tk = kτ, k = 0, 1, ...,M.

One possibility for numerical approximation of the Riemann-Liouville fractionalderivative is the Grunwald-Letnikov approximation:

(Dαt u)kj = τ−α

k∑m=0

(−1)m(αm

)uk−mj +O(τ).

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 48/55

Page 49: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

There is already a vast amount of studies (including numerical studies) of the single-term time-fractional diffusion equation and some recent works on its multi-termand distributed-order generalizations.

Concerning the problems related to viscoelastic models, only the Rayleigh-Stokesproblem for the generalized second grade fluid

ut = µ(1 +Dβt )∆u+ f(x, t)

is well studied numerically as well as theoretically.

The more general problems (for the generalized fractional Oldroyd-B and Burgers’fluids) remain open for future research.

Acknowledgement : This work is partially supported by the Bulgarian NationalScience Fund under Grant DFNI-I02/9.

Thank you for your attention!

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 49/55

Page 50: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

References

Bazhlekova E, Jin B, Lazarov R, Zhou Z. An analysis of the Rayleigh-Stokesproblem for a generalized second-grade fluid. Numer Math. 2014 Available from:http://link.springer.com/article/10.1007/s00211-014-0685-2

Bazhlekova E, Bazhlekov I. Viscoelastic flows with fractional derivative models:computational approach via convolutional calculus of Dimovski. Fract Calc ApplAnal. 2014;17(4):954–976.

Chechkin AV, Gorenflo R, Sokolov IM. Retarding subdiffusion and acceleratingsuperdiffusion governed by distributed order fractional diffusion equations. PhysRev. E 2002;66(4 Pt 2):046129

C.-M. Chen, F. Liu, V. Anh, A Fourier method and an extrapolation technique forStokes’ first problem for a heated generalized second grade fluid with fractionalderivative. J. Comput. Appl. Math. 223 No 2 (2009) 777-789.

C.-M. Chen, F. Liu, V. Anh, Numerical analysis of the Rayleigh-Stokes problem fora heated generalized second grade fluid with fractional derivatives. Appl. Math.Comput. 204 No 1 (2008), 340-351.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 50/55

Page 51: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

C. Fetecau, M. Jamil, C. Fetecau, D. Vieru, The Rayleigh-Stokes problem for anedge in a generalized Oldroyd-B fluid. Z. Angew. Math. Phys. 60, No 5 (2009),921-933.

R. Gorenflo, F. Mainardi, Fractional Calculus: Integral and Differential Equationsof Fractional Order, in: A. Carpinteri, F. Mainardi(Eds.) Fractals and FractionalCalculus in Continuum Mechanics, Springer Verlag (1997) 223276.

B.I. Henry, T. A. M. Langlands, S. L. Wearne, Anomalous diffusion with linearreaction dynamics: From continuous time random walks to fractional reaction-diffusion equations. Phys. Rev. E 74 3 (2006) 031116.

B. Jin, R. Lazarov, Z. Zhou, Error estimates for a semidiscrete finite elementmethod for fractional order parabolic equations, SIAM J. Numer. Anal. 51, No 1(2013), 445-466.

Jin B, Lazarov R, Liu Y, Zhou Z. The Galerkin finite element method for amulti-term time-fractionl diffusion equation. J Comput Phys. 2015;281:825–843.

B. Jin, R. Lazarov, D. Sheen, Z. Zhou, Error Estimates for Approximationsof Distributed Order Time Fractional Diffusion with Nonsmooth Data,arXiv:1504.01529

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 51/55

Page 52: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

M. Khan, S.H. Ali, T. Hayat, C. Fetecau, MHD flows of a second grade fluidbetween two side walls perpendicular to a plate through a porous medium. Int. J.Nonlin. Mech. 43 (2008), 302-319.

M. Khan, A. Anjum, C. Fetecau, H. Qi, Exact solutions for some oscillating motionsof a fractional Burgers’ fluid. Math. Comput. Model. 51 (2010), 682-692.

