1
Ob ti f t h i di lid l Th b fit f lbl Observations of atmospheric radionuclide cycles: The benefit for global Observations of atmospheric radionuclide cycles: The benefit for global Observations of atmospheric radionuclide cycles: The benefit for global paleoclimate st dies paleoclimate studies paleoclimate studies paleoclimate studies Christoph Elsässer (1) Dietmar Wagenbach (1) Rebecca Bremen (1) Ingeborg Levin (1) Rolf Weller (2) Clemens Schlosser (3) and Matthias Auer (4) Christoph Elsässer (1), Dietmar Wagenbach (1), Rebecca Bremen (1), Ingeborg Levin (1), Rolf Weller (2), Clemens Schlosser (3) and Matthias Auer (4) Christoph Elsässer (1), Dietmar Wagenbach (1), Rebecca Bremen (1), Ingeborg Levin (1), Rolf Weller (2), Clemens Schlosser (3) and Matthias Auer (4) (1) Institut für Umweltphysik, University of Heidelberg, Germany ([email protected]heidelberg.de), (2) Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, (3) Bundesamt für Strahlenschutz, Freiburg, Germany, (1) Institut für Umweltphysik, University of Heidelberg, Germany ([email protected] heidelberg.de), (2) Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, (3) Bundesamt für Strahlenschutz, Freiburg, Germany, (4) CTBTO P t C i i Vi It ti lC t Vi A ti (4) CTBTO Preparatory Commission, Vienna International Center, Vienna, Austria h b fi f h i i i i di f The benefit from atmospheric monitoring: Findings from R di lid i li hi The benefit from atmospheric monitoring: Findings from Radionuclides in climate archives: Radionuclides in climate archives: N St ti (A t ti ) ] Neumayer Station (Antarctica) A tool for re onstr tin the past 1.1 ed] Neumayer Station (Antarctica) A tool for reconstructing the past 1.1 alize A tool for reconstructing the past 1.0 ma The IUP Heidelberg time series orm The IUP Heidelberg time series 0.9 e [n Th IUP H id lb i ti l 7 B 10 B d 210 Pb i 27 ate neutron count rate (1) The IUP Heidelberg quasicontinuously measures 7 Be, 10 Be and 210 Pb since 27 0.8 t ra neutron count rate years at Neumayer Station in coastal Antarctica (see Elsässer et al (2011)) oun d] years at Neumayer Station in coastal Antarctica (see Elsässer et al. (2011)). co zed Neumayer Station (Antarctica) on aliz Neumayer Station (Antarctica) Why measure 7 Be and 10 Be? utro 1.5 rm Photo: O. Eisen IUP/AWI Why measure 7 Be and 10 Be? neu no Alth h 10 B d th h t li d 7 B d l l t id ti l d ti n n [ Cosmogenic radionuclides in climate archives basically allow Although 10 Be and the short lived 7 Be underly almost identical production atio Cosmogenic radionuclides in climate archives basically allow processes their atmospheric behavior differs due to their different radioactive 10 tra reconstructing past production rates and related solar and processes, their atmospheric behavior differs due to their different radioactive 1.0 cen reconstructing past production rates and related solar and ti ti it H h t d t d th lifetimes ( 10 Be: 2x10 6 years; 7 Be: 77days). onc geomagnetic activity . However, one has to understand the lifetimes ( Be: 2x10 years; Be: 77days). co 10 climate driven hand over of the atmospheric production 16 Be 7 B 10 Be climatedriven handover of the atmospheric production 16 1.6 0.5 10 B 7 Be signal into the particular archives, modified by the 1.6 1.4 nits 7 Be Be, signal into the particular archives, modified by the ti h i l l Si th l 1.4 10 Be nits 1.2 un Be 1984 1988 1992 1996 2000 2004 2008 7 B respective geochemical cycles. Since these cycles are 12 Be un 10 1.2 ive completely different for 10 Be and 14 C an approach Fig 3: Records of 7 Be and 10 Be in boundary 1.2 ve 08 1.0 lati completely different for 10 Be and 14 C, an approach Fig. 3: Records of 7 Be and 10 Be in boundary 1.0 lati 0.8 re combining timeseries of both radionuclides seems layer air at Neumayer station compared to 08 rel 0.6 1.6 combining timeseries of both radionuclides seems ii layer air at Neumayer station compared to 0.8 210 Pb 1.4 nits promising. neutron monitor count rate reflecting the 0.6 Pb 12 un d ti i l ( l l) 24 10 1.2 ve production signal (solar cycle). 