56
Tim Grüne Electron Crystallography nanoArgovia A3EDPI Organic and macromolecular crystallography with electrons Bioinformatics and X–Ray Structural Analysis — Universität Konstanz 29 th January 2019 Dr. Tim Grüne des. Head of the Centre for X-ray Structure Analysis Faculty of Chemistry University of Vienna Universität Konstanz 29 th January 2019 1/0

Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

  • Upload
    others

  • View
    6

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Organic and macromolecular crystallography with electrons

Bioinformatics and X–Ray Structural Analysis — Universität Konstanz29th January 2019

Dr. Tim Grünedes. Head of the Centre for X-ray Structure AnalysisFaculty of ChemistryUniversity of Vienna

Universität Konstanz 29th January 2019 1/0

Page 2: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

1 - Outline

1. Structure Determination with Crystallography

2. Electron and X–rays

3. Applications for Electron Crystallography

4. Practical Aspects

5. Radiation Damage

6. Dynamic Scattering

Universität Konstanz 29th January 2019 2/0

Page 3: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

2 - Structure Determination by Single Crystal Diffraction

Universität Konstanz 29th January 2019 3/0

Page 4: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

The Crystallographic Experiment

Detector

Crystal

SoRadiation

source

Planar

wave

S i

Rotation Axis of Crystal

(Diffr

action)

Data Noise (ignored)

• Diffraction spots: interaction between wave and crystal

• Experimental result: Position and Intensity for each spot

• Data recorded as frames with an area detector

• Generally true for all radiation sources, X-ray, neutron, electron

Universität Konstanz 29th January 2019 4/0

Page 5: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Spot Position

• Spots positions according to Laue Conditions and orientation of Unit Cell:

(~So−~Si).~a = h

and (~So−~Si).~b = k

and (~So−~Si).~c = l

• Monochhromatic wave: ~S = (~So−~Si) depends on wavelength λ and experimental geometry

• Spot position ⇔ Crystal lattice, independent from radiation type

• Resolution dhkl of a spot from position on detector via Bragg’s law, λ = 2dhkl sin(θ)

Universität Konstanz 29th January 2019 5/0

Page 6: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Spot Intensity

• Spots intensity depends on physics of interaction

X–rays interact with electrons, crystallographic map corresponds to electron density (number of electronper Volum, e−/A3).

Electrons interact with electrostatic potential from electrons + nucleus (ϕ(~r))

Neutrons interact with nucleus via weak interaction, and magnetic moment.

• Spot intensity ⇔ Unit cell content: where are the atoms, what type of atoms are they

Universität Konstanz 29th January 2019 6/0

Page 7: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Types of Radiation — X–rays

Annual Growth of the PDB (X–ray)

• most advanced (pipelines from data collection to structure refinement)

• typical wavelength: λ =0.8–1.9Å

• standard structure determination

PDB CSD(Macromolecules) (Organic Compounds)

X-ray 132,000 950,000neutron 152 1,500electron 111 ?

Universität Konstanz 29th January 2019 7/0

Page 8: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Types of Radiation — neutrons

PDB ID 2ZOI: D/H exchange in β–strand

(Gruene et al, J. Appl. Cryst. 47 (2014), 462–466)

1. visualisation of hydrogen atoms

2. adjacent elements (e.g. K+ vs. Cl−, Zn2+ vs. Cu+)

3. requires large crystals (≥ 1mm3)

4. (virtually) no radiation damage

5. structure determination from radiation sensitive samples (Photosystem II)

Universität Konstanz 29th January 2019 8/0

Page 9: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Types of Radiation — electrons

1. strong interaction compared with X–rays: good for very smallcrystals (≪ 1µm thickness)

2. typical wavelength: 200keV = 0.0251Å

3. electron optics: imaging and diffraction with the same instru-ment

Diffraction of ZSM5 zeolite catalysts

Gruene et al., ChemEurJ (2017)

DOI: 10.1002/chem.201704213

Universität Konstanz 29th January 2019 9/0

Page 10: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

3 - Electron Diffraction

Universität Konstanz 29th January 2019 10/0

Page 11: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Small Crystals

Main advantage for electron crystallography:Diffraction from very small crystal (< 1µm)

Some instruments provide 5–10 nm beam diameter

Universität Konstanz 29th January 2019 11/0

Page 12: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Crystallisation of Proteins

Luft, Wolfley, Snell, Crystal Growth& Design (2011), 11, 651–663

Universität Konstanz 29th January 2019 12/0

Page 13: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Drops viewed through TEM