M. Khan, A. Anjum, H. Qi, C. Fetecau, On exact solutions for some oscillatingmotions of a generalized Oldroyd-B fluid. Z. Angew. Math. Phys. 61 (2010),133-145.

A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractionaldifferential equations North-Holland Mathematics studies, Elsevier, Amsterdam(2006).

Kochubei AN. Distributed order calculus and equations of ultraslow diffusion. JMath Anal Appl. 2008;340:252-281.

Li Z, Luchko Yu, Yamamoto M. Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations.Fract Calc Appl Anal. 2014;17(4):1114–1136.

Li Z, Liu Y, Yamamoto M. Initial-boundary value problems for multi-term time-

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 52/55

Page 53: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

fractional diffusion equations with positive constant coefficients, Appl MathComput. 2015;257:381–397.

Y. Lin, W. Jiang, Numerical method for Stokes’ first problem for a heatedgeneralized second grade fluid with fractional derivative. Numer. Methods PartialDiff. Eq. 27 No 6 (2011), 1599-1609.

Yu. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15 1 (2012)141–160, doi: 10.2478/s13540-012-0010-7

Yu. Luchko, Maximum principle for the generalized time-fractional diffusionequation. J. Math. Anal. Appl. 351 1 (2009) 218–223.

Luchko, Yu. Initial-boundary-value problems for the generalized multiterm time-fractional diffusion equation. J Math Anal Appl. 2011;374(2):538–548.

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: AnIntroduction to Mathematical Models. Imperial College Press (2010).

F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wavephenomena. Chaos Solitons Fractals 7 1-2 (1996) 1461-477.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 53/55

Page 54: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity.Fract. Calc. Appl. Anal. 15 No 4 (2012), 712-717.

Mainardi F, Mura A, Gorenflo R, Stojanovic M. The two forms of fractionalrelaxation of distributed order. J Vib Control. 2007;13:1249–1268.

Mainardi F, Mura A, Pagnini G, Gorenflo R. Time-fractional diffusion of distributedorder. J Vib Control. 2008;14:1267–1290.

R. Metzler, J. Klafter, Boundary value problems for fractional diffusion equations.Physica A 278 1-2 (2000) 107–125.

R. Metzler, J. Klafter, The restaurant at the end of the random walk: Recentdevelopments in the description of anomalous transport by fractional dynamics. J.Phys. A: Math. Gen. 37 31 (2004) R161-R208.

A. Mohebbi, M. Abbaszadeh, M. Dehghan, Compact finite difference schemeand RBF meshless approach for solving 2D Rayleigh-Stokes problem for a heatedgeneralized second grade fluid with fractional derivatives. Comput. Methods Appl.Mech. Eng. 264 (2013), 163-177.

J. Nakagawa, K. Sakamoto, M. Yamamoto, Overview to mathematical analysis forfractional diffusion equations new mathematical aspects motivated by industrial

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 54/55

Page 55: Fractional Calculus in the Mathematical · PDF fileFractional Calculus in the Mathematical Modelling ... research publications in the area of Fractional Calculus ... Fractional Calculus

collaboration, Journal of Math-for-Industry, Vol.2 (2010A-10), pp.99-108.

I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999).

Pruss J. Evolutionary integral equations and applications. Basel: Birkhauser; 1993.

K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractionaldiffusion-wave equations and applications to some inverse problems. J. Math.Anal. Appl. 382 1 (2012) 426–447.

T. Sandev, Z. Tomovski, The general time fractional wave equation for a vibratingstring. J. Phys. A: Math. Theor. 43 6 (2010) 055204.

Sokolov IM, Chechkin AV, Klafter J. Distributed-order fractional kinetics. ActaPhys Pol B. 2004;35(4):1323–1341.

C. Wu, Numerical solution for Stokes’ first problem for a heated generalized secondgrade fluid with fractional derivative. Appl. Numer. Math. 59 No 10 (2009),2571-2583.

C. Zhao, C. Yang, Exact solutions for electro-osmotic flow of viscoelastic fluids inrectangular micro-channels. Appl. Math. Comput. 211 No 2 (2009), 502-509.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 55/55