2.4 atio 08 1.0 lati o] 2.2 m ra 0.8 rel atio 20 om 0.6 200 y ra 210 18 2.0 ato 175 vity 7 Be/ 210 Pb Fig. 4: Mean sesonal cycles of 7 Be, 210 Pb 1.8 Be 150 activ Be/ Pb D d dh 10 B i i l ffi i l ll? Fig. 4: Mean sesonal cycles of Be, Pb d 10 B t N d th i ti 1.6 / 7 B 10 B/ 7 B 125 150 b [a Do we understand the 10 Be ice core signal sufficiently well? and 10 Be at Neumayer and their respective 14 Be 10 Be/ 7 Be 125 0 Pb Do we understand the Be ice core signal sufficiently well? ratios (for details see Elsässer et al (2011)) 1.4 10 B 100 / 210 ratios (for details see Elsässer et al. (2011)). 1.2 75 Be / J F MAMJ J ASONDJ F MAM J F M A M J J A S O N D J F M A M 7 B Consistency of 10 Be and 14 C fails on the millennial J F M A M J J A S O N D J F M A M Consistency of 10 Be and 14 C fails on the millennial Major findings concerning 10 Be timescale Major findings concerning Be timescale Stratosphere Troposphere Exchange (STE) causes a remarkable seasonal cycle Hence the yearly average snow concentration of Id d 14 C d 10 B b d i f i StratosphereTroposphereExchange (STE) causes a remarkable seasonal cycle. Hence, the yearly average snow concentration of Indeed, 14 Cand 10 Bebased reconstructions of past cosmogenic 10 Be is sensitive to the seasonality of accumulation rate production rates agree fairly well on the centennial timescale (not Be is sensitive to the seasonality of accumulation rate. production rates agree fairly well on the centennial timescale (not The production signal is clearly seen in air measurements but embedded in considerable meteorological noise. shown) but they systematically deviate on the millennial timescale The production signal is clearly seen in air measurements but embedded in considerable meteorological noise. Diff bt 7 B d 10 B ll f 10 B t lbl l f lid ti d f lbl i l ti dl shown) but they systematically deviate on the millennial timescale. h h d b hl l ( ) h l d Differences between 7 Be and 10 Be call for 10 Be measurements on a global scale for validation and use of global circulation models. This mismatch is pointed out by Köhler et al. (2006) who simulated atmospheric 14 C based on production rates obtained from 10 Be (see atmospheric 14 C based on production rates obtained from 10 Be (see Fig 1) Even though Köhler et al (2006) applied a carboncycle model Fig.1). Even though Köhler et al. (2006) applied a carboncycle model accounting for glacialinterglacial changes, they could not reproduce What may be learned from 1.8 accounting for glacial interglacial changes, they could not reproduce th t h i 14 C i ti What may be learned from IUP Heidelberg (2009/2010) the atmospheric 14 C variations. What may be learned from 1.6 model result (2001-2008) d ld ? Fi 5 22 N/ 7 B model result (2001 2008) PTB (2) (2001 2008) radionuclide ratios? Fig. 5: 22 Na/ 7 Be 1.4 o] PTB (2001-2008) radionuclide ratios? measured at PTB 70 atio measured at PTB 70 10 Be ice concentration 1.2 y ra Radionuclide ratios are ideal tools to study transport Braunschweig (BMU, 60 Be ice concentration GISP ice core vity Radionuclide ratios are ideal tools to study transport Braunschweig (BMU, 2011) d Vi 50 /g] GISP ice core 1.0 ctiv processes Primarily ratios of radionuclides which originate 2011) and Vienna 50 at/ 08 4 ac processes. Primarily, ratios of radionuclides which originate (IUP Heidelberg) 40 0 3 0.8 0 -4 from the same production process reduce meteorological (IUP Heidelberg) n 30 [10 Holocene 06 e [1 from the same production process reduce meteorological i I thi t t h St t h compared to on 30 Be 0.6 Be noise. In this cases, transport processes such as Stratospherecompared to li i dl io 20 10 B 04 / 7 Troposphere Exchange may be sensitively quantified Here preliminary model eg 10 Last Glacial Maximum 0.4 Na Fig 1: Simulated atmospheric Δ 14 C modified after Köhler TroposphereExchange may be sensitively quantified. Here, results re 10 02 22 N Fig. 1: Simulated atmospheric Δ C modified after Köhler l [2006] measurements of 22 Na (cosmogenic; radioact. lifetime: 3.8 results. r -44 low 0.2 et al. [2006]. measurements of Na (cosmogenic; radioact. lifetime: 3.8 ) i ht b tit t i 10 B t a δ 18 O 42 low 00 years) might substitute expensive 10 Be measurements. os GISP ice core -42 0.0 Ro GISP ice core -40 l] temperature O N D J F M A M J J A S S ti th d ti i lf R 38 mil & Separating the production signal from e -38 er accumulation li t d l ti te -36 [pe accumulation climate modulations n 34 I i d t di f th t ith t climate