110
. . On ideal subarrangements of Weyl arrangements Hiroaki Terao (Hokkaido University, Sapporo, Japan) at The 13th International Workshop in Real and Complex Singularities Sa˜ o Carlos, Brazil 2014.07.28 H. Terao (Hokkaido University) 2014.07.28 1 / 29

On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

.

......

On ideal subarrangementsof

Weyl arrangements

Hiroaki Terao

(Hokkaido University, Sapporo, Japan)

at

The 13th International Workshop in Real and Complex Singularities

Sao Carlos, Brazil

2014.07.28

H. Terao (Hokkaido University) 2014.07.28 1/ 29

Page 2: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Credit

with

Takuro Abe (Kyoto University)

Mohamed Barakat (Katholische UniversitatEichstatt-Ingolstadt)

Michael Cuntz (Leibniz Universitat Hannover )

Torsten Hoge (Leibniz Universitat Hannover)

arXiv:1304.8033

(to appear in J. Euro. Math. Soc.)

H. Terao (Hokkaido University) 2014.07.28 2/ 29

Page 3: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Credit

with

Takuro Abe (Kyoto University)

Mohamed Barakat (Katholische UniversitatEichstatt-Ingolstadt)

Michael Cuntz (Leibniz Universitat Hannover )

Torsten Hoge (Leibniz Universitat Hannover)

arXiv:1304.8033

(to appear in J. Euro. Math. Soc.)

H. Terao (Hokkaido University) 2014.07.28 2/ 29

Page 4: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Credit

with

Takuro Abe (Kyoto University)

Mohamed Barakat (Katholische UniversitatEichstatt-Ingolstadt)

Michael Cuntz (Leibniz Universitat Hannover )

Torsten Hoge (Leibniz Universitat Hannover)

arXiv:1304.8033

(to appear in J. Euro. Math. Soc.)

H. Terao (Hokkaido University) 2014.07.28 2/ 29

Page 5: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Credit

with

Takuro Abe (Kyoto University)

Mohamed Barakat (Katholische UniversitatEichstatt-Ingolstadt)

Michael Cuntz (Leibniz Universitat Hannover )

Torsten Hoge (Leibniz Universitat Hannover)

arXiv:1304.8033

(to appear in J. Euro. Math. Soc.)H. Terao (Hokkaido University) 2014.07.28 2/ 29

Page 6: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Weyl arrangements

A reflection arrangement A is called a Weylarrangement if there exists a set Φ of roots such that

2(α, β)/(β, β) ∈ Z

for any α, β ∈ Φ.Then the lattice ZΦ is stable under the Weyl groupW(A).

Φ+ : the set of positive roots

∆ = {α1, α2, . . . , αℓ} : the simple system (=the set ofsimple roots)

H. Terao (Hokkaido University) 2014.07.28 3/ 29

Page 7: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Weyl arrangements

A reflection arrangement A is called a Weylarrangement if there exists a set Φ of roots such that

2(α, β)/(β, β) ∈ Z

for any α, β ∈ Φ.

Then the lattice ZΦ is stable under the Weyl groupW(A).

Φ+ : the set of positive roots

∆ = {α1, α2, . . . , αℓ} : the simple system (=the set ofsimple roots)

H. Terao (Hokkaido University) 2014.07.28 3/ 29

Page 8: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Weyl arrangements

A reflection arrangement A is called a Weylarrangement if there exists a set Φ of roots such that

2(α, β)/(β, β) ∈ Z

for any α, β ∈ Φ.Then the lattice ZΦ is stable under the Weyl groupW(A).

Φ+ : the set of positive roots

∆ = {α1, α2, . . . , αℓ} : the simple system (=the set ofsimple roots)

H. Terao (Hokkaido University) 2014.07.28 3/ 29

Page 9: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Weyl arrangements

A reflection arrangement A is called a Weylarrangement if there exists a set Φ of roots such that

2(α, β)/(β, β) ∈ Z

for any α, β ∈ Φ.Then the lattice ZΦ is stable under the Weyl groupW(A).

Φ+ : the set of positive roots

∆ = {α1, α2, . . . , αℓ} : the simple system (=the set ofsimple roots)

H. Terao (Hokkaido University) 2014.07.28 3/ 29

Page 10: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Weyl arrangements

A reflection arrangement A is called a Weylarrangement if there exists a set Φ of roots such that

2(α, β)/(β, β) ∈ Z

for any α, β ∈ Φ.Then the lattice ZΦ is stable under the Weyl groupW(A).

Φ+ : the set of positive roots

∆ = {α1, α2, . . . , αℓ} : the simple system (=the set ofsimple roots)

H. Terao (Hokkaido University) 2014.07.28 3/ 29

Page 11: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

the root poset and ideals

.Definition..

......

Introduce a partial order ≥ into the set Φ+ of positive roots by

β1 ≥ β2⇐⇒ β1 − β2 ∈ℓ∑

i=1

Z≥0αi .

The poset is called the (positive) root poset.A subset I of Φ+ is called an ideal if, for {β1, β2} ⊂ Φ+,

β1 ≥ β2, β1 ∈ I ⇒ β2 ∈ I .

.Definition..

......

When I is an ideal of Φ+ the arrangement A(I ) := {kerα | α ∈ I } iscalled an ideal subarrangement of A.

H. Terao (Hokkaido University) 2014.07.28 4/ 29

Page 12: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

the root poset and ideals

.Definition..

......

Introduce a partial order ≥ into the set Φ+ of positive roots by

β1 ≥ β2⇐⇒ β1 − β2 ∈ℓ∑

i=1

Z≥0αi .

The poset is called the (positive) root poset.A subset I of Φ+ is called an ideal if, for {β1, β2} ⊂ Φ+,

β1 ≥ β2, β1 ∈ I ⇒ β2 ∈ I .

.Definition..

......

When I is an ideal of Φ+ the arrangement A(I ) := {kerα | α ∈ I } iscalled an ideal subarrangement of A.

H. Terao (Hokkaido University) 2014.07.28 4/ 29

Page 13: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

the root poset and ideals

.Definition..

......

Introduce a partial order ≥ into the set Φ+ of positive roots by

β1 ≥ β2⇐⇒ β1 − β2 ∈ℓ∑

i=1

Z≥0αi .

The poset is called the (positive) root poset.

A subset I of Φ+ is called an ideal if, for {β1, β2} ⊂ Φ+,

β1 ≥ β2, β1 ∈ I ⇒ β2 ∈ I .

.Definition..

......

When I is an ideal of Φ+ the arrangement A(I ) := {kerα | α ∈ I } iscalled an ideal subarrangement of A.

H. Terao (Hokkaido University) 2014.07.28 4/ 29

Page 14: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

the root poset and ideals

.Definition..

......

Introduce a partial order ≥ into the set Φ+ of positive roots by

β1 ≥ β2⇐⇒ β1 − β2 ∈ℓ∑

i=1

Z≥0αi .

The poset is called the (positive) root poset.A subset I of Φ+ is called an ideal if, for {β1, β2} ⊂ Φ+,

β1 ≥ β2, β1 ∈ I ⇒ β2 ∈ I .

.Definition..

......

When I is an ideal of Φ+ the arrangement A(I ) := {kerα | α ∈ I } iscalled an ideal subarrangement of A.

H. Terao (Hokkaido University) 2014.07.28 4/ 29

Page 15: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

the root poset and ideals

.Definition..

......

Introduce a partial order ≥ into the set Φ+ of positive roots by

β1 ≥ β2⇐⇒ β1 − β2 ∈ℓ∑

i=1

Z≥0αi .

