92
The Longyearbyen CO2 Laboratory Adventdalen, Svalbard – a test site for storage, flow and leakage of fluids in an unconventional reservoir by Snorre Olaussen, Alvar Braathen, Kai Ogata, Kim Senger and Jan Tveranger http://co2-ccs.unis.no/

Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Embed Size (px)

Citation preview

Page 1: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

The Longyearbyen CO2 Laboratory Adventdalen, Svalbard – a test site for

storage, flow and leakage of fluids in an unconventional reservoir

by Snorre Olaussen, Alvar Braathen, Kai Ogata, Kim Senger and Jan

Tveranger

http://co2-ccs.unis.no/

Page 2: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Let’s follow the CO2 from the source

to the solution.

Let’s develop high level, field based,

university studies along the CCS

chain.

Let’s turn Longyearbyen into a high

profile show case as a community

that takes care of its emissions.

Page 3: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Longyearbyen CO2-lab - an unique test site

“everything” within a radius of 7 km

An integrated research and education laboratory at UNIS

Page 4: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Local advantages

Local power plant is “pilot size”

Svalbard is a closed energy system running on locally extracted coal

Reservoir quality sedimentary rocksm

Locally available competence in areas vital to the project

Local attention and acceptance no NIMBUS

Page 5: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Researchers in work by 2011 • Finances: 50% government funding, 50% private funding

• 102 researchers involved, including NRC-funded PhD-Postdoc’s

• Research contributions by; UiBergen and UiOslo => SUCCESS Center UiTø – marine, NTNU – rock properties, UiS - injectivity UNI Research, NGI, IFE, Norsar, NGU, Sintef / BIGCCS Center Current contractors: Consultants, Arctic Drilling, • Scientific inputs and funding by; ConocoPhillips, Statoil, Lundin Norge, Statkraft, Baker Hughes SNSK, LNS, Gassnova • International alliances

Page 6: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

The Longyearbyen CO2 laboratory

"The Longyearbyen CO2 lab" concept covers research, monitoring and education. Master/PhD University level courses

Phase 1

Phase 2

Phase 3

Phase 4

Identify the reservoir

Injectivity test

CO2 injection monitoring

CO2 capture

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

-Drilling and coring of wells

-Seismic survey

-Reservoir description/assessment

-Verify injectivity

-Verify storage capacity

-Demonstrate sub surface CO2 storage

-Monitor CO2 behaviour

-Carbon capture from local power plant

Page 7: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

CO2 storage in Svalbard

Scientific challenges motivating international

collaboration

High Arctic location, but global challenges

Region sensitive to

climate changes

Svalbard uplifted part of a platform with oil-gas

reserves

Arctic basin

Greenland Svalbard

Russia

Iceland

Tromsø

70oN

Longyearbyen

78oN

Page 8: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Map from Henriksen et al

Well known subsurface Reservoir –seal - pressure – fluid flow

Skrugard

Triassic HC System

Jurassic HCSystem

Triassic and Jurassic HC System

Triassic HC System

Palaeozoic system

Jurassic HC System

Triassic and Jurassic HC System

Page 9: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Spitsbergen Geology and CO2 site

Longyearbyen

N’ern and W’ern rifted

margins

Tertiary Central basin

Mesozoic - Permian

platform succession

Carboniferous basins

Devonian basin

Precambrian Silurian

succession

Metamorphic basement

Page 10: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Main target interval – shallow

marine sst at ~670 m depth

De Geer Formation and

Wilhelmsøya Subgroup

Target interval – shallow marine sst

at ~140 m depth

Helvetiafjellet Formation

Mainly fluvial and shallow marine sand and shale

Regional dip towards SW

Lower parts of stratigraphy exposed some 15 km NE of planned injection site

Large, low angle thrust faults in Jurassic succession

Borehole 3 and 4

Borehole 1 and 2

Section in van Keulen fjorden (Photo A. Braathen)

Page 11: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Find the efficient Trap

No trap but a monocline Outcropping to the north east

Page 12: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Longyearbyen CO2 lab with open reservoir Spill scenario – unconventional reservoir (open aquifer, fracture flow)

Assumed

direction of flow

Permafrost

roof

Effects of CO2 liquid=>gas

transitions?

