Offshore Load Out Day 2

Embed Size (px)

Citation preview

  • 8/9/2019 Offshore Load Out Day 2

    1/103

    •1| PAGE

    www.bimv.com

    LOAD OUT TRAINING - DAY 2:OFFSHORE MARITIME RISK ANALYSIS

    Capt. Noël Haegeman

    Kuala Lumpur, June 2011

  • 8/9/2019 Offshore Load Out Day 2

    2/103

    •2| PAGE

    www.bimv.com

  • 8/9/2019 Offshore Load Out Day 2

    3/103

    •3| PAGE

    www.bimv.com

    MOTIONS TO ACCELERATIONS

    MOVEMENTS ON 3 AXES

  • 8/9/2019 Offshore Load Out Day 2

    4/103

    •4| PAGE

    www.bimv.com

    MOVEMENTS OF A FLOATING UNIT

  • 8/9/2019 Offshore Load Out Day 2

    5/103

    •5| PAGE

    www.bimv.com

    PITCHING

    PITCHING/ LONGITUDENAL FORCES ARE

    EQUAL TO THE TOTAL WEIGHT OF THE LOAD

  • 8/9/2019 Offshore Load Out Day 2

    6/103

    •6| PAGE

    www.bimv.com

    ROLLING

    LATERAL FORCES ARE 50% OF THE TOTAL

    WEIGHT OF THE LOAD

  • 8/9/2019 Offshore Load Out Day 2

    7/103

    •7| PAGE

    www.bimv.com

    SURGE

    BACKWARDS FORCES EQUAL AS LATERAL O,5

    TIMES THE WEIGHT

  • 8/9/2019 Offshore Load Out Day 2

    8/103

    •8| PAGE

    www.bimv.com

    HEAVE

    HEAVING CAN REPRESENT 4 TIMES THE

    LOAD WEIGHT

  • 8/9/2019 Offshore Load Out Day 2

    9/103

    •9| PAGE

    www.bimv.com

    ACCELARATIONS & STABILITY

  • 8/9/2019 Offshore Load Out Day 2

    10/103

    •10| PAGE

    www.bimv.com

    FORCES/MOMENTS & HEIGHT

  • 8/9/2019 Offshore Load Out Day 2

    11/103

  • 8/9/2019 Offshore Load Out Day 2

    12/103

    •12| PAGE

    www.bimv.com

    Static & Dynamic friction

    Static/dynamic forces

  • 8/9/2019 Offshore Load Out Day 2

    13/103

    •13| PAGE

    www.bimv.com

    Static Friction coefficient

    The static friction coefficient (μ) between two solid surfacesis defined as the ratio of the tangential force (F) required toproduce sliding divided by the normal force between thesurfaces (N)

    μ = F /N For a horizontal surface the horizontal force (F) to move a

    solid resting on a flat surface

    F= μ x mass of solid x g.

    If a body rests on an incline plane the body is prevented from

    sliding down because of the frictional resistance. If the angleof the plane is increased there will be an angle at which thebody begins to slide down the plane. This is the angle ofrepose and the tangent of this angle is the same as thecoefficient of friction.

  • 8/9/2019 Offshore Load Out Day 2

    14/103

    •14| PAGE

    www.bimv.com

    Static Friction coefficient

    Material 2Coefficient Of FrictionTest

    methodDRYGreasyStaticSlidingStaticSlidingAluminumAluminum1,05-

    1,351,40,3 AluminumMild Steel0,610,47 Brake MaterialCast

    Iron0,4 Brake MaterialCast Iron (Wet)0,2 BrassCast

    Iron 0,3 BrickWood0,6 BronzeCastIron 0,22 BronzeSteel 0,16 Cadmium Cadmium0,5 0,05 Cadmium Mild

    Steel 0,46 Cast IronCast Iron1,10,15 0,07 Cast

    IronOak 0,49 0,075 ChromiumChromium0,41 0,34 CopperCast

    Iron1,050,29 CopperCopper1,0 0,08 CopperMild

    Steel0,530,36 0,18 CopperSteel 0,8 SPOFCopperSteel (304

    stainless)0,230,21 FOFCopper-Lead AlloySteel0,22 -DiamondDiamond0,1 0,05 - 0,1 DiamondMetal0,1 -0,15 0,1 GlassGlass0,9

