19
1 講義時間:6場所 8-1A 担当 :山村 工業反応装置特論

工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

1

講義時間:6限場所 :8-1A

担当 :山村

工業反応装置特論

Page 2: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

2

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0 0.2 0.4 0.6 0.8 1

volume fraction fA

fre

e e

ne

rgy o

f

mix

ing g

/(n

RT

)

cAB=0

cAB=0.03

NA=NB=100

phase separates!

MIX OR DEMIX – FREE ENERGY OF MIXING

を満たす)0( fd

dg平衡組成

平衡組成が1つ → 均一溶液

平衡組成が2つ(以上) → 相分離

Page 3: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

3

SINGLE COMPONENT IDEAL GAS

Gibs Free Energy (G) at two different pressures

)1()()()(

p

p

dppVpGpG

IDEAL GAS

)3()ln()(1

)()(

)2(

p

pnRTpGdp

pnRTpGpG

nRTpV

p

p

Chemical potential

ル)での化学ポテンシャ標準状態(圧力

p

p

pRT

n

G

:

)4()ln(

equation of state

Substituting Eq. (1) to Eq. (2) gives

Page 4: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

4

IDEAL GAS MIXTURE (1)

のモル分率はガス成分ただし

なので理想気体なら

由エネルギー)混合前後の差(混合自

ただし

混合後

混合前

iyyyyynRT

yRTnyyRTnyG

ynn

n

pp

p

p

p

p

pRTn

p

pRTnGGG

ppp

p

pRTn

p

pRTn

nnG

p

pRTn

p

pRTn

nnG

iBBAA

BBAAmix

A

BA

A

BA

AA

BB

AA

if

mix

BA

BB

AA

f

BB

f

AA

f

BA

i

BB

i

AA

i

)5()lnln(

ln)(ln)(

)ln()ln(

)ln()ln(

)ln()ln(

Negligible interaction

between molecules

nA [mol] nB [mol]

nA [mol]

pA [Pa]nB [mol]

pB [Pa]

p [Pa] p [Pa]

Page 5: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

5

IDEAL GAS MIXTURE (2)

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nRTGmix

Ay

)5()lnln( BBAAmix yyyynRTG

モル分率yA=0.8で混合した場合

混合前(成分A)混合前(成分B)

混合自由エネルギーが減少するよう混合が進行

Page 6: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

6

IDEAL LIQUID MIXTURE (1)

)ln()ln(

)ln()ln(

)ln()ln(

)ln()(

:

)ln()(

)()(

**

**

*

*

*

B

BB

A

AA

if

mix

BB

AA

f

BB

AA

i

BB

i

B

A

AA

i

A

p

pRTn

p

pRTnGGG

p

pRTn

p

pRTnG

p

pRTn

p

pRTnG

p

pRTnliquidG

Ap

p

pRTnliquidG

A

gasliquid

由エネルギー)混合前後の差(混合自

混合後

同様に

の飽和蒸気圧純成分

混合前の液体

平衡状態では

Page 7: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

7

IDEAL LIQUID MIXTURE (2)

)6(lnln

)(

lnln

,**

BBAAmix

BA

BBAAmix

B

B

BA

A

A

i

xRTxxRTxnRT

G

nnn

xRTnxRTnG

xp

px

p

p

xi

Raoult

で除すと

を用いてのモル分率液中の成分

らの法則が成り立つ)ない(成分間の相互作用がな

理想気体と同じ関数形 (1つの平衡組成を持つ)

Page 8: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

8

POLYMER BLEND (1)

セグメント(丸印)

)ln()ln(

)ln()ln(

)ln()ln(

)ln()(

/

**

**

*

B

B

B

B

A

A

A

Aif

mix

B

B

BA

A

Af

B

B

BA

A

Ai

A

A

Ai

A

AA

A

p

pRT

N

n

p

pRT

N

nGGG

p

pRT

N

n

p

pRT

N

nG

p

pRT

N

n

p

pRT

N

nG

p

pRT

N

nliquidG

A

Nn

NA

由エネルギー)混合前後の差(混合自

混合後

エネルギーは混合前の混合物の自由

の自由エネルギーは混合前の液体

なので分子のモル数は

る)まれる(混合に関与す1つのセグメントに含

とすると、のセグメント数を高分子成分

る。単位で混合すると考え高分子内のセグメント

segment

Page 9: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

9

* *,

ln ln

( )

ln ln (7)

i

A BA B

A B

A Bmix A B

A B

A B

A BmixA B

A B

Raoult

i x

p px x

p p

n nG RT x RT x

N N

n n n

x xGRT x RT x

nRT N N

の法則が成り立つなら

液中の成分のモル分率 を用いて

で除すと

POLYMER BLEND (2)

Page 10: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

10

2

2

0

0

0

AA A

BB B

AB A B

ij

AA

BB

AB

A A x

x

A x x

c

c

c

c

c

c

c

成分間の相互作用が両成分の濃度(モル分率)の積に比例すると考える。

成分 成分 間

成分B 成分B間

成分 成分B間

ここで比例定数 を相互作用パラメータ(またはカイパラメータ)と呼ぶ。

定性的に考えると相分離が生じるには次の条件が必要

同種成分間の引力

同種成分間の引力

異種成分間の斥力

相互作用項の導入(1)

Page 11: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

11

0

(6)

ln ln (7)

ln ln ( ) (8)