The poset is called the (positive) root poset.A subset I of Φ+ is called an ideal if, for {β1, β2} ⊂ Φ+,

β1 ≥ β2, β1 ∈ I ⇒ β2 ∈ I .

.Definition..

......

When I is an ideal of Φ+ the arrangement A(I ) := {kerα | α ∈ I } iscalled an ideal subarrangement of A.

H. Terao (Hokkaido University) 2014.07.28 4/ 29

Page 16: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Examples of ideals/non-ideals of the root poset ofA3

A3: •α1

•α2

•α3

Φ+ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}

α1 ≤ α1 + α2 ≤ α1 + α2 + α3,

α2 ≤ α1 + α2 ≤ α1 + α2 + α3,

α2 ≤ α2 + α3 ≤ α1 + α2 + α3,

α3 ≤ α2 + α3 ≤ α1 + α2 + α3

Thus {α1, α2, α3, α1 + α2, α2 + α3} is an ideal, while{α1, α2, α3, α1 + α2 + α3} is not.

Note that the entire set Φ+ is always an ideal.

H. Terao (Hokkaido University) 2014.07.28 5/ 29

Page 17: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Examples of ideals/non-ideals of the root poset ofA3

A3: •α1

•α2

•α3

Φ+ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}

α1 ≤ α1 + α2 ≤ α1 + α2 + α3,

α2 ≤ α1 + α2 ≤ α1 + α2 + α3,

α2 ≤ α2 + α3 ≤ α1 + α2 + α3,

α3 ≤ α2 + α3 ≤ α1 + α2 + α3

Thus {α1, α2, α3, α1 + α2, α2 + α3} is an ideal, while{α1, α2, α3, α1 + α2 + α3} is not.

Note that the entire set Φ+ is always an ideal.

H. Terao (Hokkaido University) 2014.07.28 5/ 29

Page 18: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Examples of ideals/non-ideals of the root poset ofA3

A3: •α1

•α2

•α3

Φ+ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}

α1 ≤ α1 + α2 ≤ α1 + α2 + α3,

α2 ≤ α1 + α2 ≤ α1 + α2 + α3,

α2 ≤ α2 + α3 ≤ α1 + α2 + α3,

α3 ≤ α2 + α3 ≤ α1 + α2 + α3

Thus {α1, α2, α3, α1 + α2, α2 + α3} is an ideal, while{α1, α2, α3, α1 + α2 + α3} is not.

Note that the entire set Φ+ is always an ideal.

H. Terao (Hokkaido University) 2014.07.28 5/ 29

Page 19: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Examples of ideals/non-ideals of the root poset ofA3

A3: •α1

•α2

•α3

Φ+ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}

α1 ≤ α1 + α2 ≤ α1 + α2 + α3,

α2 ≤ α1 + α2 ≤ α1 + α2 + α3,

α2 ≤ α2 + α3 ≤ α1 + α2 + α3,

α3 ≤ α2 + α3 ≤ α1 + α2 + α3

Thus {α1, α2, α3, α1 + α2, α2 + α3} is an ideal, while{α1, α2, α3, α1 + α2 + α3} is not.

Note that the entire set Φ+ is always an ideal.

H. Terao (Hokkaido University) 2014.07.28 5/ 29

Page 20: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Free Arrangements and their Exponents

A: an arrangement of hyperplanes in an ℓ-dimensional vectorspace V

αH ∈ V∗: ker(αH) = H for H ∈ AS := S(V∗): the symmetric algebra of the dual space V∗

Define a graded S-module

D(A) := {θ | θ is an R-linear derivation with

θ(αH) ∈ αHS for all H ∈ A}.

A is said to be a free arrangement if D(A) is a free S-module.

When A is free, then ∃θ1, θ2, . . . , θℓ: homogeneous basis withdegθi = di. The nonnegative integers d1,d2, . . . , dℓ are calledthe exponents of A.

H. Terao (Hokkaido University) 2014.07.28 6/ 29

Page 21: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Free Arrangements and their Exponents

A: an arrangement of hyperplanes in an ℓ-dimensional vectorspace V

αH ∈ V∗: ker(αH) = H for H ∈ AS := S(V∗): the symmetric algebra of the dual space V∗

Define a graded S-module

D(A) := {θ | θ is an R-linear derivation with

θ(αH) ∈ αHS for all H ∈ A}.

A is said to be a free arrangement if D(A) is a free S-module.

When A is free, then ∃θ1, θ2, . . . , θℓ: homogeneous basis withdegθi = di. The nonnegative integers d1,d2, . . . , dℓ are calledthe exponents of A.

H. Terao (Hokkaido University) 2014.07.28 6/ 29

Page 22: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Free Arrangements and their Exponents

A: an arrangement of hyperplanes in an ℓ-dimensional vectorspace V

αH ∈ V∗: ker(αH) = H for H ∈ A

S := S(V∗): the symmetric algebra of the dual space V∗

Define a graded S-module

D(A) := {θ | θ is an R-linear derivation with

θ(αH) ∈ αHS for all H ∈ A}.

A is said to be a free arrangement if D(A) is a free S-module.

When A is free, then ∃θ1, θ2, . . . , θℓ: homogeneous basis withdegθi = di. The nonnegative integers d1,d2, . . . , dℓ are calledthe exponents of A.

H. Terao (Hokkaido University) 2014.07.28 6/ 29

Page 23: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Free Arrangements and their Exponents

A: an arrangement of hyperplanes in an ℓ-dimensional vectorspace V

αH ∈ V∗: ker(αH) = H for H ∈ AS := S(V∗): the symmetric algebra of the dual space V∗

Define a graded S-module

D(A) := {θ | θ is an R-linear derivation with

θ(αH) ∈ αHS for all H ∈ A}.

A is said to be a free arrangement if D(A) is a free S-module.

When A is free, then ∃θ1, θ2, . . . , θℓ: homogeneous basis withdegθi = di. The nonnegative integers d1,d2, . . . , dℓ are calledthe exponents of A.

H. Terao (Hokkaido University) 2014.07.28 6/ 29

Page 24: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Free Arrangements and their Exponents

A: an arrangement of hyperplanes in an ℓ-dimensional vectorspace V

αH ∈ V∗: ker(αH) = H for H ∈ AS := S(V∗): the symmetric algebra of the dual space V∗

Define a graded S-module

D(A) := {θ | θ is an R-linear derivation with

θ(αH) ∈ αHS for all H ∈ A}.

A is said to be a free arrangement if D(A) is a free S-module.

When A is free, then ∃θ1, θ2, . . . , θℓ: homogeneous basis withdegθi = di. The nonnegative integers d1,d2, . . . , dℓ are calledthe exponents of A.

H. Terao (Hokkaido University) 2014.07.28 6/ 29

Page 25: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Free Arrangements and their Exponents

A: an arrangement of hyperplanes in an ℓ-dimensional vectorspace V

αH ∈ V∗: ker(αH) = H for H ∈ AS := S(V∗): the symmetric algebra of the dual space V∗

Define a graded S-module

D(A) := {θ | θ is an R-linear derivation with

θ(αH) ∈ αHS for all H ∈ A}.

A is said to be a free arrangement if D(A) is a free S-module.

When A is free, then ∃θ1, θ2, . . . , θℓ: homogeneous basis withdegθi = di. The nonnegative integers d1,d2, . . . , dℓ are calledthe exponents of A.

