48
Young Won Lim 12/23/15 ODE Background: Integral (2A)

ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

Young Won Lim12/23/15

ODE Background: Integral (2A)

Page 2: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

Young Won Lim12/23/15

Copyright (c) 2011 - 2015 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to [email protected].

This document was produced by using OpenOffice and Octave.

Page 3: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 3 Young Won Lim12/23/15

Derivative and Integral of Trigonometric Functions

Page 4: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 4 Young Won Lim12/23/15

Differentiation & Integration of sinusoidal functions

f x = sin x dd x

f x = cos x leads

g (x) = cos (x )dd x

g(x ) = −sin(x) leads

f x = sin x ∫ f x dx = −cos x C lags

g (x) = cos (x )∫ g(x ) dx = sin(x ) + C lags

Page 5: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 5 Young Won Lim12/23/15

Plotting Lineal Elements

F (x , f (x )) = f ' (x)(x , y) f ' (x)

F (x , y)

tangentslope

x y

f (x)

a single variable function

a two variable function

Page 6: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 6 Young Won Lim12/23/15

Derivative of sin(x)

f (x) = sin(x)

+1 0 -1 0 +1 0 -1 0 +1 0 -1 0 slope

dd x

f (x ) = cos (x )

leads

A1

Page 7: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 7 Young Won Lim12/23/15

Plot of F(x,y) = f'(x) (= cos(x))

+1 0 -1 0 +1 0 -1 0 +1 0 -1 0 slope

f (x ) = sin (x)

+1 0 -1 0 +1 0 -1 0 +1 0 -1 0 slope m

(x , y ) = (x , f (x)) = (x ,sin (x )) x y

(x , y )

(x , y ) m = slope of a tangent f ' (x )

F (x , y ) = f ' ( x)

F (x , sin(x )) = cos(x )

y '

A2

Page 8: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 8 Young Won Lim12/23/15

Plot of f'(x)=cos(x) from a lineal element plot

+1 0 -1 0 +1 0 -1 0 +1 0 -1 0 slope

+1

0

-1

0

+1

0

-1

0

+1

0

-1

0

f (x ) = sin (x)

f ' (x ) = cos(x)

F (x , y ) = f ' ( x)

f (x ) = cos(x)

A3

Page 9: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 9 Young Won Lim12/23/15

Derivative of cos(x)

f x = cos x

0 -1 0 +1 0 -1 0 +1 0 -1 0 +1 slope

dd x

f x = −sin x

leads

B1

Page 10: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 10 Young Won Lim12/23/15

Plot of F(x,y) = f'(x) (= -sin(x))

+1 0 -1 0 +1 0 -1 0 +1 0 -1 0 slope

f (x ) = cos(x)

+1 0 -1 0 +1 0 -1 0 +1 0 -1 0 slope m

(x , y ) = (x , f (x)) = (x ,cos(x )) x y

(x , y )

(x , y ) m = slope of a tangent f ' (x )

F (x , y ) = f ' (x)

F (x , cos(x )) = −sin(x )

y '

B2

Page 11: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 11 Young Won Lim12/23/15

Plot of f'(x)=-sin(x) from a lineal element plot

+1

-1

+1

-1

+1

-1

0 -1 0 +1 0 -1 0 +1 0 -1 0 +1 slope

0 0 0 0 0 0

cos(x)

f (x ) = cos(x)

f ' (x ) = −sin(x)

f (x ) = −sin (x )

B3

Page 12: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 12 Young Won Lim12/23/15

Definite Integrals of sin(x)

f x = sin x

0 1 2 1 0 1 2 1 0 1 2 1 area + 0

-1 0 +1 0 -1 0 +1 0 -1 0 +1 0 area - 1

∫0

/2sin t d t = 1

∫0

xsin (t) d t

∫−π /2

xsin (t ) d t

= [−cos(t)]0x

= [−cos(t)]−π /2x

=−cos(x)+1

=−cos(x)+0

C1

Page 13: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 13 Young Won Lim12/23/15

Indefinite Integrals of sin(x)

f x = sin x

∫ f (x ) dx = −cos(x) + C

∫0

/2sin t d t = 1

lags

C2

Page 14: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 14 Young Won Lim12/23/15

Definite Integrals of cos(x)

f x = cos x

0 1 0 -1 0 1 0 -1 0 1 0 -1

∫0

/2cos x d x = 1

D1

∫0

xcos(t) d t

∫−π /2

xcos(t) d t

= [sin (t)]0x

= [sin (t)]−π/2x

= sin (x)−0

= sin (x)+1

1 2 1 0 1 2 1 0 1 2 1 0

area - 0

area + 1

Page 15: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 15 Young Won Lim12/23/15