modulations o -34 high Improving our understanding of the past with measurements 10 Be is sensitive to aerosol transport and deposition. Fig. 2 Mo -32 high Improving our understanding of the past with measurements Be is sensitive to aerosol transport and deposition. Fig. 2 l l ill h li dl i f 10 B i M 40000 35000 30000 25000 20000 15000 10000 5000 0 clearly illustrates the climate modulation of a 10 Be ice core m 40000 35000 30000 25000 20000 15000 10000 5000 0 age [BP] of present day cosmogenic radionuclides signal The challenge to disentagle the production signal om age [BP] of presentday cosmogenic radionuclides signal. The challenge to disentagle the production signal ro data from Finkel and Nishiizumi, 1997; Grootes et al., 1993 of present day cosmogenic radionuclides from climate modulations is not sufficiently solved yet fr Fi 2 10 B t ti i th GISP i t td t from climate modulations is not sufficiently solved, yet. ef Fig. 2: 10 Be concentration in the GISP ice core contrasted to Understanding 10 Be transport and deposition processes Atmospheric monitoring as well as modelling attempts help to study the sensitivtiy of ice core 10 Be to climate modulations (i.e. re the respective δ 18 O record which basically indicates variations Understanding Be transport and deposition processes i i di bl f i li i l ! Atmospheric monitoring as well as modelling attempts help to study the sensitivtiy of ice core Be to climate modulations (i.e. h i t t d d iti ) H dl h t b ti d t t Yt th l f t f or the respective δ 18 O record which basically indicates variations is indispensable for its application as a paleo proxy! changes in transport and deposition). However, models have to be tied to measurements. Yet, there are only a few measurements of co in temperature and associated accumulation rate changes 10 Be deposition and air concentration available which are mainly restricted to polar areas A global aerosol sampling network might ec in temperature and associated accumulation rate changes. 10 Be deposition and airconcentration available which are mainly restricted to polar areas. A global aerosol sampling network might ce help to answer the following questions with respect to the global 10 Be cycle: ic help to answer the following questions with respect to the global Be cycle: e Is there a latitudinal dependence of atmospheric 10 Be concentration and of the 10 Be/ 7 Be ratio on the global scale? ne Is there a latitudinal dependence of atmospheric 10 Be concentration and of the 10 Be/ 7 Be ratio on the global scale? References (1) Bartol Research Institute, 2010. http://neutronm.bartol.udel.edu/~pyle/bri_table.html () d f l h d k h h in (5) Grootes et al., 1993. Comparison of oxygen isotope records from the GISP2 and GRIP l d What is the shape of the expected seasonal cycle of atmospheric 10 Be (or 22 Na) in midlatitudes or tropics? References: (2) BMU, 2011. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, U lt di kti ität d St hl bl t Jh b i ht 2001 2008 p Greenland ice cores. Nature, 366, 552554. (6) Köhl t l 2006 A dl b di t t ti fl f h i th b What is the shape of the expected seasonal cycle of atmospheric Be (or Na) in mid latitudes or tropics? h h lbld b f 10 d ? Umweltradioaktivität und Strahlenbelastung: Jahresberichte 20012008. (3) El ä C l 2011 C i 25 l d lA i P Al (6) Köhler et al. 2006. A modelbased interpretation of lowfrequency changes in the carbon l d i h l 120000 di i li i f h i f What is the global distribution of 10 Be deposition? (3) Elsässer, C. et al. , 2011. Continuous 25years aerosol records at coastal Antarctica: Part 2V i bilit f th di lid 7B 10B d 210Pb T ll 63B (i ) A cycle during the last 120000 years and ist implications for the reconstruction of t h i Δ 14 C G h G h G t 7(11) 2. Variability of the radionuclides 7Be, 10Be and 210Pb. Tellus 63B (in press). (4) Fi k l d Ni hii i 1997 B lli 10 t ti i th G l dI Sh t atmospheric Δ 14 C. Geochem. Geophys. Geosyst., 7(11). N t it f th B t lR hI tit t t db NSF t ATM (4) Finkel and Nishiizumi, 1997. Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3 40 ka Journ Geophys Res 102(C12) Neutron monitors of the Bartol Research Institute are supported by NSF grant ATM0527878 Project 2 ice core from 340 ka. Journ. Geophys. Res., 102(C12). 0527878.