Effects of permafrost - CO2

hydrate?

Fracture, rock matrix and mineral

interactions => CO2 trapping?

Page 13: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Seismic ; 2D and micro seismic Drilling ; 6 wells deepest 970m Core analysis, Petrophysics, petrology, rock mechanics, porosity , permeability, fracture Water tests/formation test (LOT), fluid flow

Presentation of results - based on;

Page 14: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Well park

Dh3, Dh4, Dh5 and Dh6 Dh1 and Dh2

Area plan, Longyearbyen and vicinity

Well DH 3,4,5 and 6

Page 15: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Well DH 4

N

Establishing seismic base line during winter time (Explosives as source - minor harm on nature)

Page 16: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Seismic surveillance of the reservoir and improvement of the geophysical baselines in Adventdalen

Page 17: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

970m

Tight seal

Reservoir unit

Surface

Permafrost 100m thick

Page 18: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard
Page 19: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard
Page 20: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Drilling, well design

6 drill holes Drill holes to 516, 860, 403, 970, 182 and 440 m

Full coring; 3250 m core

Slim-hole el-logging

- Drill rig: ONRAM 1500

- Set up: slim-hole, wire-line full coring

- 1000-m deep hole of c. M$ 1

Problem: Well bore stability in fault zone (swelling clay)

Actions: 4 level telescope operation, KCl-mud, cement

Sta

te-o

f-th

e-a

rt w

ell

de

sig

n (

DH

4)

Page 21: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard
Page 22: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Reservoir description

Page 23: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Risk mitigation of the subsurface

Top Reservoir 670m

TD 970m

Page 24: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Upper Triassic to Middle Jurassic sandstones Extension of reservoir body

Sedimentary rock studies

Outcrop and core studies by

3 Master stud, grant for one PhD in 2010.

Foto A. Mørk

Reservoir characterisation

dike

From Riis et 2008

Page 25: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Boreholes Dh3 and Dh4

Boreholes Dh1 and Dh2

Longyearbyen

Mainly paralic, marginal and shallow marine sandstones and shales capped by coarse-grained lag deposits (condensed section)

Cretaceous igneous intrusions (Diabasodden suite); Dolerite sills and dykes

Regional dip towards SW - reservoir section exposed ca.20 km NE of the drilling site (no stratigraphic closure)

Drilled interval

Main target interval at ~670 m depth - L. Jurassic-U. Triassic De

Geerdalen Fm. and Knorringfjellet Fm. (Wilhelmøya Subgroup)

Geologic outline

Page 26: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Drilled plugs for special laboratory studies Top saline aquifer?

Properties of aquifers in drill core => cored three aquifers, but not the target sandstone Plug poro variable => 2-14% Plug perm => low Miniperm air-permeability of sandstone – 2-20 mD … target sandstone not cored => uncertainty, but we expect better sand deeper in aquifer

0

100

200

300

400

500

600

700

800

9000,01 0,1 1 10 100 1000

Dep

th m

Perm Kg(mD)

Relationship between depth and permeability for both Miniperm and ResLab data

Miniperm

Page 27: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

650

700

750

800

850

900

950

1000

0 5 10 15 20 25

650

700

750

800

850

900

950

1000

0 0,5 1 1,5 2

Porosity (%)

De

pth

(m

)

Gas Average Permeability (md)

Permeability

Porosity

Porosity and Permeability for 51 samples from well Dh4

Highest porosity and permeability

Microdarcies permeability

Moderate porosity and permeability

Lowest porosity and permeability

Page 28: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

”the Rogers City is clearly demonstrated to be only a local sequestration target with an estimated geological sequestration capacity of 0.13 Gt. In contrast, storage capacity in the Dundee is stimatedat 1.88 Gt”

Page 29: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard
Page 30: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

300m Cored section of the potential reservoir unit (CO2 - storage unit); Upper Triassic to Middle Jurassic Shallow marine sandstones and shales

DH-4

Top Reservoir 670m

750m

800m

850m

900m

TD 970m

950m

700m

30

7

9

6

2

5

11

2

2

10

2

10

4

1

Log from A. Mørk, Sintef

Gross Reservoir Unit 300m Net drilled sandstone of the reservoir unit => 93m Porosity varies from 2 to 18% Permeability varies from 0,1 to 2 mD Highly fractured rock