Indefinite Integrals of cos(x)

f x = cos x

∫ f (x ) dx = sin( x) + C

∫0

/2cos x d x = 1

lags

D2

Page 16: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 16 Young Won Lim12/23/15

Direction Field (1)

dydx

= sin x

y ' = sin x

F (x , y)

y =−cos x

Page 17: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 17 Young Won Lim12/23/15

Direction Field (2)

dydx

= cos x

y ' = cos x

F (x , y)

y = sin x

Page 18: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 18 Young Won Lim12/23/15

Derivative and Integral of Exponential Functions

Page 19: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 19 Young Won Lim12/23/15

The Euler constant e

dd x

ax = limh0

a xh − ax

h= ax lim

h0

ah − 1h

limh→0

ah− 1h

= 1 f ' 0 = 1

dd x

ex= e x

f x = e x f ' x = ex f ' ' x = ex

limh→0

ah − a0

h − 0= 1

e = 2.71828⋯

⇒ ax such a, we call e

Page 20: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 20 Young Won Lim12/23/15

The Euler constant e

f ' 0 = 1

dd x

ex= e x

f x = e x

f ' x = ex

f ' ' x = ex

limh→0

ah − a0

h − 0= 1

e = 2.71828⋯

limh→0

ah− 1h

= 1 iif a = e

Functions f(x) = ax are shown for several values of a. e is the unique value of a, such that the derivative of f(x) = ax at the point x = 0 is equal to 1. The blue curve illustrates this case, ex. For comparison, functions 2x (dotted curve) and 4x (dashed curve) are shown; they are not tangent to the line of slope 1 and y-intercept 1 (red).

http://en.wikipedia.org/wiki/Derivative

Page 21: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 21 Young Won Lim12/23/15

The Derivative of ax

ax= e ln ax

= e x ln a

dd x

{ax} =

dd x

{e x lna}

= {ex lna}

dd x

{x ln a}

dd x

{ax} = {ax

} ln a

dd x

{ex} = {ex

} ln e = {ex}

Page 22: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 22 Young Won Lim12/23/15

Differentiation and Integration (1)

f (x) f ' (x )

f ' (x )∫ f ' (x)dx

dd x

∫⋅d x

e x e x

e xe x+ c

dd x

∫⋅d x

= f ' (x) + c1

Page 23: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 23 Young Won Lim12/23/15

Differentiation and Integration (2)

f (x) f ' (x ) f ' ' (x )

∫ f ' ' (x)dx∫ f ' (x)dx ∫ f (3)(x)dx

dd x

dd x

∫⋅d x ∫⋅d x

e x e x e x

e x+ c1e x

+ c1 x + c2 e x

dd x

dd x

∫⋅d x ∫⋅d x

= f ' (x) + c2= f (x) + c1 = f ' ' (x) + c3

Page 24: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 24 Young Won Lim12/23/15

Differentiation and Integration (3)

f (x) f ' (x )

F (x ) + c

dd x

∫⋅d x

f (x ) + c

f (x )

dd x

∫⋅d x

f (x)

e x e x

e x+ c

dd x

∫⋅d x

e x+ c

e x

dd x

∫⋅d x

e x

Page 25: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 25 Young Won Lim12/23/15

Chain Rule

Page 26: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 26 Young Won Lim12/23/15

Chain Rule

f (g(x)) f ' (g(x ))⋅g ' (x )

f (g(x)) f ' (g(x ))⋅g ' (x )

e∫P(x )dxe∫P(x )dx d

dx(∫P (x )dx ) = e∫P (x)dx P (x)

dfdg

= f ' (g( x))dgdx

= g ' (x)

eg eg⋅

dgdx

dfdg

⋅dgdx

dd x

dd x

dfdg

⋅dgdx

dfdx

=

dd x

dd x

with respect to

with respect to x

Page 27: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 27 Young Won Lim12/23/15

Substitution Rule

Page 28: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 28 Young Won Lim12/23/15

Substitution Rule

f (g(x)) + C f ' (g(x ))⋅g ' (x )

u=g (x)

du =dgdx

dx

∫ f ' (g(x))⋅g ' (x) dx = ∫ f ' (g (x))⋅dgdx

dx

= ∫ f ' (u)du

= f (u) + C

∫⋅d x

∫ f ' (g(x ))⋅g ' (x )dxf (g(x)) + C =

∫ f ' (u)⋅duf (u) + C =

Page 29: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 29 Young Won Lim12/23/15

Substitution Rule – the traditional form

f (g(x)) + C f ' (g(x ))⋅g ' (x )∫⋅d x

∫ f ' (g(x ))⋅g ' (x )dxf (g(x)) + C =

∫ f ( g(x ) )⋅g ' (x) dx=

The Traditional Substitution Rule Formula

∫ f ( g(x) )⋅g ' (x) dx ∫ f ( u ) du=

∫ f ( u ) du

f ⇐ f '