Stevenson,. . . , Calero, PNAS (2014) 111, 8470–8475 / Calero, . . . , Snell, Acta Cryst (2014) F70, 993–1008

Universität Konstanz 29th January 2019 13/0

Page 14: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Electron Diffraction: Nanocrystals

organic compound

sucrose (ETH coffee bar)

Silicalite–1 / ZSM–5 (Teng Li)Gruene et al., Chem. EurJ (2018), 24, 2384–2388

Universität Konstanz 29th January 2019 14/0

Page 15: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

How small is “nano”?

typical protein crystal size for X-rays

typical protein crystal size for elec-trons, 100x140x1,700 nm3

volumes compare like 1m3 or 6 bath tubs of water vs. 10µl

Universität Konstanz 29th January 2019 15/0

Page 16: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Effects of Crystal Volume on Diffraction Data

Reducing crystal volume reduces the resolution by (at least) two effects:

1. I(hkl) ∝ Vcrystal: 1/10 volume = 1/10 intensity

2. Henderson / Garman limit: maximum dose per volume before resolution is halved: 1/10 volume = 1/10 dosebefore radiation damage destroys crystal

From (1): In order to record the same quality diffraction pattern from a 10 times smaller crystal requires 10 timesmore intense beam.

From (1)+(2): This makes the crystal die 100 times faster

Universität Konstanz 29th January 2019 16/0

Page 17: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

4 - Instruments for Electron Diffraction

Universität Konstanz 29th January 2019 17/0

Page 18: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Electron Microscopes

(Wikipedia)

Universität Konstanz 29th January 2019 18/0

Page 19: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

The Lens System

see e.g. Zuo & Spence, “Advanced Transmission Electron Microscopy”, SpringerCarter & Williams, “Transmission Electron Microscopy”, Springer

C3

C2

C1

Gun / Source

Objective lens

Sample

Diffraction Plane

Imaging Plane

• Lenses C1–C3 shape beam• Crystallography: Parallel beam• Objective lens: sets effective detector distance to

backfocal plane = diffraction mode• C3 not present in all microscopes

Lenses cause distortions.

Universität Konstanz 29th January 2019 19/0

Page 20: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Electron Microscope: Imaging Mode

Plane Wave Object Lense Image Plane (Detector)

Rays of equal origin focus on detector

Universität Konstanz 29th January 2019 20/0

Page 21: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Electron Microscope: Imaging Mode

Plane Wave Object Lense Image Plane (Detector)

Detector noise and ra-diation senstivity re-quire low contrast im-ages

Martinez-Rucobo et al.Molecular Cell (2015) 58,1079–1089

Universität Konstanz 29th January 2019 21/0

Page 22: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Electron Microscope: Diffraction Mode

Plane Wave Object Lense

Universität Konstanz 29th January 2019 22/0

Page 23: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Electron Microscope: Diffraction Mode

Plane Wave Object Lense

Backfocal Plane

Rays of equal direction focus on detector

“Image” corresponds to Fourier transform of object

Image at Backfocal Plane =‖Fouriertransform of object‖

If object = crystal:

diffraction spots according to Laue conditions

Universität Konstanz 29th January 2019 23/0

Page 24: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Detectors for X-rays suitable for electrons

• Eiger X 1M designed for X-ray Synchrotron radiation• 1030x1065 pixel, 75×75 µm2

• up to ν = 3kHz frame rate: data collection at synchro-tron speed

• 3µs dead time: shutterless data collection• ≤ 200keV : no radiation damage, no beam stop• 16 or 32 bit image depth & 2.8 · 10

6 ctss·pixel: high dy-

namic range

Diffraction pattern and structure for SAPO–34Tinti et al., “Electron crystallography with the EIGER de-tector”, IUCrJ (2018). 5, 190–199

Universität Konstanz 29th January 2019 24/0

Page 25: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Installation of the EIGER X 1M in 1/2 day (C. Zaubitzer, ScopeM, ETH)

Removal of the previouscamera

Mounting of the EIGER X1M with adapter flange

Shielding and radi-ation monitoring

• Final shielding after 1/2 day• Vacuum OK: next morning

• Return to original state: 1 day• Gatan camera back with auto-justage

Universität Konstanz 29th January 2019 25/0

Page 26: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

5 - Data Collection: Experimental Parameters

Universität Konstanz 29th January 2019 26/0

Page 27: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

The Geometry Section in XDS Input File

EIGER detector not connected to the electron microscope: experimental are not present in file header.

