96
1 Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano [email protected]

Nuclear Magnetic Resonance (NMR) - ISU Sites · 2020. 5. 6. · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano [email protected]. 2 Jan 26 Introduction of NMR Jan

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    Nuclear Magnetic Resonance (NMR)

    Yuji Furukawa

    A121 Zaffarano

    [email protected]

  • 2

    Jan 26 Introduction of NMRJan 28 Basics of NMR IJan 30 Basics of NMR IIFeb. 2 Example I (low-D spin system)Feb. 4 Example II (superconductors)Feb. 6 Introduction of ESR

    Principle of NMR ・・・・・ a little bit complicatedNMR experiments ・・・・・ a little bit complicatedData analysis of NMR results ・・・・・・ a little bit complicated

    But, NMR measurements give us very important information which can not be obtained by other experimental techniques

  • 3

    H i s t o r y

    1936 Prof. Gorter, first attempt to detect nuclear magnetic spin(But he did not succeed,

    1H in K[Al(SO4)2]12H2O and 19F in LiF)) 1938 Prof. Rabi, First detection of nuclear magnetic spin

    (1944 Nobel prize)1942 Prof. Gorter, First use of terminology of “NMR”

    (Gorter, 1967, Fritz London Prize) 1946 Prof. Purcell, Torrey, Pound, detected signals in Paraffin.

    Prof Bloch, Hansen, Packard, detected signals in water (Purcell, Bloch, 1952 Nobel Prize)

    1950 Prof. Haln, Discovery of spin echo.-> Spin echo NMR spectroscopy

    Remarkable development of electronics, technology and so on-> Striking progress of NMR technique!!

  • 4

    Nuclear property

    IIμn hng γμ == NNNuclear magnetic moment c.f. Proton (three quarks)

    I=1/2 γN/2π=42.577 MHz/T

    gN:g-factor (dimension less) γN:nuclear gyromagnetic ratio (rad/sec/gauss)

    (erg/gauss)

    c.f. electron spin momentμe=-gμBS

    241005.52

    −×==cm

    e

    pN

    hμ201092.0

    2−×==

    cme

    eB

    hμ(erg/gauss)

    |μB/μN|~1800

  • 5

    Nuclear magnetism

    IIμn hng γμ == NNNuclear magnetic moment

    zzN HIgHU μμ −=⋅−=

    ( )( )xBNgI

    TkU

    TkU

    IgM NI

    II B

    I

    II BzN

    Z

    z μμ

    =

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛ −

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛ −−

    =

    −=

    −=

    exp

    exp

    ( )TkIINg

    HM

    B

    NN 3

    122 +≈=

    μχ

    Much less than χe (electron spin)

    Magnetism of material is mainly dominated by χe!!

    Nuclear magnetism

    Curie law

  • 6

    (h:Planck’s constant、ν:frequency、γN:nuclear gyromagnetic ratio、H:magnetic field)

    NMR (Nuclear Magnetic Resonance)

    Nucleus has magnetic moment (nuclear spin)nucleus is very small magnet

    HI・hNZeemanH γ−=Zeeman interaction

    Hhh Nγω =

    Magnetic resonance can be induced by application of radio wave whose energy is equal to the energy

    between nuclear levels

  • 7

    Application of NMR

    NMR is utilized widely not only Physics and/or chemistry but also medical diagnostics (MRI) and so on.

    ・ PhysicsCondensed matter physics、Magnet, Superconductor、and so on

    ・Chemical Analysis and/or identification of material

    ・BiophysicsAnalysis of Protein structure

    ・MedicalMRI (Magnetic Resonance Image)

    Brain tomograph

    For example;

  • 8

    NMR in condensed matter physics

    ])))((3()(38[( 353 r

    Ir

    rSrIr

    SIrgH BNnell

    h・・・・

    ・ +−−=− SIπδμγ

    Fermi contact dipole interaction orbital interaction

    NMR measurements investigation of static and dynamical properties of hyperfine field (electron spins)

    One of the important experimental method for the study on magnetic and electronic properties of the materials from the microscopic point of view. (nucleus as a probe)

    Hyperfine interaction between nuclear spin and electron spins

    NMR spectrum

    ⇒ static properties of spinsNMR relaxation time (T1, T2)⇒dynamical properties

  • 9

    NMR spectrum

    NMR spectrum measurements (static properties of hyperfine field)