H. Terao (Hokkaido University) 2014.07.28 6/ 29

Page 26: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Free Arrangements and their Exponents

A: an arrangement of hyperplanes in an ℓ-dimensional vectorspace V

αH ∈ V∗: ker(αH) = H for H ∈ AS := S(V∗): the symmetric algebra of the dual space V∗

Define a graded S-module

D(A) := {θ | θ is an R-linear derivation with

θ(αH) ∈ αHS for all H ∈ A}.

A is said to be a free arrangement if D(A) is a free S-module.

When A is free, then ∃θ1, θ2, . . . , θℓ: homogeneous basis withdegθi = di. The nonnegative integers d1,d2, . . . , dℓ are calledthe exponents of A.

H. Terao (Hokkaido University) 2014.07.28 6/ 29

Page 27: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Every Weyl arrangement is free

.Theorem..

......

(K. Saito 1976 et al.) The Weyl arrangement A is a freearrangement. The exponents of the Weyl arrangement A coincidewith the exponents of the corresponding root system.

Example. (Weyl arrangement of type B2)Φ+ := {α1 := x1 − x2, α2 := x2, α1 + α2 = x1, α1 + 2α2 = x1 + x2}The S-module D(AG) is a free module with a basis

θ1 = x1(∂/∂x1) + x2(∂/∂x2), θ2 = x31(∂/∂x1) + x3

2(∂/∂x2),

The exponents are

d1 = degθ1 = 1, d2 = degθ2 = 3.

H. Terao (Hokkaido University) 2014.07.28 7/ 29

Page 28: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Every Weyl arrangement is free

.Theorem..

......

(K. Saito 1976 et al.) The Weyl arrangement A is a freearrangement. The exponents of the Weyl arrangement A coincidewith the exponents of the corresponding root system.

Example. (Weyl arrangement of type B2)Φ+ := {α1 := x1 − x2, α2 := x2, α1 + α2 = x1, α1 + 2α2 = x1 + x2}The S-module D(AG) is a free module with a basis

θ1 = x1(∂/∂x1) + x2(∂/∂x2), θ2 = x31(∂/∂x1) + x3

2(∂/∂x2),

The exponents are

d1 = degθ1 = 1, d2 = degθ2 = 3.

H. Terao (Hokkaido University) 2014.07.28 7/ 29

Page 29: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Every Weyl arrangement is free

.Theorem..

......

(K. Saito 1976 et al.) The Weyl arrangement A is a freearrangement. The exponents of the Weyl arrangement A coincidewith the exponents of the corresponding root system.

Example. (Weyl arrangement of type B2)Φ+ := {α1 := x1 − x2, α2 := x2, α1 + α2 = x1, α1 + 2α2 = x1 + x2}

The S-module D(AG) is a free module with a basis

θ1 = x1(∂/∂x1) + x2(∂/∂x2), θ2 = x31(∂/∂x1) + x3

2(∂/∂x2),

The exponents are

d1 = degθ1 = 1, d2 = degθ2 = 3.

H. Terao (Hokkaido University) 2014.07.28 7/ 29

Page 30: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Every Weyl arrangement is free

.Theorem..

......

(K. Saito 1976 et al.) The Weyl arrangement A is a freearrangement. The exponents of the Weyl arrangement A coincidewith the exponents of the corresponding root system.

Example. (Weyl arrangement of type B2)Φ+ := {α1 := x1 − x2, α2 := x2, α1 + α2 = x1, α1 + 2α2 = x1 + x2}The S-module D(AG) is a free module with a basis

θ1 = x1(∂/∂x1) + x2(∂/∂x2), θ2 = x31(∂/∂x1) + x3

2(∂/∂x2),

The exponents are

d1 = degθ1 = 1, d2 = degθ2 = 3.

H. Terao (Hokkaido University) 2014.07.28 7/ 29

Page 31: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Every Weyl arrangement is free

.Theorem..

......

(K. Saito 1976 et al.) The Weyl arrangement A is a freearrangement. The exponents of the Weyl arrangement A coincidewith the exponents of the corresponding root system.

Example. (Weyl arrangement of type B2)Φ+ := {α1 := x1 − x2, α2 := x2, α1 + α2 = x1, α1 + 2α2 = x1 + x2}The S-module D(AG) is a free module with a basis

θ1 = x1(∂/∂x1) + x2(∂/∂x2), θ2 = x31(∂/∂x1) + x3

2(∂/∂x2),

The exponents are

d1 = degθ1 = 1, d2 = degθ2 = 3.

H. Terao (Hokkaido University) 2014.07.28 7/ 29

Page 32: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Factorization Theorem

.Theorem..

......

(H. T.(1981)) Assume that A is a free arrangement in the complexspace V = Cℓ with exponents (d1, . . . ,dℓ). Define the complementof A by

M(A) := V \∪H∈A

H.

Then the Poincare polynomial (with its coefficients equal to the Bettinumbers ) of the topological space M(A) splits as

Poin(M(A), t) =ℓ∏

i=1

(1+ dit).

H. Terao (Hokkaido University) 2014.07.28 8/ 29

Page 33: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Factorization Theorem

.Theorem..

......

(H. T.(1981)) Assume that A is a free arrangement in the complexspace V = Cℓ with exponents (d1, . . . ,dℓ). Define the complementof A by

M(A) := V \∪H∈A

H.

Then the Poincare polynomial (with its coefficients equal to the Bettinumbers ) of the topological space M(A) splits as

Poin(M(A), t) =ℓ∏

i=1

(1+ dit).

H. Terao (Hokkaido University) 2014.07.28 8/ 29

Page 34: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Exponents

Dynkin diagrams (root systems) and exponents

Aℓ: •α1

•α2

· · · •αℓ−1

•αℓ

(1, 2, . . . , ℓ)

Bℓ: •α1

•α2

· · · •αℓ−1

•//

αℓ(1, 3,5, . . . , 2ℓ − 1)

Cℓ: •α1

•α2

· · · •αℓ−1

•oo

αℓ(1,3,5, . . . , 2ℓ − 1)

Dℓ: •α1

•α2

· · · •αℓ−2

•αℓ−1

•αℓ

(1,3,5, . . . ,2ℓ − 3, ℓ − 1)

E6: •α1

•α3

•α4

•α2

•α5

•α6

(1,4,5, 7,8,11)

H. Terao (Hokkaido University) 2014.07.28 9/ 29

Page 35: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Exponents

Dynkin diagrams (root systems) and exponents

Aℓ: •α1

•α2

· · · •αℓ−1

•αℓ

(1, 2, . . . , ℓ)

Bℓ: •α1

•α2

· · · •αℓ−1

•//

αℓ(1, 3,5, . . . , 2ℓ − 1)

Cℓ: •α1

•α2

· · · •αℓ−1

•oo

αℓ(1,3,5, . . . , 2ℓ − 1)

Dℓ: •α1

•α2

· · · •αℓ−2

•αℓ−1

•αℓ

(1,3,5, . . . ,2ℓ − 3, ℓ − 1)

E6: •α1

•α3

•α4

•α2

•α5

•α6

(1,4,5, 7,8,11)

H. Terao (Hokkaido University) 2014.07.28 9/ 29

Page 36: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Exponents

Dynkin diagrams (root systems) and exponents

Aℓ: •α1

•α2

· · · •αℓ−1

•αℓ

(1, 2, . . . , ℓ)

Bℓ: •α1

•α2

· · · •αℓ−1

•//

αℓ(1, 3,5, . . . , 2ℓ − 1)

Cℓ: •α1

•α2

· · · •αℓ−1

•oo

αℓ(1,3,5, . . . , 2ℓ − 1)

Dℓ: •α1

•α2

· · · •αℓ−2

•αℓ−1

•αℓ

(1,3,5, . . . ,2ℓ − 3, ℓ − 1)

E6: •α1

•α3

•α4

•α2

•α5

•α6

(1,4,5, 7,8,11)

H. Terao (Hokkaido University) 2014.07.28 9/ 29

Page 37: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Exponents

Dynkin diagrams (root systems) and exponents

E7: (1,5,7,9,11,13,17) •α1

•α3

•α4

•α2

•α5

•α6

•α7

E8: (1,7,11,13, 17,19,23, 29)

•α1

•α3

•α4

•α2

•α5

•α6

•α7

•α8

F4: •α1

•α2

•//α3

•α4

(1,5,7, 11)

G2: •α1

•ooα2

(1,5)

(from http://www.ms.u-tokyo.ac.jp/ abenori/tex/tex7.html )H. Terao (Hokkaido University) 2014.07.28 10/ 29

Page 38: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Main Theorem

.Theorem..