Wavelength λ ∝ 1/E; 200keV =̂0.02508Å

✦❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂ ●❊❖▼❊❚❘■❈❆▲ P❆❘❆▼❊❚❊❘❙ ❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂

❖❘●❳❂ ✺✶✺ ❖❘●❨❂ ✻✷✷ ✦❉❡t❡❝t♦r ♦r✐❣✐♥ ✭♣✐①❡❧s✮✳ ❖❘●❳❂◆❳✴✷❀ ❖❘●❨❂◆❨✴✷

❉❊❚❊❈❚❖❘❴❉■❙❚❆◆❈❊❂ ✹✾✺ ✦✭♠♠✮

❘❖❚❆❚■❖◆❴❆❳■❙❂ ✲✵✳✼✸✽✺✹✺ ✲✵✳✻✼✹✶✾✺ ✵✳✵✵✸✺✻✵

❖❙❈■▲▲❆❚■❖◆❴❘❆◆●❊❂✵✳✵✷✾✺✾✸ ✦❞❡❣r❡❡s ✭❃✵✮

❳✲❘❆❨❴❲❆❱❊▲❊◆●❚❍❂✵✳✵✷✺✵✽ ✦❆♥❣str♦❡♠

■◆❈■❉❊◆❚❴❇❊❆▼❴❉■❘❊❈❚■❖◆❂✵✳✵ ✵✳✵ ✶✳✵

Universität Konstanz 29th January 2019 27/0

Page 28: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

❖❘●❳✴❖❘●❨: Beam Centre

• Strong interaction of e− with crystal ⇒ direct beamweak compared with X-rays

• Direct beam visible on detector• Coordinates manually from any image viewer, e.g.

ADXV (Andy Arvai,✇✇✇✳s❝r✐♣♣s✳❡❞✉✴t❛✐♥❡r✴❛r✈❛✐✴❛❞①✈✳❤t♠❧)

• on–axis detector: direct beam ≈ ORGX/ORGY• Can vary per data set

Universität Konstanz 29th January 2019 28/0

Page 29: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Detector Distance

• Detector distance set through electron optics• Detector physically not moved

• Calibration once per lens settings• Set manually with adxv and (Aluminum) powder–

pattern• Estimated accuracy: ±5mm

Universität Konstanz 29th January 2019 29/0

Page 30: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

The Rotation Axis

• X-rays: rotation axis obvious from instrument setup• Electron Microscope: Objective lens determines (ef-

fective) detector distance• Image rotates step–wise depending on objective lens• powder pattern with sample oscillation (“α–wobbler):

spot on axis very strong, non–spot stays non–spot

Summed images for D560mm

Summed images for D380mm

Universität Konstanz 29th January 2019 30/0

Page 31: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Determination of the Rotation Axis

• Rotation axis runs through direct beam and minimumof powder ring

• line through 2 points on rotation axis• P1 = 529/621 and P2 = 458/702

• tan(α) = ∆Y∆X

= 702−621

458−529

• ❘❖❚❆❚■❖◆ ❆❳■❙❂ cos(α); sin(α); 0

• Large radius of convergence with XDS (≈ 5−10◦)

Direction of rotation: from minimal error of spindle axis

❘❖❚❆❚■❖◆ ❆❳■❙❂ (XDS.INP) -0.6979 -0.7161 -0.0102 +0.6979 +0.7161 +0.0102❉❊❱◆ ❖❋ ❙P■◆❉▲❊ P❖❙◆ (IDXREF.LP) 0.37

◦1.01

Universität Konstanz 29th January 2019 31/0

Page 32: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Oscillation Width

• Current setup with “alien” detector: Sys-tem parameters not synchronized withdetector

• Step froward at C–CINA: movie duringmeasurements

dt=

∆α

∆t=

111.6◦−53.3◦

26.449s−1.264s= 2.315

◦/s

ν(EIGER) = 100Hz

⇒ ∆φ = 0.0231◦/frame

Universität Konstanz 29th January 2019 32/0

Page 33: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Oscillation Width

-80-60-40-20

0 20 40 60 80

-10000 0 10000 20000 30000 40000 50000

α [d

egre

e]

t [ms]

dφ/dt [°/s]= 2.9520 ± 0.0079, α0 [°] = -62.31 ± 0.19

datafile usi (0.5*($1+$3)-t1):2

α(t) = φt + α0

• Probe α angle per 0.5s during experiment• Fit line to measurements• fast, reproducible• Oscillation width ∆φ [◦/frame] = dφ

dt/ν(EIGER)