Ob tiObservationsObservationsObservations ofofoff ......alize ma 1.0 The IUP Heidelberg time series orm 0 e [n 0.9 Th IUP Hidlb i ti l 7B 10B d 210Pb i 27 ate neutron count rate (1)

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ob tiObservationsObservationsObservations ofofoff ......alize ma 1.0 The IUP Heidelberg time series orm 0 e [n 0.9 Th IUP Hidlb i ti l 7B 10B d 210Pb i 27 ate neutron count rate (1)

Ob ti f t h i di lid l Th b fit f l b lObservations of atmospheric radionuclide cycles: The benefit for globalObservations of atmospheric radionuclide cycles: The benefit for globalObservations of atmospheric radionuclide cycles: The benefit for global p y gpaleoclimate st diespaleoclimate studiespaleoclimate studiespaleoclimate studies 

Christoph Elsässer (1) Dietmar Wagenbach (1) Rebecca Bremen (1) Ingeborg Levin (1) Rolf Weller (2) Clemens Schlosser (3) and Matthias Auer (4)Christoph Elsässer (1), Dietmar Wagenbach (1), Rebecca Bremen (1), Ingeborg Levin (1), Rolf Weller (2), Clemens Schlosser (3) and Matthias Auer (4)Christoph Elsässer (1), Dietmar Wagenbach (1), Rebecca Bremen (1), Ingeborg Levin (1), Rolf Weller (2), Clemens Schlosser (3) and Matthias Auer (4)(1) Institut für Umweltphysik, University of Heidelberg, Germany ([email protected]‐heidelberg.de), (2) Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, (3)  Bundesamt für Strahlenschutz, Freiburg, Germany, (1) Institut für Umweltphysik, University of Heidelberg, Germany ([email protected] heidelberg.de), (2) Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, (3)  Bundesamt für Strahlenschutz, Freiburg, Germany, (4) CTBTO P t C i i Vi I t ti l C t Vi A t i(4) CTBTO Preparatory Commission, Vienna International Center, Vienna, Austria 

h b fi f h i i i i di fThe benefit from atmospheric monitoring: Findings fromR di lid i li hi The benefit from atmospheric monitoring: Findings from Radionuclides in climate archives: p g gRadionuclides in climate archives: 