......

If

Φ : an irreducible root system of rank ℓ

I : an ideal of Φ+

B : the corresponding ideal subarrangement to I

Then(1) B is free, and (2) the exponents of B and the heightdistribution of the positive roots in I satisfy thedual-partition formula.

This positively settles a conjecture by Sommers-Tymoczko (2006).

H. Terao (Hokkaido University) 2014.07.28 11/ 29

Page 39: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Main Theorem

.Theorem..

......

If

Φ : an irreducible root system of rank ℓ

I : an ideal of Φ+

B : the corresponding ideal subarrangement to I

Then(1) B is free, and (2) the exponents of B and the heightdistribution of the positive roots in I satisfy thedual-partition formula.

This positively settles a conjecture by Sommers-Tymoczko (2006).

H. Terao (Hokkaido University) 2014.07.28 11/ 29

Page 40: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Main Theorem

.Theorem..

......

If

Φ : an irreducible root system of rank ℓ

I : an ideal of Φ+

B : the corresponding ideal subarrangement to I

Then(1) B is free, and (2) the exponents of B and the heightdistribution of the positive roots in I satisfy thedual-partition formula.

This positively settles a conjecture by Sommers-Tymoczko (2006).

H. Terao (Hokkaido University) 2014.07.28 11/ 29

Page 41: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Main Theorem

.Theorem..

......

If

Φ : an irreducible root system of rank ℓ

I : an ideal of Φ+

B : the corresponding ideal subarrangement to I

Then(1) B is free, and (2) the exponents of B and the heightdistribution of the positive roots in I satisfy thedual-partition formula.

This positively settles a conjecture by Sommers-Tymoczko (2006).

H. Terao (Hokkaido University) 2014.07.28 11/ 29

Page 42: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Main Theorem

.Theorem..

......

If

Φ : an irreducible root system of rank ℓ

I : an ideal of Φ+

B : the corresponding ideal subarrangement to I

Then

(1) B is free, and (2) the exponents of B and the heightdistribution of the positive roots in I satisfy thedual-partition formula.

This positively settles a conjecture by Sommers-Tymoczko (2006).

H. Terao (Hokkaido University) 2014.07.28 11/ 29

Page 43: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Main Theorem

.Theorem..

......

If

Φ : an irreducible root system of rank ℓ

I : an ideal of Φ+

B : the corresponding ideal subarrangement to I

Then(1) B is free, and

(2) the exponents of B and the heightdistribution of the positive roots in I satisfy thedual-partition formula.

This positively settles a conjecture by Sommers-Tymoczko (2006).

H. Terao (Hokkaido University) 2014.07.28 11/ 29

Page 44: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Main Theorem

.Theorem..

......

If

Φ : an irreducible root system of rank ℓ

I : an ideal of Φ+

B : the corresponding ideal subarrangement to I

Then(1) B is free, and (2) the exponents of B and the heightdistribution of the positive roots in I satisfy thedual-partition formula.

This positively settles a conjecture by Sommers-Tymoczko (2006).

H. Terao (Hokkaido University) 2014.07.28 11/ 29

Page 45: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Main Theorem

.Theorem..

......

If

Φ : an irreducible root system of rank ℓ

I : an ideal of Φ+

B : the corresponding ideal subarrangement to I

Then(1) B is free, and (2) the exponents of B and the heightdistribution of the positive roots in I satisfy thedual-partition formula.

This positively settles a conjecture by Sommers-Tymoczko (2006).

H. Terao (Hokkaido University) 2014.07.28 11/ 29

Page 46: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

the dual-partition formula

In particular, when the ideal I is equal to the entire Φ+, our maintheorem yields:

.Corollary..

......

(The dual-partition formula by Shapiro, Steinberg, Kostant,Macdonald )The exponents of the entire Φ and the height distribution of theentire positive roots satisfy the dual-partition formula.

H. Terao (Hokkaido University) 2014.07.28 12/ 29

Page 47: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

the dual-partition formula

In particular, when the ideal I is equal to the entire Φ+, our maintheorem yields:

.Corollary..

......

(The dual-partition formula by Shapiro, Steinberg, Kostant,Macdonald )The exponents of the entire Φ and the height distribution of theentire positive roots satisfy the dual-partition formula.

H. Terao (Hokkaido University) 2014.07.28 12/ 29

Page 48: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

the dual-partition formula

In particular, when the ideal I is equal to the entire Φ+, our maintheorem yields:

.Corollary..

......

(The dual-partition formula by Shapiro, Steinberg, Kostant,Macdonald )

The exponents of the entire Φ and the height distribution of theentire positive roots satisfy the dual-partition formula.

H. Terao (Hokkaido University) 2014.07.28 12/ 29

Page 49: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

the dual-partition formula

In particular, when the ideal I is equal to the entire Φ+, our maintheorem yields:

.Corollary..

......

(The dual-partition formula by Shapiro, Steinberg, Kostant,Macdonald )The exponents of the entire Φ and the height distribution of theentire positive roots satisfy the dual-partition formula.

H. Terao (Hokkaido University) 2014.07.28 12/ 29

Page 50: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Height of positive roots

Φ : an irreducible root system of rank ℓ

∆ = {α1, . . . , αℓ} : a simple system of Φ

Φ+: the set of positive roots

ht(α) :=∑ℓ

i=1 ci (height) for a positive rootα =∑ℓ

i=1 ciαi (ci ∈ Z≥0)

The height distribution in Φ+ is a sequenceof positive integers (i1, i2, . . . , im), wherei j := |{α ∈ Φ+ | ht(α) = j}| (1 ≤ j ≤ m)

H. Terao (Hokkaido University) 2014.07.28 13/ 29

Page 51: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Height of positive roots

Φ : an irreducible root system of rank ℓ

∆ = {α1, . . . , αℓ} : a simple system of Φ

Φ+: the set of positive roots

ht(α) :=∑ℓ

i=1 ci (height) for a positive rootα =∑ℓ

i=1 ciαi (ci ∈ Z≥0)

The height distribution in Φ+ is a sequenceof positive integers (i1, i2, . . . , im), wherei j := |{α ∈ Φ+ | ht(α) = j}| (1 ≤ j ≤ m)

H. Terao (Hokkaido University) 2014.07.28 13/ 29

Page 52: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Height of positive roots