First gross test interval (870m-970m) => 100m Net sandstone of the first test interval => 33m Net sand/gross first test interval= 0,33 (e.g. possible N/G 0,2-0,3)

Sand-

stone

Test

Inte

rval

1

2

2

1 2

m

Risk mitigation of the subsurface Resevoir properties (e.g. efficient pore volume and fluid flow)

Page 31: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard
Page 32: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Test equipments (BJ Baker Huges) )

Page 33: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Pressure

Temperature

Page 34: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard
Page 35: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

What is the nature of the microseismic events that started ~17 hours after shut-in of a 5-day water injection experiment? 1) Induced due to water injection experiment? 2) natural local seismicity?

SH1 SH3

SH2

Injection well

North (sketch only,

not to scale)

DH3

Approx.epicentre

Steps towards a good answer:

- include SPITS stations in location

- refine P and S wave velocity model

- find repeater events and provide better depth estimate

for location

- do stress field modeling

Page 36: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Calculation of stress field changes due to filling/draining of reservoirs

Schematic view after Segall et al., 1998

Gas reservoir

Reactiveted

weakness zones

(Conceptual model from Dahm et al., 2010)

Shear stresses at

6 km Depth

and along fault

plane

Page 37: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Skifergassanlegg i USA Foto: Ørjan Ellingvåg Skifergass-boring utløste jordskjelv

Hydraulisk frakturering som brøt opp skiferlag får skylden

for et jordskjelv på 2,2 på Richters skala i England.

Page 38: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

How can this rock swallow more than 1000l/min?

Page 39: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Fractured reservoir characterization of the Longyearbyen CO2 lab

Page 40: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Closed fractures distribution Top reservoir

Fracture characterization

Micro-faults/phyllosilicate-disaggregation and deformation bands

Sealed (mineralized) fractures (veins)

Page 41: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Open fractures distribution Top reservoir

Joints

Shear fractures

Page 42: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Mostly joints and subordinate shear fractures (strike-slip and dip-slip)

Through-going and bed-confined fractures

Page 43: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard
Page 44: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

The net sandstone of the reservoir succession is around 25-

30%; net permeable sandstone close to 10-15%.

Characteristics of the reservoir Open-type

Tight

Good injectivity

Under-pressured

Analyzed interval

~ 100-150 m

~ 200 m

~ 450 m

~ 300 m

Laboratory analyses on rock plugs: • Porosity (low to moderate) => 5 to 18% • Permeability (very low) => 1 to 2 mD • Cap rock permeability (extremely low) => nano-D

Water injection test (870-970 m TD):

• Efficient permeability => 40-50 mD*m

• injectivity vs pressure increasing due to fracture opening and growth

• under-pressure between 30% and 60% of hydrostatic pressure

Outcrop studies:

• Sandstone bodies (e.g. storage units) are laterally continuous

• Highly fractured rocks

Page 45: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

21 facies identified and described and included in the models

Simple layer cake model supported by observed lateral continuity of beds

Near-well facies model

Page 46: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Pressure

Page 47: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

1000m

0 50 100

500m

10m above msl

Permafrost 100

Bar DH 4

1.

50 bar at 870m (860msl)

33 bar at 180m (170 msl = Festningen Sandstien

400m øvre jura nedre kritt skifer

Page 48: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Abnormal under-pressure (50 bar below hydrostatic) in Upper Triassic sandstone at West Spitsbergen at 870m TVD (856m

below MSL)

2

4 3

1

Page 49: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Reservoir quality and pressure cells

Project targets upper reservoir, 670-705 m

10

30

50

70

90

Pre

ssu

re (

bar)

-20 0 20 40

criticalpoint

Temperature ( C)o

lower

middle

upper?

upperaquifer

Pre

ssure

(bar)

Temperature (o

C)

1

10

100

300

-100 0 50

Triple point

Critical point

Solid Liquid

Vapor

50

-50

Lower reservoir870-970 mCP~70 barMiddle reservoir

770-870 m

CP~60 bar

Upper reservoir670-700 mCP~55 bar

Upper aquifer150-180 m

CP~35 bar?