N St ti (A t ti ) ]Neumayer Station (Antarctica)A tool for re onstr tin the past 1.1ed]Neumayer Station (Antarctica)A tool for reconstructing the past 1.1

aliz

ey ( )A tool for reconstructing the past1.0m

a

The IUP Heidelberg time series0

orm

The IUP Heidelberg time series 0.9e [n

Th IUP H id lb i ti l 7B 10B d 210Pb i 27 ate neutron count rate(1)

The IUP Heidelberg quasi‐continuously measures 7Be, 10Be and 210Pb since 27 0.8t ra neutron count rate g q y

years at Neumayer Station in coastal Antarctica (see Elsässer et al (2011)) oun

d]years at Neumayer Station in coastal Antarctica (see Elsässer et al. (2011)). co zed

Neumayer Station (Antarctica)

on

alizNeumayer Station (Antarctica)

Why measure 7Be and 10Be? utro 1.5 rmPhoto: O. Eisen IUP/AWI Why measure 7Be and 10Be? ne

u

no

Alth h 10B d th h t li d 7B d l l t id ti l d ti

n n [

Cosmogenic radionuclides in climate archives basically allow Although 10Be and the short lived 7Be underly almost identical production

atioCosmogenic radionuclides in climate archives basically allow

processes their atmospheric behavior differs due to their different radioactive 1 0 tra

reconstructing past production rates and related solar and processes, their atmospheric behavior differs due to their different radioactive 1.0

cenreconstructing past production rates and related solar and

ti ti it H h t d t d th lifetimes (10Be: 2x106 years; 7Be: 77days). onc

geomagnetic activity. However, one has to understand the lifetimes ( Be: 2x10 years; Be: 77days). co

10climate driven hand over of the atmospheric production

1 6

Be

7B10Beclimate‐driven hand‐over of the atmospheric production

1 61.6 0.5 10

B7Besignal into the particular archives, modified by the

1.61.4nits 7Be Be,

signal into the particular archives, modified by theti h i l l Si th l

1.410Be nits1.2 un Be

1984 1988 1992 1996 2000 2004 2008 7 B

respective geochemical cycles. Since these cycles are 1 2Be un1 0

1.2

ive p g y y

completely different for 10Be and 14C an approach Fig 3: Records of 7Be and 10Be in boundary1.2

ve

0 81.0

lati

completely different for 10Be and 14C, an approach Fig. 3: Records of 7Be and 10Be in boundary1.0 lati0.8 re

combining timeseries of both radionuclides seems layer air at Neumayer station compared to0 8

rel

0.6 1.6combining timeseries of both radionuclides seemsi i

layer air at Neumayer station compared to0.8

210Pb 1.4 nits

promising. neutron monitor count rate reflecting the 0.6Pb1 2 unp g neutron monitor count rate reflecting the

d ti i l ( l l )2 41 01.2

ve

production signal (solar cycle).2.4

atio

0 81.0

lati

o] 2.2

m ra

0.8 re

l

atio

2 0 om0.6

200y ra

2101 82.0

ato

175vity 7Be/210Pb Fig. 4: Mean sesonal cycles of 7Be, 210Pb1.8 B

e 150

5

activ Be/ Pb

D d d h 10B i i l ffi i l ll?Fig. 4: Mean sesonal cycles of Be, Pbd 10B t N d th i ti

1.6 / 7 B

10B /7B125150

b [a

Do we understand the 10Be ice core signal sufficiently well? and 10Be at Neumayer and their respective1 4 Be 10Be/7Be125

0 PbDo we understand the  Be ice core signal sufficiently well? ratios (for details see Elsässer et al (2011))

1.4

10B100/ 210g y ratios (for details see Elsässer et al. (2011)).1.275Be

/

J F M A M J J A S O N D J F M A MJ F M A M J J A S O N D J F M A M 7 B

Consistency of 10Be and 14C fails on the millennial J F M A M J J A S O N D J F M A MJ J J S O J

Consistency of 10Be and 14C fails on the millennialMajor findings concerning 10Betimescale Major findings concerning Betimescale• Stratosphere Troposphere Exchange (STE) causes a remarkable seasonal cycle Hence the yearly average snow concentration ofI d d 14C d 10B b d i f i • Stratosphere‐Troposphere‐Exchange (STE) causes a remarkable seasonal cycle. Hence, the yearly average snow concentration ofIndeed, 14C‐ and 10Be‐based reconstructions of past cosmogenic