Φ : an irreducible root system of rank ℓ

∆ = {α1, . . . , αℓ} : a simple system of Φ

Φ+: the set of positive roots

ht(α) :=∑ℓ

i=1 ci (height) for a positive rootα =∑ℓ

i=1 ciαi (ci ∈ Z≥0)

The height distribution in Φ+ is a sequenceof positive integers (i1, i2, . . . , im), wherei j := |{α ∈ Φ+ | ht(α) = j}| (1 ≤ j ≤ m)

H. Terao (Hokkaido University) 2014.07.28 13/ 29

Page 53: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Height of positive roots

Φ : an irreducible root system of rank ℓ

∆ = {α1, . . . , αℓ} : a simple system of Φ

Φ+: the set of positive roots

ht(α) :=∑ℓ

i=1 ci (height) for a positive rootα =∑ℓ

i=1 ciαi (ci ∈ Z≥0)

The height distribution in Φ+ is a sequenceof positive integers (i1, i2, . . . , im), wherei j := |{α ∈ Φ+ | ht(α) = j}| (1 ≤ j ≤ m)

H. Terao (Hokkaido University) 2014.07.28 13/ 29

Page 54: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Height of positive roots

Φ : an irreducible root system of rank ℓ

∆ = {α1, . . . , αℓ} : a simple system of Φ

Φ+: the set of positive roots

ht(α) :=∑ℓ

i=1 ci (height) for a positive rootα =∑ℓ

i=1 ciαi (ci ∈ Z≥0)

The height distribution in Φ+ is a sequenceof positive integers (i1, i2, . . . , im), wherei j := |{α ∈ Φ+ | ht(α) = j}| (1 ≤ j ≤ m)

H. Terao (Hokkaido University) 2014.07.28 13/ 29

Page 55: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Height of positive roots

Φ : an irreducible root system of rank ℓ

∆ = {α1, . . . , αℓ} : a simple system of Φ

Φ+: the set of positive roots

ht(α) :=∑ℓ

i=1 ci (height) for a positive rootα =∑ℓ

i=1 ciαi (ci ∈ Z≥0)

The height distribution in Φ+ is a sequenceof positive integers (i1, i2, . . . , im), wherei j := |{α ∈ Φ+ | ht(α) = j}| (1 ≤ j ≤ m)

H. Terao (Hokkaido University) 2014.07.28 13/ 29

Page 56: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Height of positive roots (E6)

E6: •α1

•α3

•α4

•α2

•α5

•α6

Exponents: (1,4,5,7,8,11)

List of positive roots:height 1 : α1, α2, α3, α4, α5, α6

height 2 : α1 + α3, α2 + α4, α3 + α4, α4 + α5, α5 + α6

height 3 : α1 + α3 + α4, α2 + α3 + α4, . . .....

height 11: α = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 (the highest root)

H. Terao (Hokkaido University) 2014.07.28 14/ 29

Page 57: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Height of positive roots (E6)

E6: •α1

•α3

•α4

•α2

•α5

•α6

Exponents: (1,4,5,7,8,11)

List of positive roots:

height 1 : α1, α2, α3, α4, α5, α6

height 2 : α1 + α3, α2 + α4, α3 + α4, α4 + α5, α5 + α6

height 3 : α1 + α3 + α4, α2 + α3 + α4, . . .....

height 11: α = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 (the highest root)

H. Terao (Hokkaido University) 2014.07.28 14/ 29

Page 58: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Height of positive roots (E6)

E6: •α1

•α3

•α4

•α2

•α5

•α6

Exponents: (1,4,5,7,8,11)

List of positive roots:height 1 : α1, α2, α3, α4, α5, α6

height 2 : α1 + α3, α2 + α4, α3 + α4, α4 + α5, α5 + α6

height 3 : α1 + α3 + α4, α2 + α3 + α4, . . .

.

.

.

.height 11: α = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 (the highest root)

H. Terao (Hokkaido University) 2014.07.28 14/ 29

Page 59: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Height of positive roots (E6)

E6: •α1

•α3

•α4

•α2

•α5

•α6

Exponents: (1,4,5,7,8,11)

List of positive roots:height 1 : α1, α2, α3, α4, α5, α6

height 2 : α1 + α3, α2 + α4, α3 + α4, α4 + α5, α5 + α6

height 3 : α1 + α3 + α4, α2 + α3 + α4, . . .....

height 11: α = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 (the highest root)

H. Terao (Hokkaido University) 2014.07.28 14/ 29

Page 60: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Height of positive roots (E6)

E6: •α1

•α3

•α4

•α2

•α5

•α6

Exponents: (1,4,5,7,8,11)

List of positive roots:height 1 : α1, α2, α3, α4, α5, α6

height 2 : α1 + α3, α2 + α4, α3 + α4, α4 + α5, α5 + α6

height 3 : α1 + α3 + α4, α2 + α3 + α4, . . .....

height 11: α = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 (the highest root)

H. Terao (Hokkaido University) 2014.07.28 14/ 29

Page 61: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Height of positive roots (E6)he

ight

sht=11 α

ht=10 •ht=9 •ht=8 • •ht=7 • • •ht=6 • • •ht=5 • • • •ht=4 • • • • •ht=3 • • • • •ht=2 α1 + α3 α2 + α4 α3 + α4 • •ht=1 α1 α2 α3 α4 α5 α6

α = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6, ht(α) = 11 (the highest root)H. Terao (Hokkaido University) 2014.07.28 15/ 29

Page 62: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Height Distribution ( E6 )

heig

htdi

strib

utio

n1 •1 •1 •2 • •3 • • •3 • • •4 • • • •5 • • • • •5 • • • • •5 • • • • •6 • • • • • •

7 5 4 3 1 exponentsH. Terao (Hokkaido University) 2014.07.28 16/ 29

Page 63: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Exponents (E6)

heig

htdi

strib

utio

n•••• •• • •• • •• • • •• • • • •• • • • •• • • • •• • • • • •

11 8 7 5 4 1 exponents

H. Terao (Hokkaido University) 2014.07.28 17/ 29

Page 64: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

The Dual-Partition Formula ( E6)

heig

htdi

strib

utio

n1 •1 •1 •2 • •3 • • •3 • • •4 • • • •5 • • • • •5 • • • • •5 • • • • •6 • • • • • •

11 8 7 5 4 1 exponentsH. Terao (Hokkaido University) 2014.07.28 18/ 29

Page 65: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

History of the Dual-Partition Formula

. . . . . . we shall presently describe, of “reading off” the exponents from the root structure of g wasdiscovered by Arnold Shapiro. . . . . . . However, even though one verifies that the numbers producedby this procedure agree with the exponents . . . . . . the important question of proving that this“agreement” is more than just a coincidence remained open.

(1959) A. Shapiro (empirical proof using the classification)

(1959) R. Steinberg (empirical proof using the classification)

(1959) B. Kostant (1st proof without using the classification)

(1972) I. G. Macdonald (2nd proof: generating functions)

(2014?) ABCHT (for ideal subarr.: using free arrangements)

H. Terao (Hokkaido University) 2014.07.28 19/ 29

Page 66: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

History of the Dual-Partition Formula

. . . . . . we shall presently describe, of “reading off” the exponents from the root structure of g wasdiscovered by Arnold Shapiro. . . . . . . However, even though one verifies that the numbers producedby this procedure agree with the exponents . . . . . . the important question of proving that this“agreement” is more than just a coincidence remained open.