    ① magnetic systemspin structure, spin moments and so on

    ② metal local density of state at Fermi level

    HH0=ω/γ

    ⊿H

    NMR shift: K=ΔH/H

    ΔH:contribution from electronH

    H0

    ΔH

    H=H0+ΔH

  • 10

    Nuclear spin-lattice relaxation time(T1)

    Nuclear spin-lattice relaxation time

    Dynamical properties of hyperfine field ( )tHI hfNrr

    h ⋅=′ γ-H

    ( )yx

    yx iHHHiIII

    tHItHI

    hfhfhf

    hfhfN

    ,

    )()(2

    -

    ±=±=

    +

    ±±

    +−−+hγ

    Iz=1/2

    -1/2

    ( ){ } ( )

    ( ){ } ( ) ( )iii SAHdttitSSAdttitHH

    Trr

    ==

    =

    ∫∞

    ∞−

    +−

    ∞−

    +−

    hfN

    2N

    2

    Nhfhf

    2N

    1

    exp,2

    exp,2

    1

    ωγ

    ωγ

    Ex. Metal ⇒ T1T=const. (Korringa relation)Superconductor ⇒ T-dependence of T1 provides information of

    symmetry of SC gapfull gap ⇒ 1/T1~exp(-Δ/kbT)anisotropic gap ⇒ 1/T1~Tα

  • 11

    Characteristics of NMR

    1) Local properties information at each nuclear site

    (e.g., local density of states, spin state for each site…)

    microscopic measurements (NMR, μSR,ESR, Mossbauer ND, )macroscopic measurements (Magnetization, specific heat,

    resistively…)

    2) Low energy excitationinformation of low energy (electron) spin excitation(energy scale in different experiments

    NMR, μSR : MHz, Mossbauer:γ-ray, ND: ~meV)

    3) Laboratory size NMR spectrometer can be set up in lab space.(you can modify the spectrometer as you like!)

    μSR measurements -> need to go facility(in principle, you can NOT modify the equipment)

    For examplef=100MHz

    ⇒5mK

  • 12

    NMR spectroscopy in condensed matter physics

    NMR spectroscopyContinuous wave (CW) NMRPulse NMR (FT (Fourier transform) –NMR) ←mainstream

    ・Spectrometer frequency range 1~500MHz

    ・Magnetic field up to 2T ; electron magnetup to 9T ; superconducting magnet (Nb3Ti) up to 23T ; superconducting magnet (Nb3Sn)up to 35T ; Hybrid magnet more than 40 T ; pulse magnet

    Temperature down to 77K ; liquid N2 (less than $1/liter)down to 1.5K ; liquid He (boiling T ~4.3K) (more than $10/liter)down to 0.3K ; 3He cryostat ($100K)down to 0.01K ; 3He-4He dilution refrigerator ($300K)

    NMR lab at ISU (at present, just a couple of months after I moved in)

    f=1-500MHz, H=9T, T=1.5KPlan to purchase DR refrigerator

    One 3He cryostat: not available now

  • 13

    NMR laboratory in the world

    There are many NMR labs in the world !

    Tallahassee (USA), Grenoble (France), Tohoku,(Japan), Tsukuba (Japan )…

    NMR spectroscopy with Hybrid magnet (~35T)

    NMR spectrometer with DR refrigerator

  • 14

    NMR laboratory in the world

    Pulse NMR spectroscopy with pulse magnet

    Japan project of “100T spin science”Germany Dresden

    Exciting new challenge!

  • 15

    Magnetic resonance

    H0 = 0 H0 ≠ 0

    m = -1/2

    m = +1/2

    HI・hNZeemanH γ−= In the case of I=1/2 and H=(0, 0, H0),Eigen energies for two quantum levels are given

    02/1 21 HE Nhγ−= 02/1 2

    1 HE Nhγ=−

    0HE nhγ=ΔHΝΝ = γω

    To make a resonance, one needs time dependent perturbation and non-zero matrix element

    )cos()(' 1 tIHtH NxN ωγ h= 2−+ +=

    III x

    0)('1 >≠±< mtHmMagnetic transition

    H0

    alternating current ⇒ alternating field

    Using a coil perpendicular to H0, you can apply an alternating field which induces magnetic transition. But how can you detect the signal (magnetic transition)Need to think about motion of nuclear magnetic moment