10Be is sensitive to the seasonality of accumulation rate, p g

production rates agree fairly well on the centennial timescale (not Be is sensitive to the seasonality of accumulation rate.production rates agree fairly well on the centennial timescale (not• The production signal is clearly seen in air measurements but embedded in considerable meteorological noise.shown) – but they systematically deviate on the millennial timescale The production signal is clearly seen in air measurements but embedded in considerable meteorological noise.Diff b t 7B d 10B ll f 10B t l b l l f lid ti d f l b l i l ti d l

shown) but they systematically deviate on the millennial timescale.h h d b hl l ( ) h l d • Differences between 7Be and 10Be call for 10Be measurements on a global scale for validation and use of global circulation models.This mismatch is pointed out by Köhler et al. (2006) who simulatedp y ( )atmospheric 14C based on production rates obtained from 10Be (seeatmospheric 14C based on production rates obtained from 10Be (seeFig 1) Even though Köhler et al (2006) applied a carbon‐cycle model Fig.1). Even though Köhler et al. (2006) applied a carbon‐cycle model

accounting for glacial‐interglacial changes, they could not reproduce What may be learned from 1.8accounting for glacial interglacial changes, they could not reproduceth t h i 14C i ti What may be learned from IUP Heidelberg (2009/2010) the atmospheric 14C variations. What may be learned from  1.6 model result (2001-2008)

d l d ? Fi 5 22N /7Bmodel result (2001 2008)

PTB (2) (2001 2008)radionuclide ratios? Fig. 5: 22Na/7Be 1.4o]

PTB ( ) (2001-2008)radionuclide ratios? measured at PTB70 atio

measured at PTB7010Be ice concentration 1.2y

ra

Radionuclide ratios are ideal tools to study transport Braunschweig (BMU,60 Be ice concentrationGISP ice core vi

ty

Radionuclide ratios are ideal tools to study transport Braunschweig (BMU,2011) d Vi50/g

] GISP ice core 1.0ctiv

processes Primarily ratios of radionuclides which originate 2011) and Vienna50

at/

0 84 ac

processes. Primarily, ratios of radionuclides which originate )(IUP Heidelberg)4003 0.80-4

from the same production process reduce meteorological (IUP Heidelberg)n30

[10

Holocene0 6e

[1from the same production process reduce meteorologicali I thi t t h St t h compared toon

30

Be 0.6Be

noise. In this cases, transport processes such as Stratosphere‐ compared toli i d l

io2010B

0 4

/ 7

Troposphere Exchange may be sensitively quantified Here preliminary modeleg10 Last Glacial Maximum 0.4Na

Fig 1: Simulated atmospheric Δ14C modified after Köhler Troposphere‐Exchange may be sensitively quantified. Here, p yresultsre

100 2

22N

Fig. 1: Simulated atmospheric Δ C modified after Köhlerl [2006] measurements of 22Na (cosmogenic; radioact. lifetime: 3.8 results.r-44low 0.2

et al. [2006]. measurements of Na (cosmogenic; radioact. lifetime: 3.8) i ht b tit t i 10B ta  δ18O

42low

0 0[ ]

years) might substitute expensive 10Be measurements.osGISP ice core-42 0.0y ) g p

Ro

GISP ice core-40 l] temperature O N D J F M A M J J A S

S ti th d ti i l f R38 milp

& Separating the production signal from  e -38 er &

accumulation p g p gli t d l ti

te-36 [peaccumulation

climate modulations n34

I i d t di f th t ith tclimate modulations o-34

high Improving our understanding of the past with measurements10Be is sensitive to aerosol transport and deposition. Fig. 2 Mo

-32high Improving our understanding of the past with measurements Be is sensitive to aerosol transport and deposition. Fig. 2

l l ill h li d l i f 10B i

M40000 35000 30000 25000 20000 15000 10000 5000 0 p g g pclearly illustrates the climate modulation of a 10Be ice core m