Targeted reservoir Best properties Best pressure? Less risk for drilling

Page 50: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800

Pressure bar

De

pth

m

7119/9-1 Tromsø Basin

7219/9-1 Tromsø Basin

7219/8-1S Tromsø Basin

7321/7-1 Fingerdjupet

7321/8-1 Fingerdjupet

7321/9-1 Fingerdjupet

7119/12-1 Tromsø Basin

7119/12-3 Tromsø Basin

LOT/FIT

Linear (Hydrostatic gradient)

Reservoir pressure Tromsø Basin and Fingerdjupet Subbasin

Hydrostatic gradient – average salinity

Westward

norge

Page 51: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Underpressure formed by gas production in the Frigg-Heimdal area

Initial pressure gradient before Frigg production 1974

Gas production from Frigg and Heimdal: fluid taken out of the aquifer system - aquifer pressure depleted

Page 52: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Why underpressures - why do they form? Underpressures are reported from eroded basins, e.g. Alberta, Songliao

Swarbrick and Osborne 1998, AAPG Mem. 70

But possible analogue Small effect if any, not applicable

Unlikely, but possible

Investigate further

Investigate further

Page 53: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

………. “abnormally low reservoir pressure (0.3–0.4 of hydrostatic pressure), which is related to thick permafrost, is ubiquitous in large and giant gas fields of theYamal and Gydan Peninsulas (Matusevich and others, 1997)”. (Ulmishek 2003)

Page 54: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

The subsurface in Adventdalen has experienced two aquifer systems: • An upper slight over pressured saline aquifer system (artesian or mixed with formation

water ) in Festningen Member - High water flow – good permeability – a bit surprise based on porosity permeability measurements.

• A lower severe under pressured aquifer system in Upper Triasi to Middle Jurassic strata . Low permeable rock– good injectivity due to open fractures.

• Thereby under initial conditions there is an efficient seal between the two aquifer systems

970m

Tight seal

Reservoir unit

Surface

Permafrost 100m thick

Lower aquifer system- under pressure

Upper aquifer system slight over pressure

Page 55: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

• Sandstone bodies (e.g. storage units) are lateral continuous

• Low to moderate pore volumes but very low permeability

• Fractures are the main fluid flow conduits

• Efficient permeability (fractures) 40-50md

Preliminary summary and conclusions

Page 56: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Cap rock properties and pressure

RISK MITIGATION

Page 57: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Fluid migration in and around faults Ground water or Hydro Carbons - the economic aspect …

Fault

core

Dewey Bridge Mbr

Throw ~ 30 m

Navajo Sst

Entrada Fm

Slick Rock Mbr

Up-fault fluid migration causing footwall sweeping by reducing fluids seen as

bleaching by dissolution of FeO minerals in high Poro-Perm eolian sandstone

Fault

core

Throw ~ 21 m

Outside Arches National Park, Utah, USA

East San Rafael Swell, Utah, USA

Up-fault flow of reducing

fluids seen as bleaching by

dissolution of FeO minerals

in fractured damage zone in

tidally deposited shale and

mudstone

J. Entrada Fm

Navajo Sst

Bubbling of CO2 along fault plane,

Utah,USA

Page 58: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard
Page 59: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Well park and monitoring wells (including proposed new wells in black)

Page 60: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Well park and monitoring wells

P-sensor at 870 m

P-sensor at 170 m

Injection well

P-sensor on anulus 3C geophone string

5 geophones to 300 m «Blow-out» from 180 m

– 60 l/min

«Blow-out» from 175 m – 120 l/min

«Blow-out» from 170 m – 25 l/min

«Blow-out» from 180 m – 50 l/min

Page 61: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Injection

LOT

LOT

Page 62: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Position of new drill holes; Dh5, Dh6 (Dh 3 and Dh 4 are existing drill holes)

Geophone a

Geophone a

Page 63: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Planned infrastructure and position of present drill holes (Dh 3 and 4) and planned new drill holes 5 – 6. The drill rig will be positioned over each of the new locations for a period of time.