  • 16

    Motion of magnetic moment

    Classical treatment

    HNdt

    Id×== μh H

    dtd

    Nγμμ

    ×=μ

    H

    Larmor precessionω=γNH

    (Time variation of angular momentum is equal to torque)

    Rotating coordinate system (Ω)

    Ω

    )( Ω+×= Ht

    γμδδμ

    effHγμ ×=

    (With a simple assumption H=H0k)

    If Ω=ーγH0 then Heff=0 ->δμ/δt = 0

    No change in time ! (since we are looking at spin moment on rotating frame with same frequency of γH0)

    If H=(0,0,H0), then μx=Asin(ωt+a), μy=Acos(ωt+a), μz=const.

  • 17

    Effects of alternating field

    Hx=Hx0 cosωt i

    x

    y

    Hx

    Hx=HR+HLHR=H1(i cosωt + j sinωt )HL=H1(i cosωt - j sinωt )

    H1=H0/2

    )( 10 HHdtd

    +×= γμμ ⎥⎦

    ⎤⎢⎣

    ⎡++×= iHkH

    t 10)(

    γωγμ

    δδμ

    Laboratory frame Coordinate system rotating about z-axis

    When ω=-γH0, you have resonance and have only H1 magnetic field along to x-axis

    This means spin rotates about x-axis with frequency γH1

    x

    y

    z

    spin

    H0

    without H1x

    y

    z

    with H1 (rotating frame)

    H1

    You can control the direction of spins!

    Manipulation of spin

  • 18

    Motion of magnetic moment

  • 19

    Motion of magnetic moment

    Larmor precession

  • 20

    Motion of magnetic moment

  • 21

    Motion of magnetic moment

  • 22

    Motion of magnetic moment

  • 23

    Motion of magnetic moment

  • 24

    Motion of magnetic moment

  • 25

    Effects of alternating field

    x

    y

    z

    H1

    x

    y

    zSpin rotes in xy-plane in laboratory frame (spin rotates in the coil)

    ⇒ this induces voltage

    You can detect the voltage -> observation of signal from nuclear spin!

    Typically the induced voltage is ~10-6 V We need to amplify the voltage to observe easily (with amplifier)

    x

    y

    z

    H1

    x

    y

    z

    H1

    t=0 t=π/2γH1 (π/2 pulse) t=π/γH1 (π pulse)

    If you stop to give H1 just after t (π/2 pulse)

  • 26

    FID signal

  • 27

    Spin echo method

    τ τa b c

    ed

    π/2 pulse πpulse Spin echo signal

    Two pulse sequence

    ω+⊿ω

    ω-⊿ω

  • 28

    Quantum treatment of Spin echo

  • 29

    Quantum treatment of Spin echo

  • 30

    Absorption energy and spin lattice relaxation T1

  • 31

    Nuclear spin lattice relaxation T1

  • 32

    H0 = 0 H0 ≠ 0

    Iz= -1/2

    Iz = 1/2

    Nuclear spin lattice relaxation T1

    Boltzmanndistribution

    thermal equilibrium state

    Resonance(absorption)

    nonequilibriumstate

    HΝΝ = γω

    Relaxation(energy emission to lattice

    (electron system)

    -> thermal equilibrium state

    T1 is a time constant (from nonequilibrium to equilibrium states)

  • 33

    Nuclear spin lattice relaxation T1

    Relaxation is induced by fluctuations of hyperfine field with NMR frequency

  • 34

    How to measure nuclear spin lattice relaxation T1

    xy

    z

    H1

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Spin

    ech

    o in

    tens

    aity

    time

    t-dependence of signal intensity I(t)=I0(1-exp(-t/T1))

    T1 can be estimated

    x

    y

    z

    H1

    Saturation

    2/π

    π

    No mag. in xy-planeI(0)=0

    When t~0t= ∞

    x

    y

    z

    2/π

    πI(t)=I0

    Signal intensity is proportional to xy-component of nuclear magnetization

  • 35

    block diagram (NMR spectrometer)

    Receiver AmpPSD LPF

    [ ]