AA BB

mixA A B B AB A B

A BmixA B AB A B

A B

Gx x x x x x

nRT

Flory Huggins

x x gGRT x RT x x x

nRT N N RT

c c

c

c

例として の場合を考える。

式 に対して相互作用項を加えると

また式(7)に対して同様に相互作用を考慮すると

式と呼ばれる次式で表される

相互作用項の導入(2)

Page 12: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

12

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0 0.2 0.4 0.6 0.8 1

molar fraction xA

free

en

erg

y o

f

mix

ing g

/(n

RT

)

相図(1)

変曲点 2 2( / 0)mix Ad G dx

スピノーダル領域 2 2( / 0)mix Ad G dx

核形成領域2 2( / 0)mix Ad G dx

Page 13: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

13

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0 0.2 0.4 0.6 0.8 1

molar fraction xA

fre

e e

ne

rgy o

f

mix

ing g

/(n

RT

)

相図(2):スピノーダル分解

点A

点B 点C

点Aの混合自由エネルギーが点B(点C)のそれよりも高いので点B,Cへ向かって自発的に相分離が進行(スピノーダル分解と呼ばれる)

Page 14: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

14

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0 0.2 0.4 0.6 0.8 1

molar fraction xA

free

en

erg

y o

f

mix

ing g

/(n

RT

)

相図(3):核形成

点A 点B

点C

濃度ゆらぎが小さければ均一混合濃度ゆらぎがある臨界値以上に大きければ相分離 ⇒海島構造

0 0.2 0.4 0.6 0.8 1

molar fraction xA

点A

点B点C

①濃度ゆらぎが小さな場合

濃度ゆらぎ

②濃度ゆらぎが大きな場合

点D

Page 15: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

15

N成分系中の成分iの化学ポテンシャルの基準状態からの差は次式で定義される(Nauman&Balsara, 1989)。ただしここではモル分率の代わりに体積分率Φで表す。

RT

G

RT

G

RT

iii

j

N

j

j

i

i

fff

f

f

f

ただし

1

Chemical Potential (1)

2成分系では

平衡状態の組成は成分A、Bの化学ポテンシャルが等しい条件から算出できる

BA

B

B

A

A

B

B

B

B

A

A

A

A

RT

RT

f

f

f

f

f

f

f

f

f

f

Page 16: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

16

RT

g

RT

g

RT

G

BAiRT

G

NNRT

g

gG

iii

i

BAAB

B

BB

A

AA

fff

f

ffcffff

従って

ただし

はないのでるなら界面の濃度勾配高分子が溶け合ってい

,0

)7(lnln

Chemical Potential (2)

Flory-Huggins式が成り立つ2成分高分子ブレンドでは、界面の寄与を無視して

GRT

g

RT

G

Gは均一混合時の自由エネルギーgと、界面が存在することによる増加ΔGの和で表される一般的な自由エネルギーである。

Page 17: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

17

Chemical Potential (3)

平衡状態では成分A、Bの化学ポテンシャルは等しいから

RT

g

d

d

RT

RT

g

d

d

RT

g

d

d

RT

g

d

d

RT

g

d

d

RT

g

d

d

RT

RT

g

d

d

RT

g

d

d

RT

g

d

d

RT

g

RT

B

RT

g

d

d

RT

g

d

d

RT

g

d

d

RT

g

RT

A

A

BA

AAB

BA

BA

BA

B

B

A

A

B

B

B

B

A

A

A

A

f

fff

ff

ff

ff

ff

f

ff

ff

f

2

)1(

1 すればが成り立つことに注意

について同様に成分

についてこれを用いると成分

)8(0

RT

g

d

d

Af

Page 18: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

18

Chemical Potential (4)

が決まるを解けば平衡組成を与えて式混合物の

を用いて微分すると

を代入するとに

平衡組成の求め方

AABBA

AAB

AB

A

B

B

AA

A

A

A

AB

BAAB

B

BB

A

AA

A

NN

NNNN

NNd

d

fc

fcf

ff

f

ff

ff

ffcffff

f

)9(,,

)9(0)21(1

11ln1ln

1

0lnln

)7()8(

Page 19: 工業反応装置特論In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A and polymer B is expressed as a function of molar fraction of polymer

19

In the Flory-Huggins theory, the free energy of mixing in immiscible blends of polymer A

and polymer B is expressed as a function of molar fraction of polymer A, xA, as:

The first and second terms of right hand side of Eq. (1) represent the free energy in

ideal solution, and the third term represents the repulsive molecular interactions

between polymer A and B. NA and NB in Eq. (1) represent the number of segments in

polymer A and B, and cAB denotes the interaction parameter, which is assumed to a constant.

Q1. Derive Eq. (2) for the molar fraction xA that satisfies dg/dxA =0.

Q2. Derive Eq. (3) for the molar fraction xA that satisfies d2g/dxA2 =0.

Q3. Plot cAB – xA curve (which is called “spinodal curve”) from Eq. (2)

and cAB – xA curve (which is called “binodal curve”) from Eq. (3) in case of NA=NB=100.

氏名Report 7 phase diagram of immiscible polymer blend

ln ln , 1 (1)mix A BA B AB A B B A

A B

G x xgx x x x x x

nRT RT N Nc

1 1 1 1 1(3)

2AB

A A B BN x N xc

1 ln 1 ln1(2)

2 1

A BAB

A A B

x x

x N Nc