∫ f ⇐ f

u = g( x)

du = g ' (x)dx

view (I)

view (II)

Page 30: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 30 Young Won Lim12/23/15

Chain Rule and Substitution Rule Examples

Page 31: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 31 Young Won Lim12/23/15

Chain Rule and Substitution Rule

f (g(x )) f ' (g(x ))⋅g ' (x )dd x

dfdg

⋅dgdx

dfdx

=

f (g(x )) + C f ' (g(x ))⋅g ' (x )∫⋅d x

∫ f ' (g(x ))⋅g ' (x )dxf (g(x )) + C =

Page 32: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 32 Young Won Lim12/23/15

Chain Rule and Substitution Rule Examples

f (x)=e x

g(x)=x2+2

e( x2+2)

f (g)=eg dfdg

=eg

dgdx

=2 x

dfdx

=dfdg

dgdx

= eg(2 x) = ex2+2

(2 x)

∫ ex2+2(2 x )dx

f ' (x)=ex

g(x)=x2+2

f ' (g)=eg ∫dfdg

dg

dgdx

dx=2x dx

∫dfdg

dg=eg= ex 2+2

+ c

f (x)=e x

g(x)=x2+2

f (g)=eg ∫ f (g)dg

dgdx

dx=2x dx

f ' (g)=eg+c

F (g)=eg+c

∫dfdg

dg=eg= ex 2+2

+ cor

view (I)

view (II)

Page 33: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 33 Young Won Lim12/23/15

Substitution Rule Examples (1)

∫ e3 x dx

Ex 1: Ex 2:

∫ eg( x )g ' (x) dx = eg( x )

g(x) = 3 x g ' (x)= 3

∫ e3 x dx =13∫ e3 x

⋅3 dx

∫ e3 x dx =13e3 x

∫ e2 y dy

∫ eh ( y )h ' ( y) dy = eh( y )

h( y) = 2 y h ' ( y) = 2

∫ e2 y dy =12∫e2 y⋅2 dy

∫ e2 y dy =12e2 y

f (g(x )) + C f ' (g(x ))⋅g ' (x )∫⋅d x

∫ f ' (g(x ))⋅g ' (x )dxf (g(x )) + C =

Page 34: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 34 Young Won Lim12/23/15

Substitution Rule Examples (2)

p ( y)dydx

= g(x) y = Φ(x)

p (Φ(x))Φ ' (x) = g (x )

∫ p(Φ(x))Φ ' (x)dx = ∫ g (x)dx

∫ p( y)dy = ∫ g(x)dx

∫x

(x2−9)

dx = ∫ x(x2−9)−1 dx

=12∫(x2−9)−1⋅2 x dx

=12∫u−1 du =

12ln∣u∣ = ln∣u∣1 /2

= ln(x2−9)1 /2

= ln√x2−9

=12∫(x2

−9)−1⋅{ d

dx(x2

−9)} dx

Ex 3: Ex 4:

for (x2>9)

dy = Φ ' (x)dx

f (g(x)) + C f ' (g(x))⋅g ' (x )

∫ f ' (g(x ))⋅g ' (x )dxf (g(x)) + C =

∫⋅d x

Page 35: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 35 Young Won Lim12/23/15

Substitution Rule Examples (3)

∫x

(x−1)2dx

= ∫u+1

u2du

= ln∣u ∣−1u

+ C

= ∫1u

+1

u2du

Ex 5:

=∫(x−1)+1

(x−1)2 { ddx

(x−1)} dx

f (g(x)) + C f ' (g(x))⋅g ' (x )

∫ f ' (g(x ))⋅g ' (x )dxf (g(x)) + C =

∫⋅d x

Page 36: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 36 Young Won Lim12/23/15

Derivative Product and Quotient Rule

Page 37: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 37 Young Won Lim12/23/15

Derivative Product and Quotient Rule

f g f ' g + f g 'dd x

ddx

( f g) =d fdx

g + fd gdx

fg

ddx ( f

g ) = ( d fdx

g − fd gdx ) / g2

f ' g − f g '

g2

f (x ), g(x)

dd x

f (x ), g(x)

Page 38: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 38 Young Won Lim12/23/15

Integration By Parts

Page 39: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 39 Young Won Lim12/23/15