(1959) A. Shapiro (empirical proof using the classification)

(1959) R. Steinberg (empirical proof using the classification)

(1959) B. Kostant (1st proof without using the classification)

(1972) I. G. Macdonald (2nd proof: generating functions)

(2014?) ABCHT (for ideal subarr.: using free arrangements)

H. Terao (Hokkaido University) 2014.07.28 19/ 29

Page 67: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

History of the Dual-Partition Formula

. . . . . . we shall presently describe, of “reading off” the exponents from the root structure of g wasdiscovered by Arnold Shapiro. . . . . . . However, even though one verifies that the numbers producedby this procedure agree with the exponents . . . . . . the important question of proving that this“agreement” is more than just a coincidence remained open.

(1959) A. Shapiro (empirical proof using the classification)

(1959) R. Steinberg (empirical proof using the classification)

(1959) B. Kostant (1st proof without using the classification)

(1972) I. G. Macdonald (2nd proof: generating functions)

(2014?) ABCHT (for ideal subarr.: using free arrangements)

H. Terao (Hokkaido University) 2014.07.28 19/ 29

Page 68: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

MAT (Multiple Addition Theorem - key to our proof -)

.Theorem..

......

(ABCHT(2014?)) Let A′ be a free arrangement with exponents(d1, . . . ,dℓ) (d1 ≤ · · · ≤ dℓ) and 1 ≤ p ≤ ℓ the multiplicity of thehighest exponent d. Let H1, . . . ,Hq be hyperplanes with Hi < A′ fori = 1, . . . , q. Define A′′j := {H ∩ Hj | H ∈ A′} (j = 1, . . . , q). Assumethat the following three conditions are satisfied:(1) X := H1 ∩ · · · ∩ Hq is q-codimensional,(2) X ⊈ H (∀H ∈ A′),(3) |A′| − |A′′j | = d (1 ≤ j ≤ q).Then q ≤ p and A := A′ ∪ {H1, . . . ,Hq} is free withexponents (d1, . . . ,dℓ−q, (d + 1)q).

H. Terao (Hokkaido University) 2014.07.28 20/ 29

Page 69: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

MAT (Multiple Addition Theorem - key to our proof -)

.Theorem..

......

(ABCHT(2014?)) Let A′ be a free arrangement with exponents(d1, . . . ,dℓ) (d1 ≤ · · · ≤ dℓ) and 1 ≤ p ≤ ℓ the multiplicity of thehighest exponent d. Let H1, . . . ,Hq be hyperplanes with Hi < A′ fori = 1, . . . , q. Define A′′j := {H ∩ Hj | H ∈ A′} (j = 1, . . . , q). Assumethat the following three conditions are satisfied:(1) X := H1 ∩ · · · ∩ Hq is q-codimensional,(2) X ⊈ H (∀H ∈ A′),(3) |A′| − |A′′j | = d (1 ≤ j ≤ q).Then q ≤ p and A := A′ ∪ {H1, . . . ,Hq} is free withexponents (d1, . . . ,dℓ−q, (d + 1)q).

H. Terao (Hokkaido University) 2014.07.28 20/ 29

Page 70: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Main Theorem (again)

.Theorem..

......

If

Φ : an irreducible root system of rank ℓ

A : the Weyl arrangement (= the collection ofhyperplanes orthogonal to the positive roots of Φ)

Then

...1 any ideal subarrangement B of A is free,

...2 its exponents and the height distribution of thepositive roots satisfy the dual-partition formula.

We prove the Main Theorem applying MAT inductively.

H. Terao (Hokkaido University) 2014.07.28 21/ 29

Page 71: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Proof of Main Theorem (just an outline)

Proof.

Let B be an ideal subarrangement of the Weyl arrangementA of a root system Φ.

For k ∈ Z>0, define B≤k := {H ∈ B | ht(αH) ≤ k}.We may easily verify B≤1 is a free arrangement with exponents(0,0, . . . ,0,1,1, . . . ,1).

We may apply MAT for A′ := B≤k and A := B≤k+1 .

To verify the three assumtions of MAT, we verify thecorresponding combinatorial and geometric properties of theroot system Φ. (A key Lemma is in the next page.)

H. Terao (Hokkaido University) 2014.07.28 22/ 29

Page 72: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Proof of Main Theorem (just an outline)

Proof.

Let B be an ideal subarrangement of the Weyl arrangementA of a root system Φ.

For k ∈ Z>0, define B≤k := {H ∈ B | ht(αH) ≤ k}.We may easily verify B≤1 is a free arrangement with exponents(0,0, . . . ,0,1,1, . . . ,1).

We may apply MAT for A′ := B≤k and A := B≤k+1 .

To verify the three assumtions of MAT, we verify thecorresponding combinatorial and geometric properties of theroot system Φ. (A key Lemma is in the next page.)

H. Terao (Hokkaido University) 2014.07.28 22/ 29

Page 73: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Proof of Main Theorem (just an outline)

Proof.

Let B be an ideal subarrangement of the Weyl arrangementA of a root system Φ.

For k ∈ Z>0, define B≤k := {H ∈ B | ht(αH) ≤ k}.We may easily verify B≤1 is a free arrangement with exponents(0,0, . . . ,0,1,1, . . . ,1).

We may apply MAT for A′ := B≤k and A := B≤k+1 .

To verify the three assumtions of MAT, we verify thecorresponding combinatorial and geometric properties of theroot system Φ. (A key Lemma is in the next page.)

H. Terao (Hokkaido University) 2014.07.28 22/ 29

Page 74: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Proof of Main Theorem (just an outline)

Proof.

Let B be an ideal subarrangement of the Weyl arrangementA of a root system Φ.

For k ∈ Z>0, define B≤k := {H ∈ B | ht(αH) ≤ k}.

We may easily verify B≤1 is a free arrangement with exponents(0,0, . . . ,0,1,1, . . . ,1).

We may apply MAT for A′ := B≤k and A := B≤k+1 .

To verify the three assumtions of MAT, we verify thecorresponding combinatorial and geometric properties of theroot system Φ. (A key Lemma is in the next page.)

H. Terao (Hokkaido University) 2014.07.28 22/ 29

Page 75: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Proof of Main Theorem (just an outline)

Proof.

Let B be an ideal subarrangement of the Weyl arrangementA of a root system Φ.

For k ∈ Z>0, define B≤k := {H ∈ B | ht(αH) ≤ k}.We may easily verify B≤1 is a free arrangement with exponents(0,0, . . . ,0,1,1, . . . ,1).

We may apply MAT for A′ := B≤k and A := B≤k+1 .

To verify the three assumtions of MAT, we verify thecorresponding combinatorial and geometric properties of theroot system Φ. (A key Lemma is in the next page.)

H. Terao (Hokkaido University) 2014.07.28 22/ 29

Page 76: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Proof of Main Theorem (just an outline)

Proof.

Let B be an ideal subarrangement of the Weyl arrangementA of a root system Φ.

For k ∈ Z>0, define B≤k := {H ∈ B | ht(αH) ≤ k}.We may easily verify B≤1 is a free arrangement with exponents(0,0, . . . ,0,1,1, . . . ,1).

We may apply MAT for A′ := B≤k and A := B≤k+1 .

To verify the three assumtions of MAT, we verify thecorresponding combinatorial and geometric properties of theroot system Φ. (A key Lemma is in the next page.)

H. Terao (Hokkaido University) 2014.07.28 22/ 29

Page 77: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Proof of Main Theorem (just an outline)

Proof.

Let B be an ideal subarrangement of the Weyl arrangementA of a root system Φ.