Acknowledged: Luca Piazza. Dectris Ltd. for initial Digital Micrograph script

Universität Konstanz 29th January 2019 33/0

Page 34: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

6 - Dynamic Scattering

Universität Konstanz 29th January 2019 34/0

Page 35: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Dynamic Scattering

• Kinematic Theory of Diffraction: Every photon / electron / neutron scatters once in the crystal

• |Fideal(hkl)| ∝√

Iexp(hkl)

• Dynamic Scattering: Multiple Scattering events occur

• Electron Diffraction: Multiple Scattering occurs even with nanocrystals

Universität Konstanz 29th January 2019 35/0

Page 36: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Dynamic Scattering

Universität Konstanz 29th January 2019 36/0

Page 37: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Multiple (Dual) Scattering

~Si

~S1o

~S′o ~S2o

• First reflection ~S1o acts as source of

second reflection ~S′o.• Second reflection ~S′o overlaps with an-

other reflection ~S2o

Universität Konstanz 29th January 2019 37/0

Page 38: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Multiple (Dual) Scattering

~Si

~S1o

~S′o ~S2o

Laue Conditions (accordingly~b and~c):

(~S1o−~Si) ·~a = h1

(~S′o−~S1o) ·~a = h

(~S′o−~Si) ·~a = h1+h′ = h2

~S′o −~Si fulfills the Laue conditions, hence thesecondary reflection ~S′o−~S1

o overlaps with the“ordinary” reflection ~S′o−~Si.

Universität Konstanz 29th January 2019 38/0

Page 39: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Experimental Treatment of Dynamic Scattering for Organic Crystals

• Exact calculation very complicated

• Not feasible for complex molecules (more than a few atoms)

• Ignorance of dynamic scattering, i.e. assumption of kinematic scattering (as in X-rays) provides reliablestructures

• Data statistics and model statistics poor, despite reliable structures

Universität Konstanz 29th January 2019 39/0

Page 40: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

7 - Example Structures

Universität Konstanz 29th January 2019 40/0

Page 41: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Grippostad R©, STADA

active compounds non-active compounds

paracetamol gelatineascorbic acid glycerol tristearate

caffeine lactose monohydratechlorphenamine maleate quinoline yellow (E104)

erythrosine (E127)titanium dioxide (E171)

Universität Konstanz 29th January 2019 41/0

Page 42: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Single Crystal Structure from a Pharmacy Powder

1. Exp: a = 6.9, b = 9.4, c = 11.6, α = 90.6, β = 98.4, γ = 89.8

2. CSD : a = 7.1b = 9.3c = 11.7α = 90.0β = 97.7γ = 90.0; CSD search: HXACAN04, P21/n, Paracetamol,

3. Structure solved with ≤ 40% completeness

4. Difference map reveals hydrogen atoms: data sensitivity

“The existence of multiple crystal forms (polymorphs, solvates, hydrates, etc.) is playing an increas-ingly important role in establishing and protecting intellectual property rights in the pharmaceuticalindustry”

(Prof. J. Bernstein, ECM-30 (Aug. 2016), MS50-O2)

Universität Konstanz 29th January 2019 42/0

Page 43: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

8 - Structure of a New Methylene Blue Derivative MBBF4

I. Regeni, Dr. J. Holstein & Prof. G. Clever, TU Dortmund

Universität Konstanz 29th January 2019 43/0

Page 44: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

MBBF4 — the Crystal (J. Holstein, TU Dortmund)

C120H120B8F32N28S4Pd2, MW = 2990

Universität Konstanz 29th January 2019 44/0

Page 45: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

MBBF4 — EIGER and a TEM make a Synchrotron

Universität Konstanz 29th January 2019 45/0

Page 46: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

MBBF4 — Data Accuracy (J. Holstein, TU Dortmund)

Structure of MBBF4• R1 = 22.7%(2941Fo > 4σF)

• R1 = 27.2%(4832Fo)

• GooF = 1.5• 564 parameters, 1054 restraints

After addition of hydrogen atoms and re-straints: Dual conformation of BF4 becomesvisible.