Dh 4 Dh 5. 33 x 0518939 UTM 8681094

Dh 3

Dh 6 33 X 0518857 UTM 8681080

Protective zone

Page 64: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Reservoir bodies as input to a “Ness analogue” Depositional setting and sequence stratigraphy of the Helvetiafjellet

Formation at Fleksurfjellet, Svalbard

(Johannenssen & Olaussen, 1984 Statoil report)

Page 65: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

“Blow out” well DH5, 175m Festningen Member, Adventdalen

Over pressure at 175 m depth Artesian water flow (120 l/min) from saline aquifer, leakage clogged by 120 m ice plug after 48 h.

Page 66: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

1000m

0 50 100

500m

10m above msl

Permafrost 100 -110m

Bar DH 4

37 bar at 870m (860msl)

24 -25 bar at 170m Festningen Sandstone

400m Upper Jurassic – Lower Cretaceous shale

Pressure plot from DH 4

Page 67: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard
Page 68: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard
Page 69: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard
Page 70: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard
Page 71: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard
Page 72: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

CURRENT KEY

CHALLENGES

1) Succeed with technical

operations in the High Arctic

2) Better understand the rocks

at 180-700 m depth

3) Risk of leakage

=> tests of summer 2011

4) Injectivity with time,

volume available for CO2

storage =>

cont. exploration in 2012

CONFIRMED RESERVOIR

CONFIRMING CAP ROCK

RESERVOIR QUALITY?

PERMAFROST-LEAKAGE

ENVIRONMENT?

5) Access to CO2 • Import • Research capture • Full scale capture

Page 73: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

The project has identified 6 important issues to be addressed for further work next year

• What do we need to map to better understand the reservoir?

(geophysical and geological studies). • The fractures gradually expanding (not stepwise) and how do we further

test this hypothesis, could more geophones record this? • Fracture pressure (LOT) • The injection tests this far only on the lower 100 m (“worst” part) out of

the 300 m section • Are shales of the reservoir section fractured and contributing to

injectivity?

Page 74: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

More questions than first spud in 2007

But; • We definitely have and efficient seal for a certain pressure

• There are storage capacity and injcetivity in the main aquifer

• LOT suggest no problem to held an considerable column of

buoyant fluid before reaching fracture pressure

• Surprisingly pressure regimes

• Although well known subsurface – surprises “you learn as

long as you drill”

• Need real stuff within next three years

Page 75: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

http://co2-ccs.unis.no/

Page 76: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

CF Fm

HF Fm

RF Fm

124.68m

186.54m

172.16m

0.2mm

0.5mm

0.5mm

14% quartz cement

7% modal porosity

15% qtz cement

4% modal porosity

Preliminary sandstone data, Helvetiafjellet Fm. (HF Fm)

11% siderite cement,

11% other cements

3% modal porosity

MBE Mørk

Page 77: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard
Page 78: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard
Page 79: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

CO2-brine flooding experiments at reservoir conditions, ongoing

samples information next slide

Page 80: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Effective permeability decreases by 73 %

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0 50 100 150 200

Ab

solu

te P

erm

ea

bil

ity

(m

D)

Overburden pressure (bar)

Unfractured core

Fractured core

Effective permeability decreases by 24 %

Permeability variations for fractured and unfractured core versus overburden (confining) pressure. Sample from Wilhelmøya Subgrp.

Page 81: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

• Long Samples (30-40 cm) from Dh4

• At 180 bar overburden pressure

• Brine is displaced by liquid CO2 at reservoir condition

• Absolute permeability with brine flooding is 0.02 mD

• CO2 dispalces 52% of initial water in place

Page 82: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Uplifted part of the Barents Sea

• Most of Svalbard is made up

of sedimentary rocks.