For k ∈ Z>0, define B≤k := {H ∈ B | ht(αH) ≤ k}.We may easily verify B≤1 is a free arrangement with exponents(0,0, . . . ,0,1,1, . . . ,1).

We may apply MAT for A′ := B≤k and A := B≤k+1 .

To verify the three assumtions of MAT, we verify thecorresponding combinatorial and geometric properties of theroot system Φ.

(A key Lemma is in the next page.)

H. Terao (Hokkaido University) 2014.07.28 22/ 29

Page 78: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Proof of Main Theorem (just an outline)

Proof.

Let B be an ideal subarrangement of the Weyl arrangementA of a root system Φ.

For k ∈ Z>0, define B≤k := {H ∈ B | ht(αH) ≤ k}.We may easily verify B≤1 is a free arrangement with exponents(0,0, . . . ,0,1,1, . . . ,1).

We may apply MAT for A′ := B≤k and A := B≤k+1 .

To verify the three assumtions of MAT, we verify thecorresponding combinatorial and geometric properties of theroot system Φ. (A key Lemma is in the next page.)

H. Terao (Hokkaido University) 2014.07.28 22/ 29

Page 79: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Local-global formula for heights (A key Lemma)

For X ∈ L(A), let ΦX := Φ ∩ X⊥. Then ΦX is a rootsystem of rank codimX.

The height of α in ΦX is called the local height and isdenoted by htX α.

For α ∈ Φ+, let

Aα := AHα = {K ∩ Hα | K ∈ A \ {Hα}}..Lemma (Local-global formula for heights)..

......

For α ∈ Φ+, we have

htΦ α − 1 =∑

X∈Aα(htX α − 1).

H. Terao (Hokkaido University) 2014.07.28 23/ 29

Page 80: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Local-global formula for heights (A key Lemma)

For X ∈ L(A), let ΦX := Φ ∩ X⊥. Then ΦX is a rootsystem of rank codimX.

The height of α in ΦX is called the local height and isdenoted by htX α.

For α ∈ Φ+, let

Aα := AHα = {K ∩ Hα | K ∈ A \ {Hα}}..Lemma (Local-global formula for heights)..

......

For α ∈ Φ+, we have

htΦ α − 1 =∑

X∈Aα(htX α − 1).

H. Terao (Hokkaido University) 2014.07.28 23/ 29

Page 81: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Local-global formula for heights (A key Lemma)

For X ∈ L(A), let ΦX := Φ ∩ X⊥. Then ΦX is a rootsystem of rank codimX.

The height of α in ΦX is called the local height and isdenoted by htX α.

For α ∈ Φ+, let

Aα := AHα = {K ∩ Hα | K ∈ A \ {Hα}}.

.Lemma (Local-global formula for heights)..

......

For α ∈ Φ+, we have

htΦ α − 1 =∑

X∈Aα(htX α − 1).

H. Terao (Hokkaido University) 2014.07.28 23/ 29

Page 82: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Local-global formula for heights (A key Lemma)

For X ∈ L(A), let ΦX := Φ ∩ X⊥. Then ΦX is a rootsystem of rank codimX.

The height of α in ΦX is called the local height and isdenoted by htX α.

For α ∈ Φ+, let

Aα := AHα = {K ∩ Hα | K ∈ A \ {Hα}}..Lemma (Local-global formula for heights)..

......

For α ∈ Φ+, we have

htΦ α − 1 =∑

X∈Aα(htX α − 1).

H. Terao (Hokkaido University) 2014.07.28 23/ 29

Page 83: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

MAT (Revisited)

.Theorem..

......

(ABCHT(2014?)) Let A′ be a free arrangement with exponents(d1, . . . ,dℓ) (d1 ≤ · · · ≤ dℓ) and 1 ≤ p ≤ ℓ the multiplicity of thehighest exponent d. Let H1, . . . ,Hq be hyperplanes with Hi < A′ fori = 1, . . . , q. Define A′′j := {H ∩ Hj | H ∈ A′} (j = 1, . . . , q). Assumethat the following three conditions are satisfied:(1) X := H1 ∩ · · · ∩ Hq is q-codimensional,(2) X ⊈ H (∀H ∈ A′),(3) |A′| − |A′′j | = d (1 ≤ j ≤ q).Then q ≤ p and A := A′ ∪ {H1, . . . ,Hq} is free withexponents (d1, . . . ,dℓ−q, (d + 1)q).

H. Terao (Hokkaido University) 2014.07.28 24/ 29

Page 84: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

MAT (Revisited)

.Theorem..

......

(ABCHT(2014?)) Let A′ be a free arrangement with exponents(d1, . . . ,dℓ) (d1 ≤ · · · ≤ dℓ) and 1 ≤ p ≤ ℓ the multiplicity of thehighest exponent d. Let H1, . . . ,Hq be hyperplanes with Hi < A′ fori = 1, . . . , q. Define A′′j := {H ∩ Hj | H ∈ A′} (j = 1, . . . , q). Assumethat the following three conditions are satisfied:(1) X := H1 ∩ · · · ∩ Hq is q-codimensional,(2) X ⊈ H (∀H ∈ A′),(3) |A′| − |A′′j | = d (1 ≤ j ≤ q).Then q ≤ p and A := A′ ∪ {H1, . . . ,Hq} is free withexponents (d1, . . . ,dℓ−q, (d + 1)q).

H. Terao (Hokkaido University) 2014.07.28 24/ 29

Page 85: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Inductive use of MAT (E6) : I = Φ+0

heig

htdi

strib

utio

n

00000000000

0 0 0 0 0 0 exponents

H. Terao (Hokkaido University) 2014.07.28 25/ 29

Page 86: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Inductive use of MAT (E6) : I = Φ+0

heig

htdi

strib

utio

n00000000000

0 0 0 0 0 0 exponentsH. Terao (Hokkaido University) 2014.07.28 25/ 29

Page 87: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Inductive use of MAT (E6) : I = Φ+1

heig

htdi

strib

utio

n00000000006 • • • • • •

1 1 1 1 1 1 exponentsH. Terao (Hokkaido University) 2014.07.28 25/ 29

Page 88: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Inductive use of MAT (E6) : I = Φ+2

heig

htdi

strib

utio

n0000000005 • • • • •6 • • • • • •

2 2 2 2 2 1 exponentsH. Terao (Hokkaido University) 2014.07.28 25/ 29

Page 89: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Inductive use of MAT (E6) : I = Φ+3

heig

htdi

strib

utio

n000000005 • • • • •5 • • • • •6 • • • • • •

3 3 3 3 3 1 exponentsH. Terao (Hokkaido University) 2014.07.28 25/ 29

Page 90: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Inductive use of MAT (E6) : I = Φ+4

heig

htdi

strib

utio

n00000005 • • • • •5 • • • • •5 • • • • •6 • • • • • •

4 4 4 4 4 1 exponentsH. Terao (Hokkaido University) 2014.07.28 25/ 29

Page 91: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Inductive use of MAT (E6) : I = Φ+5

heig

htdi

strib

utio

n0000004 • • • •5 • • • • •5 • • • • •5 • • • • •6 • • • • • •

5 5 5 5 4 1 exponentsH. Terao (Hokkaido University) 2014.07.28 25/ 29

Page 92: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Inductive use of MAT (E6) : I = Φ+6

heig

htdi

strib

utio

n000003 • • •4 • • • •5 • • • • •5 • • • • •5 • • • • •6 • • • • • •

6 6 6 5 4 1 exponentsH. Terao (Hokkaido University) 2014.07.28 25/ 29

Page 93: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Inductive use of MAT (E6) : I = Φ+7