    - 1,00,40,1 - 0,60,09-0,12 GlassMetal0,5 - 0,7 0,2

  • 8/9/2019 Offshore Load Out Day 2

    15/103

    •15| PAGE

    www.bimv.com

    Static Friction coefficient

    0,3 GlassNickel0,780,56 GraphiteGraphite0,1 0,1 GraphiteSteel0,1 0,1 Gr

    aphite (In vacuum)Graphite (In vacuum)0,5 - 0,8 Hard CarbonHard

    Carbon0,16 0,12 - 0,14 Hard CarbonSteel0,14 0,11 - 0,14 IronIron1,0 0,15 -

    0,2 LeadCast Iron 0,43 LeadSteel 1,4 SPOFLeatherWood0,3 -

    0,4 LeatherMetal(Clean)0,6 0,2 LeatherMetal(Wet)0,4 Leather Oak(Parallel grain)0,610,52 MagnesiumMagnesium0,6 0,08 NickelNickel0,7-

    1,10,530,280,12 NickelMild Steel 0,64; 0,178 NylonNylon0,15 - 0,25 Oak

    Oak (parallel grain)0,620,48 Oak Oak (cross

    grain)0,540,32 0,072 PlatinumPlatinum1,2 0,25 PlexiglasPlexiglas0,8 0,8 Pl

    exiglasSteel0,4 - 0,5 0,4 -

    0,5 PolystyrenePolystyrene0,5 0,5 PolystyreneSteel0,3-0,35 0,3-0,35 PolytheneSteel0,2 0,2

  • 8/9/2019 Offshore Load Out Day 2

    16/103

    •16| PAGE

    www.bimv.com

    Static Friction coefficient

      RubberAsphalt (Dry) 0,5-0,8 RubberAsphalt (Wet) 0,25-0,75 RubberConcrete

    (Dry) 0,6-0,85 RubberConcrete (Wet) 0,45-

    0,75 SaphireSaphire0,2 0,2 SilverSilver1,4 0,55 Sintered BronzeSteel-

    0,13 SolidsRubber1,0 - 4,0 -- Steel Aluminium Bros0,45 Steel

    Brass0,350,19 Steel(Mild) Brass0,510,44 Steel (Mild)Cast Iron 0,230,1830,133 Steel

    Cast Iron0,4 0,21 Steel Copper Lead Alloy0,22 0,160,145 Steel (Hard)Graphite

    0,21 0,09 Steel Graphite0,1 0,1 Steel (Mild) Lead0,950,95 0,50,3 Steel (Mild)Phos.

    Bros 0,34 0,173 Steel Phos

    Bros0,35 Steel(Hard)Polythened0,2 0,2 Steel(Hard)Polystyrene0,3-0,35 0,3-

    0,35 Steel (Mild)Steel (Mild)0,740,57 0,09-0,19 Steel (Mild)Steel (Mild)-

    0,62 FORSteel(Hard)Steel (Hard)0,780,42 0,05 -0,110,029-,12 SteelZinc (Plated on

    steel)0,50,45-- TeflonSteel0,04 0,040,04 TeflonTeflon0,04 0,040,04 TinCast

  • 8/9/2019 Offshore Load Out Day 2

    17/103

    •17| PAGE

    www.bimv.com

    Static Friction coefficient

    Iron ,32 Titanium Alloy Ti-6Al-4V(Grade 5)Aluminium Alloy 6061-

    T60,410,38 FOFTitanium Alloy Ti-6Al-4V(Grade 5)Titanium Alloy Ti-6Al-4V(Grade

    5)0,360,30 FOFTitanium Alloy Ti-6Al-4V(Grade 5)Bronze0,360,27 FOFTungsten

    CarbideTungsten Carbide0,2-0,25 0,12 Tungsten CarbideSteel0,4 - 0,6 0,08 -

    0,2 Tungsten CarbideCopper0,35 Tungsten

    CarbideIron0,8   WoodWood(clean)0,25 - 0,5 WoodWood

    (Wet)0,2 WoodMetals(Clean)0,2-0,6 WoodMetals

    (Wet)0,2 WoodBrick0,6 WoodConcrete0,62 ZincZinc0,6 0,04 ZincCast

    Iron0,850,21 Material 1Material 2Coefficient Of FrictionTest

    methodDRYLUBRICATEDStaticSlidingStaticSlidingFOR = Flat against rotating Cylinder,

    FOF = Flat against flat, POF = Pin on flat, IS = inclined surface,SPOF Spherical end pin

    on flat.