Integration by parts (1)

f (x)g(x ) f ' (x )g(x ) + f ( x)g ' (x )

dd x

ddx

( f g) =d fdx

g + fd gdx

f (x )g(x ) f ' (x )g(x ) + f ( x)g ' (x )

f g = ∫ f ' g dx + ∫ f g ' dx

∫⋅d x

∫ f (x )g ' (x) dx f (x )g(x ) − ∫ f ' (x )g(x ) dx=

differentiation

integration

Page 40: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 40 Young Won Lim12/23/15

Integration by parts (2)

∫ f (x )g ' (x) dx f (x )g(x ) − ∫ f ' (x )g(x ) dx=

∫ x ex dx = x ex −∫ ex dx

∫ x2ex dx = x2ex − 2∫ xex dx

∫ x3ex dx = x3ex − 3∫ x2exdx

= x ex − ex + c1

= x2ex − 2 x ex + 2ex + c2

= x3ex − 3 x2ex + 6 x ex − 6 ex + c3

= ( x−1)ex + c1

= ( x2 − 2 x + 2)ex + c2

= (x3 − 3 x2 + 6 x − 6 )ex + c3

∫ x ex dx

∫ x2ex dx

∫ x3ex dx

= ( x−1)ex + c1

= ( x2 − 2 x + 2)ex + c2

= (x3 − 3 x2 + 6 x − 6 )ex + c3

∫ x ex2/2dx = ∫ {ddx

ex2/2}dx = ex2 /2

+ c

∫ x2ex 3 /3dx= ∫ {ddx

ex3/3}dx = ex3 /3

+ c

∫ exdx = ∫ {ddx

ex}dx = ex + c

Page 41: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 41 Young Won Lim12/23/15

Derivative of Inverse Functions

Page 42: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 42 Young Won Lim12/23/15

Derivatives of Inverse Functions

y = f (x )

a

b (a, b) = (a , f (a))

b

a(b, a) = (b , f−1

(b))

y = f−1(x )= g(x )

g ' (b)=1

f ' (a)

m2 = g ' (b)m1 = f ' (a)

g ' (b)=1

f ' (g(b))

= (b ,g(b))

m1m2 = f ' (a)g ' (b)= 1

a

b

b

a

ba

ab

g(b)= a

Page 43: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 43 Young Won Lim12/23/15

Derivatives of Inverse Functions

e x

g ' (b)=1

f ' (a)g ' (b)=

1f ' (g(b))

m1m2 = f ' (a)g ' (b)= 1

g(b)= a

g ' (x) =1

f ' (g(x))

ddx

ex⇒ ex

(e x) ' ⇒ ex

ddx

ln x ⇒1x

To find g'(x)(1) find f'(x)(2) find 1 / f'(x)(3) substitute x with g(x)

1

ex

1

e ln x=

1x

(ln x) ' =1x

11/ x

= x

f ' (x)

1f ' (x )

g ' (x )

Page 44: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 44 Young Won Lim12/23/15

Derivative of ln x

y = ln x

e y = x

ddx

e y =ddx

x

e y dydx

= 1

dydx

=1

e y

g ' (x) =1

f ' (g(x))

(e x) ' ⇒ ex

ddx

ln x ⇒1x

1

ex

1

e ln x=

1x

f (x) = e x

g(x) = ln x

=1x

e y = x

f ' (x)

1f ' (x)

g ' (x)

chain rule

Page 45: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 45 Young Won Lim12/23/15

Derivative of ln |x|

ddx

ln x =1x

x>0

ddx

ln(−x) =1

(−x)⋅(−1) =

1x

x<0

ddx

ln|x|=1x

x≠0

dd xln x x>0

ln(−x) x<0

1x

1x

dd x

Page 46: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 46 Young Won Lim12/23/15

Derivative of ln |x|

ddx

ln x =1x

x>0

ddx

ln (−x) =1

(−x)⋅(−1) =

1x

x<0

ddx

ln|x|=1x

x≠0

dd xln x x>0

ln(−x) x<0

1x

1x

dd x

Page 47: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

ODE Background: Integral (2A) 47 Young Won Lim12/23/15

Indefinite Integral of ln |x|

ddx

ln|x|=1x

x≠0

ln x (x>0)

ln(−x) (x<0)

1x

∫⋅d x

= ∫ 1x

dxln|x| (x≠0)

Page 48: ODE Background: Integral (2A) · 22/12/2015  · ODE Background: Integral (2A) 20 Young Won Lim 12/23/15 The Euler constant e f ' 0 = 1 d dx ex = ex f x = ex f ' x = ex f '' x = ex

Young Won Lim12/23/15

References

[1] http://en.wikipedia.org/[2] M.L. Boas, “Mathematical Methods in the Physical Sciences”[3] E. Kreyszig, “Advanced Engineering Mathematics”[4] D. G. Zill, W. S. Wright, “Advanced Engineering Mathematics”