heig

htdi

strib

utio

n00003 • • •3 • • •4 • • • •5 • • • • •5 • • • • •5 • • • • •6 • • • • • •

7 7 7 5 4 1 exponentsH. Terao (Hokkaido University) 2014.07.28 25/ 29

Page 94: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Inductive use of MAT (E6) : I = Φ+8

heig

htdi

strib

utio

n0002 • •3 • • •3 • • •4 • • • •5 • • • • •5 • • • • •5 • • • • •6 • • • • • •

8 8 7 5 4 1 exponentsH. Terao (Hokkaido University) 2014.07.28 25/ 29

Page 95: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Inductive use of MAT (E6) : I = Φ+9

heig

htdi

strib

utio

n001 •2 • •3 • • •3 • • •4 • • • •5 • • • • •5 • • • • •5 • • • • •6 • • • • • •

9 8 7 5 4 1 exponentsH. Terao (Hokkaido University) 2014.07.28 25/ 29

Page 96: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Inductive use of MAT (E6) : I = Φ+10

heig

htdi

strib

utio

n01 •1 •2 • •3 • • •3 • • •4 • • • •5 • • • • •5 • • • • •5 • • • • •6 • • • • • •

10 8 7 5 4 1 exponentsH. Terao (Hokkaido University) 2014.07.28 25/ 29

Page 97: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

The Dual-Partition Formula ( E6) (again)

heig

htdi

strib

utio

n1 •1 •1 •2 • •3 • • •3 • • •4 • • • •5 • • • • •5 • • • • •5 • • • • •6 • • • • • •

11 8 7 5 4 1 exponentsH. Terao (Hokkaido University) 2014.07.28 25/ 29

Page 98: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Summary

...1 The celebrated dual-partition formula for a rootsystem by Shapiro-Steinberg-Kostant-Macdonald isgeneralized to the class of ideals.

...2 The theory of free arrangements (the multipleaddition theorem ( MAT)) provides a base of ourproof.

...3 Our proof needs combinatorial and geometricproperties concerning the height of positive roots.

H. Terao (Hokkaido University) 2014.07.28 26/ 29

Page 99: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Summary

...1 The celebrated dual-partition formula for a rootsystem by Shapiro-Steinberg-Kostant-Macdonald isgeneralized to the class of ideals.

...2 The theory of free arrangements (the multipleaddition theorem ( MAT)) provides a base of ourproof.

...3 Our proof needs combinatorial and geometricproperties concerning the height of positive roots.

H. Terao (Hokkaido University) 2014.07.28 26/ 29

Page 100: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Summary

...1 The celebrated dual-partition formula for a rootsystem by Shapiro-Steinberg-Kostant-Macdonald isgeneralized to the class of ideals.

...2 The theory of free arrangements (the multipleaddition theorem ( MAT)) provides a base of ourproof.

...3 Our proof needs combinatorial and geometricproperties concerning the height of positive roots.

H. Terao (Hokkaido University) 2014.07.28 26/ 29

Page 101: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

Summary

...1 The celebrated dual-partition formula for a rootsystem by Shapiro-Steinberg-Kostant-Macdonald isgeneralized to the class of ideals.

...2 The theory of free arrangements (the multipleaddition theorem ( MAT)) provides a base of ourproof.

...3 Our proof needs combinatorial and geometricproperties concerning the height of positive roots.

H. Terao (Hokkaido University) 2014.07.28 26/ 29

Page 102: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

A Natural Question

Is there any nice characterization of the set

F := {F ⊆ Φ+ | A(F) is free},

whereA(F) is the corresponding subarrangement toF?

Remark. At least we know

F ⊇ {wI | w ∈W, I is an ideal}.

H. Terao (Hokkaido University) 2014.07.28 27/ 29

Page 103: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

A Natural Question

Is there any nice characterization of the set

F := {F ⊆ Φ+ | A(F) is free},

whereA(F) is the corresponding subarrangement toF?

Remark. At least we know

F ⊇ {wI | w ∈W, I is an ideal}.

H. Terao (Hokkaido University) 2014.07.28 27/ 29

Page 104: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

A Natural Question

Is there any nice characterization of the set

F := {F ⊆ Φ+ | A(F) is free},

whereA(F) is the corresponding subarrangement toF?

Remark. At least we know

F ⊇ {wI | w ∈W, I is an ideal}.

H. Terao (Hokkaido University) 2014.07.28 27/ 29

Page 105: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

A related theorem by W. Slofstra

For w ∈W, define its inverse set I(w) := {α ∈ Φ+ | −wα ∈ Φ+}.Consider the inverse subarrangement

A(w) := A(I(w)) := {ker(α) | α ∈ I(w)}

of the Weyl arrangement A = A(Φ+).

.Theorem..

......

(W. Slofstra (2014)) The element w is rationally smooth (≒ theSchubert cell X(w) is smooth) if and only if the inversesubarrangement A(w) is a free arrangement and its number ofchambers is equal to the size of the Bruhat interval [1,w].

H. Terao (Hokkaido University) 2014.07.28 28/ 29

Page 106: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

A related theorem by W. Slofstra

For w ∈W, define its inverse set I(w) := {α ∈ Φ+ | −wα ∈ Φ+}.

Consider the inverse subarrangement

A(w) := A(I(w)) := {ker(α) | α ∈ I(w)}

of the Weyl arrangement A = A(Φ+).

.Theorem..

......

(W. Slofstra (2014)) The element w is rationally smooth (≒ theSchubert cell X(w) is smooth) if and only if the inversesubarrangement A(w) is a free arrangement and its number ofchambers is equal to the size of the Bruhat interval [1,w].

H. Terao (Hokkaido University) 2014.07.28 28/ 29

Page 107: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

A related theorem by W. Slofstra

For w ∈W, define its inverse set I(w) := {α ∈ Φ+ | −wα ∈ Φ+}.Consider the inverse subarrangement

A(w) := A(I(w)) := {ker(α) | α ∈ I(w)}

of the Weyl arrangement A = A(Φ+).

.Theorem..

......

(W. Slofstra (2014)) The element w is rationally smooth (≒ theSchubert cell X(w) is smooth) if and only if the inversesubarrangement A(w) is a free arrangement and its number ofchambers is equal to the size of the Bruhat interval [1,w].

H. Terao (Hokkaido University) 2014.07.28 28/ 29

Page 108: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

A related theorem by W. Slofstra

For w ∈W, define its inverse set I(w) := {α ∈ Φ+ | −wα ∈ Φ+}.Consider the inverse subarrangement

A(w) := A(I(w)) := {ker(α) | α ∈ I(w)}

of the Weyl arrangement A = A(Φ+).

.Theorem..

......

(W. Slofstra (2014)) The element w is rationally smooth (≒ theSchubert cell X(w) is smooth) if and only if the inversesubarrangement A(w) is a free arrangement and its number ofchambers is equal to the size of the Bruhat interval [1,w].

H. Terao (Hokkaido University) 2014.07.28 28/ 29

Page 109: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

I stop here.

Thanks for your attention!

H. Terao (Hokkaido University) 2014.07.28 29/ 29

Page 110: On ideal subarrangements of Weyl arrangements @let@tokenterao/20140728SaoCarlosBrazil.ver.5.p… · Mohamed Barakat (Katholische Universitat¨ Eichstatt-Ingolstadt)¨ Michael Cuntz

I stop here.

Thanks for your attention!

H. Terao (Hokkaido University) 2014.07.28 29/ 29