  • 8/9/2019 Offshore Load Out Day 2

    18/103

    •18| PAGE

    www.bimv.com

    SPECIFIC WEIGHTS - KG/CU.M

    BARITE 2883

    BENTONITE 593

    CEMENT PL 1506

    CEMENT M 2162

    GARBAGE AV 481

    ICE 593

    LEAD 11389

    MUD PACKED 1908

    MUD FLUID 1730

    NITROGEN 1,26

    PETROL 881

    CAOUTCHOUC 945

    RUBBER MAN. 1522

    WATER FRESH 1000

    SEAWATER 1002

  • 8/9/2019 Offshore Load Out Day 2

    19/103

    •19| PAGE

    www.bimv.com

    Deck cargo securing principles

    For deck cargo chain or wire lashings are to bepreferred to web lashings due to less elasticity.Connecting elements and tightening devices

    should be used in the correct way.Consideration should be given to any reductionof the strength of the lashings throughcorrosion, fatigue or mechanical deterioration.

    It is necessary to apply transverse lashings onthe cargo and to timber uprights alongside theblocks of cargo.

  • 8/9/2019 Offshore Load Out Day 2

    20/103

    •20| PAGE

    www.bimv.com

    Deck cargo securing principles

    Heavy single pieces of cargo on deck should preferablybe stowed near the centre of the ship and in the fore-and-aft direction. Suitable beams of timber or steel ofadequate strength should be used to transfer the weightof the item onto the ship’s structure. Principles forlashing and securing of such cargo securing calculationsare essential in order to find the correct number andstrength of suggested lashings and shorings in the

    arrangement. Cargo on deck can never be completelyprotected from sea water, but cargo details easilydamaged by salt can, to some extent, be protected bygrease oil and covering by tarpaulins.

  • 8/9/2019 Offshore Load Out Day 2

    21/103

    •21| PAGE

    www.bimv.com

    S.W.L B.L

    For securing use the according

    ropes/wires/chains/textile slings in order to

    compensate the max load as calculated forthe total weight and friction force.

    S.W.L = safe working load

    B.L = breaking load

  • 8/9/2019 Offshore Load Out Day 2

    22/103

  • 8/9/2019 Offshore Load Out Day 2

    23/103

    •23| PAGE

    www.bimv.com

    USE OF BULLDOG GRIPS

    DIAMETRE

    CABLE mm

    # BULLDOG

    GRIPS

    5 -12 3

    13-16 4

    17-25 5

    26-35 6

    36-50 7

  • 8/9/2019 Offshore Load Out Day 2

    24/103

    •24| PAGE

    www.bimv.com

    Distance Bulldog grips (B.D)

    MAX DISTANCE BETWEEN 2 B.D’S

    Dist = max 3 x diam BD ( between bolds)