• They can store CO2, oil-gas

or groundwater

• Rocks of mainland Norway

have few storage

possibilities

• Wrong type of rock

• Utilized land

• Conflicts of interests

Svalbard

Barents

Sea

Bjørnøya

Norway

Page 83: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Well designs and monitoring scheme (not to scale)

Conductor

c 80 m

NQ casing

300 m

BQ casing

420 m

Cement

Cement

TD = 435m

Cement

c. 200 m

Open well

Dh4 Dh6 Dh5 Dh3

Conductor

c 80 m

TD 181m

Open well

96 mm With retrivable

casing

Conductor

c 80 m

geophones

TD 403m

Cement

Open well

Cut 56 and

66 mm rod

350 m

P-t sensor 171

181

300

309

420

435

P-t sensor

Tests

Tests

Tests

HQ casing

171m

Page 84: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Baseline study - marine geology studies

Page 85: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

2

4 3

1

Page 86: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Test very positive But still some questions.

• Measured incipient pressure and temperature at 870m below surface; 30°C and less than 30 bar (50 bar lower pressure than hydrostatic – there must be an efficient seal)

• Pumped 14M3 Polymer at 124bar pressure drop to 60bar after 12hr. (Low

matrix permeability)

• Stepwise pressure injection test up to 1000/l min and 140 bar max pressure. The 12hr’s 500l/min - All in all 390m3 (The reservoir swallow large volume of water probably by gradual increased fracturing of the reservoir)

• Pumped 16M3 Polymer at max 167bar and 1500l/min pressure drop to 67bar after 19hr (Geophones; unclear results)

• 5 days test. More than 2000m3 injected with slight increase in pressure.

Pressure decreases after shut in - slow (to slow) return to original pressure (Some resistance from the reservoir as expected )

Page 87: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Depth (m) Porosity (%) Permeability (md) Depth (m) Porosity (%) Permeability (md)

672.50 7.35 0.03 771.14 13.18 No Flow

673.68 5.73 0.09 776.22 13.04 0.045

674.38 14.73 0.14 779.07 10.18 0.02

674.95 18.68 1.79 780.40 13.82 0.032

675.49 18.06 1.11 780.60 10.5 0.022

676.30 16.47 1.17 783.00 4.79 No Flow

676.88 16.64 1.78 784.30 8.99 No Flow

677.14 15.92 0.61 788.22 12.39 No Flow

677.92 15 0.097 791.10 10.11 No Flow

678.32 10.54 0.57 791.86 8.43 No Flow

678.88 13.12 0.047 792.09 13.16 No Flow

680.27 8.73 0.09 799.16 10.43 No Flow

681.59 12.47 0.1 803.29 8.79 No Flow

682.08 13.9 0.82 857.50 16.1 0.051

682.27 12.53 0.22 858.31 14.72 0.071

687.22 8.95 0.056 858.38 11.21 0.04

688.45 18.71 0.025 859.34 14.64 0.095

688.71 8.97 No Flow 860.44 13.57 0.051

691.72 9 0.68 867.76 8.17 No flow

692.38 11.05 No Flow 875.36 15.67 0.126

694.08 19.62 0.73 875.93 10.83 0.07

695.11 11.21 0.04 897.08 8.37 No flow

695.25 14.67 0.06 900.97 10.41 No flow

695.28 16.53 0.25 920.70 2.31 No flow

705.25 13.05 No Flow 969.64 5.93 No flow

762.20 6.2 No Flow

Open section of well;

interval used for well test

Data from Farokhpoor et al. (2010)

n=51

-Moderate to low porosity – very low to not

measurable permeability

-Fracture pore volume needs to be established

-Rock permeability insignificant compared to

fracture permeability

Porosity and permeability data – host rock

Page 88: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

70m

Page 89: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

191;3

177,5

DH 6 DH 5

179,5

168,5 FS

SB

Festningen Member

Ullaberget Member

TD at 182,5m rkb

(182)

(185)

70m

Page 90: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Nearby outcropping strata of the Barremian Helvetaifjellet Formation (Midtkandal et al. 2007)

Page 91: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

DH 5, 11m pay

DH 6, 16,5m «pay»

Distance between wells 70m

Page 92: Olaussen_The Longyearbyen CO2 laboratory Adventdalen_Svalbard

Samples

• 45 core samples: 500-600 cm3 (12-85 cm long cores)

• 9 core samples: 5-10 cm for fluid analyses

• 20 water samples: 25-500 ml

• 10 gas samples: 10 ml («Analyse av gassen som boblet opp i DH5 fra 180m tyder på at det er ca 99.5% CH4 og 0.5% CO2»)