 40000 35000 30000 25000 20000 15000 10000 5000 0age [BP]

of present day cosmogenic radionuclidesy

signal The challenge to disentagle the production signal om

age [BP]

of present‐day cosmogenic radionuclidessignal. The challenge to disentagle the production signal rodata from Finkel and Nishiizumi, 1997; Grootes et al., 1993 of present day cosmogenic radionuclides from climate modulations is not sufficiently solved yet fr

Fi 2 10B t ti i th GISP i t t d tfrom climate modulations is not sufficiently solved, yet.

e f

Fig. 2: 10Be concentration in the GISP ice core contrasted to Understanding 10Be transport and deposition processes Atmospheric monitoring as well as modelling attempts help to study the sensitivtiy of ice core 10Be to climate modulations (i.e.regthe respective δ18O record which basically indicates variations

Understanding Be transport and deposition processesi i di bl f i li i l !

Atmospheric monitoring as well as modelling attempts help to study the sensitivtiy of ice core Be to climate modulations (i.e.h i t t d d iti ) H d l h t b ti d t t Y t th l f t forthe respective δ18O record which basically indicates variations is indispensable for its application as a paleo proxy! changes in transport and deposition). However, models have to be tied to measurements. Yet, there are only a few measurements ofco

in temperature and associated accumulation rate changesp pp p p y g p p y

10Be deposition and air concentration available which are mainly restricted to polar areas A global aerosol sampling network mighte c

in temperature and associated accumulation rate changes. 10Be deposition and air‐concentration available which are mainly restricted to polar areas. A global aerosol sampling network mightce help to answer the following questions with respect to the global 10Be cycle:ic help to answer the following questions with respect to the global Be cycle:

Is there a latitudinal dependence of atmospheric 10Be concentration and of the 10Be/7Be ratio on the global scale?ne Is there a latitudinal dependence of atmospheric 10Be concentration and of the 10Be/7Be ratio on the global scale?References

(1) Bartol Research Institute, 2010. http://neutronm.bartol.udel.edu/~pyle/bri_table.html( ) d f l h d k h h

in(5)  Grootes et al., 1993. Comparison of oxygen isotope records from the GISP2 and GRIPl d What is the shape of the expected seasonal cycle of atmospheric 10Be (or 22Na) in mid‐latitudes or tropics?References: (2) BMU, 2011. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, 

U lt di kti ität d St hl b l t J h b i ht 2001 2008

pGreenland ice cores. Nature, 366, 552‐554. (6) Köhl t l 2006 A d l b d i t t ti f l f h i th b What is the shape of the expected seasonal cycle of atmospheric  Be (or  Na) in mid latitudes or tropics?

h h l b l d b f 10 d ?Umweltradioaktivität und Strahlenbelastung: Jahresberichte 2001‐2008.

(3) El ä C l 2011 C i 25 l d l A i P Al(6)  Köhler et al. 2006. A model‐based interpretation of low‐frequency changes in the carbon  

l d i h l 120000 d i i li i f h i f What is the global distribution of 10Be deposition?(3)   Elsässer, C. et al. , 2011. Continuous 25‐years aerosol records at coastal Antarctica: Part 2 V i bilit f th di lid 7B 10B d 210Pb T ll 63B (i )

Acycle during the last 120000 years and ist implications for the reconstruction of t h i Δ14C G h G h G t 7(11)

g p2. Variability of the radionuclides 7Be, 10Be and 210Pb. Tellus 63B (in press).

(4) Fi k l d Ni hii i 1997 B lli 10 t ti i th G l d I Sh tatmospheric Δ14C . Geochem. Geophys. Geosyst., 7(11).

N t it f th B t l R h I tit t t d b NSF t ATM(4)   Finkel and Nishiizumi, 1997. Beryllium 10 concentrations in the Greenland Ice Sheet  Project 2 ice core from 3 40 ka Journ Geophys Res 102(C12)

Neutron monitors of the Bartol Research Institute are supported by NSF grant ATM‐0527878Project 2 ice core from 3‐40 ka. Journ. Geophys. Res., 102(C12). 0527878.