    Wrong way ………

  • 8/9/2019 Offshore Load Out Day 2

    25/103

    •25| PAGE

    www.bimv.com

    Colour code textile swl

  • 8/9/2019 Offshore Load Out Day 2

    26/103

    •26| PAGE

    www.bimv.com

    BE AWARE OF DANGERS

  • 8/9/2019 Offshore Load Out Day 2

    27/103

    •27| PAGE

    www.bimv.com

    DANGEROUS CARGO IMDG

  • 8/9/2019 Offshore Load Out Day 2

    28/103

  • 8/9/2019 Offshore Load Out Day 2

    29/103

    •29| PAGE

    www.bimv.com

    IMDG CLASSIFICATION

    1 EXPLOSIVES

    2 GASES (compress.liquified,pressured) inflamm.

    3 INFLAMMABLE LIQUIDS

    4 INFLAMMABLE SOLIDS

    5 OXIDIZING AGENTS & ORGANIC PEROXIDES

    6 TOXICS

    7 RADIOACTIVE MATERIALS 8 CORROSIVE & INFECTIOUS SUBSTANCES

    9 MISCELLANEOUS

  • 8/9/2019 Offshore Load Out Day 2

    30/103

    •30| PAGE

    www.bimv.com

    JACK-UP barges

    Rowan Gorilla 2

  • 8/9/2019 Offshore Load Out Day 2

    31/103

    •31| PAGE

    www.bimv.com

  • 8/9/2019 Offshore Load Out Day 2

    32/103

    •32| PAGE

    www.bimv.com

  • 8/9/2019 Offshore Load Out Day 2

    33/103

    •33| PAGE

    www.bimv.com

    Jack up barge under transit

  • 8/9/2019 Offshore Load Out Day 2

    34/103

    •34| PAGE

    www.bimv.com

    JACK-UP barges

    When airborne, the weight is taken by

    the leg feet:

  • 8/9/2019 Offshore Load Out Day 2

    35/103

    •35| PAGE

    www.bimv.com

    JACK-UP barges

    When CG is not above CB, a moment is

    created

    W

    W

    R R R 

     

  • 8/9/2019 Offshore Load Out Day 2

    36/103

    •36| PAGE

    www.bimv.com

    JACK-UP barges

    Bending moments i.w.o. leg guides !!

  • 8/9/2019 Offshore Load Out Day 2

    37/103

    •37| PAGE

    www.bimv.com

    Pt.4: Jack-ups -inclination calc.&measures

    Calculation and adjustments to be made PRIOR to jackingdown and getting afloat. Draft permitted maximum load line draft

    GM & KG within prescribed limits

    • depends on type of passage taken (Ocean Moves/InFieldMoves)

    • after adjustment and removal of both liquid and dry cargo

    • with legs fully elevated

    • content of spud cans (leg footings can sometimes be pumpedout)

    if excessive trim/list (>0,25º) exists during lowering,bending moments are imposed on the legs i.w.o. theJackhouses and leg guides, potential damage !

  • 8/9/2019 Offshore Load Out Day 2

    38/103

    •38| PAGE

    www.bimv.com

    JACK-UP barges

    Also bending moments under motions afloat

  • 8/9/2019 Offshore Load Out Day 2

    39/103

    •39| PAGE

    www.bimv.com

    JACK UP BARGE SPUD CANS

    Spud cans can “sink”into soft seabed,

    causing retractionproblems.

  • 8/9/2019 Offshore Load Out Day 2

    40/103

    •40| PAGE

    www.bimv.com

    PUNCH TROUGH

    Jack-up under salvage after punch through

  • 8/9/2019 Offshore Load Out Day 2

    41/103

    •41| PAGE

    www.bimv.com

    PUNCH TROUGH DANGER

    Punch through is an imminent danger - therefore an overloadtest is required by means of: preload tanks -- hydraulic jacking (e.g. PB5,

    Energy Explorer) much faster !

  • 8/9/2019 Offshore Load Out Day 2

    42/103

    •42| PAGE

    www.bimv.com

    BEFORE JACKING DOWN OR UP

    From Operations Manual, procedures to work out weight shift tocorrect trim/list, basic steps:

    1) distribute fuel, potable water and drilling water uniformlyand minimise free surface

    2) distribute bulk chemical, cement, Baritet etc. uniformlyabout the centre line fore-aft amidships

    3) remove all excess deck cargo and distribute tubulars, drillpipe, collars, etc. to box stows

    4) unless you are very familiar with the vessel, calculate afloatcondition without any trimming ballast and from thiscalculation derive a trimming/heeling moment and lever.

    5) with results of 4), choose tanks to (partly) fill in order tocounteract the moments derived from 4)

  • 8/9/2019 Offshore Load Out Day 2

    43/103

    •43| PAGE

    www.bimv.com

    AFLOAT ON EVEN KEEL

    Jack-ups in the afloat condition adhere to all the

    normal stability regulations governing any other

    floating vessel - Intact & Damage Stability.

    despite apparently top heavy appearance

    elevated legs, quite adequate intact stability.

    but due to elevated legs, extremely vulnerable

    to damage caused by excessive wave/swellinduced motion. (bending moments, cracking,

    some losses in history)

  • 8/9/2019 Offshore Load Out Day 2

    44/103

    •44| PAGE

    www.bimv.com

    Cont. jacking even keel

    Operations Manual should contain appropriate data on how to calculate the afloat conditions

    sample calculations of the vessel afloat

    afloat condition calculation sheet

    when going afloat, following parameters should be met: list/trim must be nearly zero

    at the Tip of Can (TOC) position (legs raised to transitheight), draft should be lower than permitted maximumload line draft

    afloat barge must have allowable VCG and KM bothlongitudinally and transversely.