    [ ]βαωω

    βαωω

    βωαω

    ++++

    −+−=

    ++

    t

    t

    tt

    )(cos21

    )(cos21

    )sin()sin(

    21

    21

    21

    PSDMultiplication of Input frequencies-> out put

    frequency difference and sum

  • 36

    NMR spectrum

    QH

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂

    ∂∂−∂∂≡

    ∂∂

    ⎥⎦⎤

    ⎢⎣⎡ ++−

    −= −+

    22

    2222

    2

    2

    22222

    )(21)3(

    )12(4

    zVyVxV

    zVq

    IIIIIIqQe

    z

    η

    η

           

    Zeeman interaction(interaction between magnetic moment and magnetic field)

    Electric quadrupole interaction (I>1/2)( interaction between electric field gradient and nuclear quadrupole moment)

    + + ++

    Nuclear is NOT spherical but ellipsoidal body (I>1/2)

    [ ]

    )12(4

    )1(32

    2

    −≡

    +−=

    IIqQeA

    IImAEm  

    ZnZeeman IHHH 0- hγμ −=⋅=

    For η=0

    η: assymmetry parameter

  • 37

    NMR spectrum

    hA120 +ω

    hA60 +ω

    hA60 −ωhA120 −ω

    m=±5/2

    m=±1/2

    m=±3/2

    12A

    6Aeq=0

    eq≠0

    [ ])I(I

    qQeA)I(ImAEm 12413

    22

    −≡+−=   

    1. Hquadrupole≠0, H=0 2. Hzeeman >> Hquadrupole

    ω6A 12A

    Hq=0I=5/2

    NQR (nuclear quadrupole resonance)ω

    5/2

    3/2

    1/2

    -1/2

    -3/2

    -5/2

  • 38

    NMR spectrum in powder sample

    -3/2

    3/2

    -1/2

    1/2

    ℏω3/2→1/2

    ℏω-1/2→-3/2

    ℏω1/2→-1/2

    ( )( ) ( )h12831312

    22

    n1 −−θ−+ω=ω −→ II

    qQecosmmm

    powder pattern (I=3/2)

    ωnωn-2A1 ωn-A1 ωn+A1 ωn+2A1

    A1=1/4e2qQ/ℏ

    ωn-16A2/9ℏ ωn+A2/ℏωn

    2nd oeder splitting of central transition for powder pattern spectruim

    ( )( )

    ( )( )

    0

    22

    22

    222

    01/21/2

    12432

    649

    cos-19cos-1

    ω

    θθωω

    h

    h

    qQeII

    IA

    A

    −+

    =

    +=−→

    θ=0

    θ=90

    Hz>>HQ (I=3/2)

    Center line is affected in 2nd order perturbation

  • 39

    NMR spectrum in powder sample

    60 65 70 75 80

    Spi

    n ec

    ho in

    tens

    ity

    H ( T )

    93Nb-NMR in NbO

    93Nb-NMR in NbO (field sweep spectrum)

    Textbook like typical powder pattern spectrum

    I=9/2

    ωn-16A2/9ℏ ωn+A2/ℏωn

    Central transition lineOpposite?!

  • 40

    NMR spectrum

    ω

    signal (A)

    H

    signal (B)

    (1) ω-sweep ( H=constant;H0)

    NMRspectrumMagnetic field sweep and frequency sweep

    H0

    ωωB ωA

    (2) H-sweep (ω=constant; ω0)ω

    signal (A)

    H

    signal (B)

    ωA

    ωB

    ω0

    HA HB

    HHA HB

    Opposite!!Need to pay attentions !!

  • 41

    Hyperfine field at nuclear site

    These give additional field (Hhf) at nuclear site-> shift in spectrum (NMR shift)

    ωω0 ω0+⊿ω

    Fermi contact

    Dipole interaction

    orbital interaction

    S-electron2)0(3

    8 ψγπ sheFH −=

    ( )ψψγ 53

    * 3rr

    H ediprrss ⋅

    −= h

    ψψγ 3* 1

    rH eorb lh=−

    Core-poratizationinteraction ( )∑ ↓↑ −−=

    iii

    ecpH

    22 )0()0(3

    8 ψψγπ sh

    ⊿ω=γHhf

    In the material, nuclear experiences additional field due to hyperfine interaction

    3d system~-100kOe/μB

    μS

    Hint

  • 42

    Relation between NMR shift and magnetic susceptibility

    H=Hz+Hhf

    Hamiltonian

    Hz=Hzeeman (H=H0)