Structure refinement by J. Holstein

Universität Konstanz 29th January 2019 46/0

Page 47: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

9 - Electron Crystallography of Macromolecules

Universität Konstanz 29th January 2019 47/0

Page 48: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Protein Crystals in the TEM

Lysozyme, ≈ 2.1Å resolution(Clabbers et el. (2017))

Thermolysin:

≈ 2×1×very thin µm3

Solvent reduces contrast(sample courtesy I. Schlichting)

Thermolysin:

about 3Å resolution

Universität Konstanz 29th January 2019 48/0

Page 49: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

The Question of Resolution

e− X–ray resol. ratiodmin PDB-ID dmin PDB-ID d(e−)/d(X-rays)

Lysozyme 1.80 5K7O 0.94 1IEE 1.9Catalase 3.20 5GKN 1.50 1DGF 2.1Proteinase K 1.75 5I9S 0.83 2PWA 2.1Xylanase 2.30 5K7P 0.97 3AKQ 2.3Thaumatin 2.11 5K7Q 0.90 5X9L 2.3Trypsin 1.70 5K7R 0.75 4I8H 2.2Thermolysin 2.50 5K7T 1.12 5JVI 2.2

Liu et al., “Atomic resolution structure determination by the cryo-EM method MicroED”, Protein Science (2017), 26, 8–15

• Organic compounds reach similar resolution with electrons as with X–rays

• Proteins seem to be consistently 2× worse

Universität Konstanz 29th January 2019 49/0

Page 50: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

High resolution data collection for electron Diffraction

• X-rays: Test crystals (Thaumatin, Lysozyme, . . . ) easily diffract to 1.2–1Å

• Electrons: about 2x worse so far

• Idea (I. Schlichting, K. Diederichs, independently): Combine serial crystallography with rotation method

1. Rotate sample at high dose with short lifetime but maximum resolution, e.g. 5◦ per crystal

2. Combine data from many crystals for data completness

• Very important open question in electron crystallography

Universität Konstanz 29th January 2019 50/0

Page 51: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

10 - Preferred Crystal Oritentation & the Missing Wedge Problem

Universität Konstanz 29th January 2019 51/0

Page 52: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Missing Wedge in Electron Diffraction

Cu

Cu

140°

(a)

64°

Cu

Cu

(b)

• Crystals very often have a flat shape: always the same orientation

• Sample support stabilised by Cu-grid

• Copper grid too thick: intransparent for electrons

• Limited rotation range

Universität Konstanz 29th January 2019 52/0

Page 53: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Effect of Missing Data on Map and Structure

(e) (f)

10°

(g)

30°

(h)

50°

Universität Konstanz 29th January 2019 53/0

Page 54: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Complete Data from 3D Structured Grids - Coiled carbon grids

Brush Stroke causes carbon layer to coil

Universität Konstanz 29th January 2019 54/0

Page 55: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

Complete Data from 3D Structured Grids - Nylon Fibres

Nylon fibres (≈ 100nm diameter) disturb preferred orientation

3D structured grids break

the preferred orientation of the crystals.

Complete data from < 5 crystals.

Universität Konstanz 29th January 2019 55/0

Page 56: Organic and macromolecular crystallography with electrons€¦ · Tim Grüne Electron Crystallography nanoArgovia A3EDPI Spot Intensity • Spots intensity depends on physics of interaction

Tim Grüne Electron Crystallography nanoArgovia A3EDPI

11 - Acknowledgements

• R. Pantelic (PSI/DECTRIS), S. De Carlo (DECTRIS), C. Zaubitzer (ScopeM), J. Wennmacher (PSI), J. Hol-stein (TU Dortmund), J. Heidler (PSI), A. Fecteau–LeFebvre (C–CINA), K. Goldie (C–CINA), E. Müller(PSI),S. Handschin (ScopeM), H. Stahlberg (C–CINA), N. Blanc (ScopeM), C. Schulze–Briese (DECTRIS)

• B. Luethi (DECTRIS), L. Wagner (DECTRIS), L. Piazza (DECTRIS), D. Mayani (DECTRIS)

• Y. K. Bahk (ETHZ), I. Regeni (TU Dortmund), T. Li (ETHZ), L.Muskalla (Uni Konstanz), A. Pinar (PSI), J.A.van Bokhoven (PSI/ETHZ), G. Clever (TU Dortmund)

• G. Santiso–Quinones (Crystallise!), G. Steinfeld (Crystallise!), R. Mezzenga (ETHZ), U. Shimanovich (Weiz-mann Inst.), I. Adrianssens Martiel (PSI), I. Schlichting (MPI Heidelberg), K. Diederichs (Uni Konstanz), J.Lübben (now Bruker AXS), M. Clabbers (Uni Stockholm)

nanoArgovia A3EDPI SNF Project 169258

Universität Konstanz 29th January 2019 56/0