  • 8/9/2019 Offshore Load Out Day 2

    45/103

    •45| PAGE

    www.bimv.com

    Jack-up stability jack down example

    A jack-up is about to go afloat;

    From the daily stability calculations we read:

    • Centre of Gravity: LCG = 24,6m TCG = -0,15m VCG = 8,0m

    • Total weight: W = 5000 ton

    From the hydrostatic tables we read:• For a displacement = total weight:

    o mean draft: d = 5,2m

    o Centre of buoyancy: LCB = 25,0m TCB = 0,0m VCB = 2,6m

    o Metacentre position: KMT = 12,2m KML = 23,7m

    o Moment to change heel/trim: MCH1degr = 1600 tonm/degr

    o MCT1degr = 4100 tonm/degr

  • 8/9/2019 Offshore Load Out Day 2

    46/103

    •46| PAGE

    www.bimv.com

    Jack-up stability jack down example

    From the Operation Manual we read the stability limits:

    • Centre of gravity envelope:

    o Operation: TCG {-1,5m ; +1,5m} LCG {23,0m ; 27,0m}

    o Survival: TCG {-0,5m ; +0,5m} LCG {24,5m ; 25,5m}

    • Plimsol mark (load line mark) at 5,5m above keel

    • Minimum Metacentric height: GMmin = 0,7m

    Is it OK to jack down in this condition ?

    What list and trim do you expect in the afloat condition ?

  • 8/9/2019 Offshore Load Out Day 2

    47/103

    •47| PAGE

    www.bimv.com

    Cont. example

    Summary of given data:

    o LCG = 24,6m TCG = -0,15m VCG = 8,0m

    o W = D = 5000 ton

    o mean draft: d = 5,2m

    o Centre of buoyancy: LCB = 25,0m TCB = 0,0m VCB = 2,6mo Metacentre position: KMT = 12,2m KML = 23,7m

    o Moment to change heel/trim: MCH1degr = 1600 tonm/degr

    o MCT1degr = 4100 tonm/degr

  • 8/9/2019 Offshore Load Out Day 2

    48/103

    •48| PAGE

    www.bimv.com

    Cont. example

    Summary of given data:

    stability limits:

    • CG inside Operation envelope : TCG = -0,15m inside {-1,5m ; +1,5m}, OKLCG = 24,6m inside {23,0m ;

    27,0m}, OK

    • CG not inside Survival envelope: TCG = -0,15m inside {-0,5m ; +0,5m}, OKLCG = 24,6m inside {24,5m ;

    25,5m}, OK

    • Draft 5,2m is below Plimsol mark at 5,5m, OK

    • GMT = KMT-KG = 12,2m – 8,0m = 4,2m, this is greater than GMmin = 0,7m,OK

    • GML = KML-KG = 23,7m – 8,0m = 15,7m, this is greater than GMmin = 0,7m,OK

    Conclusion:

    It is safe to jack-down according to Operation Manual

  • 8/9/2019 Offshore Load Out Day 2

    49/103

    •49| PAGE

    www.bimv.com

    Cont.example

    Summary of given data:

    o LCG = 24,6m TCG = -0,15m VCG = 8,0m

    o W = D = 5000 ton

    o mean draft: d = 5,2m

    o Centre of buoyancy: LCB = 25,0m TCB = 0,0m VCB = 2,6mo Metacentre position: KMT = 12,2m KML = 23,7m

    o Moment to change heel/trim: MCH1degr = 1600 tonm/degr

    o MCT1degr = 4100 tonm/degr

  • 8/9/2019 Offshore Load Out Day 2

    50/103

    •50| PAGE

    www.bimv.com

    Cont.example

    Summary of given data:

    Heel:

    • Weight: 5000 ton ; arm = difference TCB-TCG = -0,15m

    • Heeling moment = -750 tonm

    • Angle of heel = Heeling moment/MCH1degr = 750/1600 = 0,47 degr downto PS

    Trim:

    • Weight: 5000 ton ; arm = difference LCB-LCG = 0,4m

    • Trimming moment = 2000 tonm

    • Angle of heel = Trimming moment/MCT1degr = 2000 / 4100 = 0,49 degr

    down to aft

  • 8/9/2019 Offshore Load Out Day 2

    51/103

    •51| PAGE

    www.bimv.com

    BENDING MOMENTS ANS SHEAR FORCES

  • 8/9/2019 Offshore Load Out Day 2

    52/103

  • 8/9/2019 Offshore Load Out Day 2

    53/103

    •53| PAGE

    www.bimv.com

    Structural Integrity

    Primary

    Secondary

    There is a maximum

    deck load (ton/m²)prescribed, to be

    obeyed to !!

    ‘point’-loads to be

    deviated to thestiffeners

  • 8/9/2019 Offshore Load Out Day 2

    54/103

  • 8/9/2019 Offshore Load Out Day 2

    55/103

    •55| PAGE

    www.bimv.com

    Structural Integrity - imperfections

    Structural imperfection - MACRO versus MICRO

      >>

    stress concentration

     

    >>

    stress concentration

  • 8/9/2019 Offshore Load Out Day 2

    56/103

    •56| PAGE

    www.bimv.com

    Structural Integrity - micro imperfections

    Typical micro failure is undercut:

    More welding defects:

    slag inclusions lack of fusion

    incomplete penetration

  • 8/9/2019 Offshore Load Out Day 2

    57/103

    •57| PAGE

    www.bimv.com

    Structural Integrity - micro imperfections

    A connection of structures is to have at least thestrength of the members connected connections e.g. welding, riveting, bolting, …

    Disadvantage of welding monolite structure

    Heat Affected Zone (HAZ) results in brittlestructure (less elasticity, more liable for cracking)

  • 8/9/2019 Offshore Load Out Day 2

    58/103

    •58| PAGE

    www.bimv.com

    Structural Integrity - collapse

    There are mainly two (2) types of structural collapse: BUCKLING

    • occurs mostly

    • under pressure

    • condition

    CRACKING• occurs mostly

    • under tension

    • condition i.w.o.• stress

    • concentrations

     

    Kw.Kg.Kw.

    Kg.K

    w.

  • 8/9/2019 Offshore Load Out Day 2

    59/103

    •59| PAGE

    www.bimv.com

    Cracks

    How do they look like ?

  • 8/9/2019 Offshore Load Out Day 2

    60/103

    •60| PAGE

    www.bimv.com

    Structural Integrity - stress concentrations

    cut-out

    doubler

    misalignment

    Deck repair/maintenance and sea-fastening of deck

    equipment shows often poor workmanship:

  • 8/9/2019 Offshore Load Out Day 2

    61/103

    •61| PAGE

    www.bimv.com

    Structural Integrity - elasticity

    Elasticity creates

    deflections

    moments shear forces

  • 8/9/2019 Offshore Load Out Day 2

    62/103

  • 8/9/2019 Offshore Load Out Day 2

    63/103

    •63| PAGE

    www.bimv.com

    Structural Integrity - problems

    Problem 1:

    steel is elastic, loads create deformations

    deformation creates local moments in the structure

    SOLUTION: stiffening of the structure

    Problem 2: highly stiff structures “attract” stresses and concentrate them

    increased risk of micro failures

    Problem 3:

    when loads become dynamic, the fatigue phenomenon resultsin a decreased resistance against loads

    Problem 4:

    corrosion is causing diminution of the dimensions and capabilityof acceptance

  • 8/9/2019 Offshore Load Out Day 2

    64/103

  • 8/9/2019 Offshore Load Out Day 2

    65/103

    •65| PAGE

    www.bimv.com

    SHEAR FORCES & BENDING MOMENTS

  • 8/9/2019 Offshore Load Out Day 2

    66/103

    •66| PAGE

    www.bimv.com

    LOADS

    TENSILE OR COMPRESSIVE LOADS

  • 8/9/2019 Offshore Load Out Day 2

    67/103

    •67| PAGE

    www.bimv.com

    SHEARING STRESSES

    VERTICAL SHEAR

  • 8/9/2019 Offshore Load Out Day 2

    68/103

    •68| PAGE

    www.bimv.com

    COMPLEMENTARY STRESS

    By direct load created in material & in

    equilibrium as strenght can resist load

    Stress (f) = Load (W) / Area (A)

  • 8/9/2019 Offshore Load Out Day 2

    69/103

    70| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    70/103

    •70| PAGE

    www.bimv.com

    SHEAR Force & Bending moments

    diagrams BM = O at the ends & max in the middle

    •71| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    71/103

    •71| PAGE

    www.bimv.com

    Forces on Cross Section Areas

    On Cross Beams linear force up to the max

    •72| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    72/103

    •72| PAGE

    www.bimv.com

    Construction supported on edges

    Construction vertical supported

    •73| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    73/103

    •73| PAGE

    www.bimv.com

    Longitudenal Stresses in still water

    Weight & Buoyancy reactions

  • 8/9/2019 Offshore Load Out Day 2

    74/103

    •75| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    75/103

    75| PAGE

    www.bimv.com

    Cont Stresses in waves

    Hogging & sagging

    •76| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    76/103

    76| PAGE

    www.bimv.com

    Cont Stresses in waves

    Consider hogging a sagging as point stress &

    ballast to avoid fatigue of construction

    •77| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    77/103

    |

    www.bimv.com

    WEIGHT DIAGRAM

    Counteracting weight stress

    •78| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    78/103

    |

    www.bimv.com

    Stresses on additional immersion

    Water Line ( WL) Additional sectional stress by immersion

    Bonjean Curve

    •79| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    79/103

    www.bimv.com

    BUOYANCY CURVES

    By Bonjean Curve the buoyancy output for

    each draft an wave impact .

    •80| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    80/103

    www.bimv.com

    Sectional Bending moments & Shear

    Force diagram

  • 8/9/2019 Offshore Load Out Day 2

    81/103

  • 8/9/2019 Offshore Load Out Day 2

    82/103

    •83| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    83/103

    www.bimv.com

    TIDAL TIME SCHEDULE

    Air pressured B.C according boarding & tidal

    schedule

    •84| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    84/103

    www.bimv.com

    MARINE LOAD OUT

    Preparing downballasting to board jack up

    •85| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    85/103

    www.bimv.com

    POSITIONING OPEN WATER

    CURRENT & METEO INFLUENCE

    •86| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    86/103

    www.bimv.com

    METEROLOGICAL CONDITIONS

    Beaufort scale max 3 bft / no tidal or stream currents

    Beaufort Force 3

    Gentle breeze

    Wind speed (knots): 7 - 10   Wave height (feet): 2 - 3

    Sea state: Large wavelets; crests begin to break;

    scattered whitecaps

    •87| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    87/103

    www.bimv.com

    CRITICAL STABILITY POINT

    Lost of bouyancy & max weight stresses

  • 8/9/2019 Offshore Load Out Day 2

    88/103

    •89| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    89/103

    www.bimv.com

  • 8/9/2019 Offshore Load Out Day 2

    90/103

    •91| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    91/103

    www.bimv.com

    •92| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    92/103

    www.bimv.com

    HYDRAULIC SKIDDING DEVICES

    •93| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    93/103

    www.bimv.com

    Hydraulic Skidding

    •94| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    94/103

    www.bimv.com

    VERTICAL JACKS

    600 T VERTICAL JACKS

    •95| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    95/103

    www.bimv.com

    17800 T JACKET

    •96| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    96/103

    www.bimv.com

    •97| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    97/103

    www.bimv.com

    USE OF SKID BEAMS

    Number of skidbeams depending on weight

    & moments

    •98| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    98/103

    www.bimv.com

    SKIDDED TLP TRANSPORT

  • 8/9/2019 Offshore Load Out Day 2

    99/103

  • 8/9/2019 Offshore Load Out Day 2

    100/103

    •101| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    101/103

    www.bimv.com

    SKIDDING TO BARGE

    •102| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    102/103

    www.bimv.com

    LOAD OUT BY GANTRY

    •103| PAGE

  • 8/9/2019 Offshore Load Out Day 2

    103/103

    Thank you for your attention and have a nice

    evening!