    Hhf=Hdipole+HFermi+Hcore-polarization+…..=AI・S A: hyperfine coupling constant

    )( hf0 HHIH n +−= hγ ASH =hfNMR shift originates from thermal average value of Hhf

    =ASince is expressed by (thermal average value of electron magnetization),

    =A~A (=AχH0)

    Knight shift is given by K = Hhf/H = AχH/H ~Aχ

    K is proportional to χ !!

    increases with increasing H -> high accuracy

    (hyperfine field)

  • 43

    Example

    0 50 100 150 200 250 3000.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    K (

    %)

    T (K)

    Spin dimer system VO(HPO4)0.5H2O

    V4+ (3d1: s=1/2)

    0 50 100 150 200 250 3000.0

    2.0x10-6

    4.0x10-6

    6.0x10-6

    8.0x10-6

    1.0x10-5

    1.2x10-5

    1.4x10-5

    1.6x10-5

    1.8x10-5

    mag

    netic

    sus

    cept

    ibili

    ty (

    emu/

    g)

    T ( K )

    AF interaction Magnetic susceptibility NMR shift (31P-NMR)

    χtotal(T)=χspin(T)+χorb+・・・+χimpurity Ktotal(T)=Kspin(T)+Korb

    What is ground state ? Spin singlet ? or magnetic?

    From the NMR measurements, increase of χ at low temperature is concluded to be due to magnetic impurities

    NMR can see only intrinsic behavior (exclude the impurity effects!!)

    Y. Furukawa et al., J. Phys. Soc. Japan 65 (1996) 2393

  • 44

    Example of K-χ plot

    K-χplot K = Aχ/NμB,

    0.0 5.0x10-6 1.0x10-5 1.5x10-50.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    K (

    %)

    χ (emu/g)

    Good linear relationK is proportional to χ

    Hyperfine coupling constant can be estimated from the slope

    BNA

    ddK

    μχ=

    Ahf =3.3 kOe/μB

    This is a value at P site per one Bohr magneton of V4+ spin(Vanadium spin produces the hyperfine field at P-site)

    The origin of this hyperfine field is“transferred hyperfine field”

  • 45

    NMR in simple metal

    1) NMR shift (Knight shift)K=(A/μB)χpaulisince χpauli is expressed by (1/2)g2μB2NEf2

    2)Nuclear spin lattice relaxation time T1Relaxation mechanism

    scattering of free electron from ┃k,↑> to ┃k’,↓> nuclear spin can flop from ↓ ⇒ ↑ state

    Pauli paramagnetism χpauliNo electron correlation

    Simple metal (like Cu and Al and so on)

    ( ) ( ) ( ){ } ( )↓′↑′

    −+ −↓′−↑↑↓↓↑= ∑ kkkk

    N EEkfkfsIATδγπ 11

    ,

    222

    1

    hh

    ( ) ( ){ } ( )Fk EETkfTkkfkf −=∂∂

    =↓′−↑ δε BB

    1

    ( ){ } TkNgAT FN B

    2222

    1

    )(1 εγπ hh

    =

    1/T1 is proportional to T

    T1T= constant

    K is independent of T( ){ }FB Ng

    AK εμ 22

    =

  • 46

    Korringa relation

    Skg

    kTKT

    ≡⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛=⎟⎟

    ⎞⎜⎜⎝

    ⎛=

    2

    B

    NB

    2

    B

    NB2

    1

    441γγπ

    μγπ

    h

    h

    h

    ( ){ } TkNgAT FN B

    2222

    1

    )(1 εγπ hh

    =

    This does not depend on material !Korringa Relation

    However deviation from the Korringa relation is observed in many material.

    Model was simple importance of Interaction between electrons (electron correlation)

    ( ){ }FB NgAK εμ 22

    =

  • 47

    Modified Korringa relation

    Skg

    kTKT

    ≡⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛=⎟⎟

    ⎞⎜⎜⎝

    ⎛=

    2

    B

    NB

    2

    B

    NB2

    1

    441γγπ

    μγπ

    h

    h

    h

    Korringa Relation

    Modified Korringa Relation

    Kα>1:AF spin correlationKα

  • 48

    NMR in magnetic material

    Do we always need to apply magnetic field to observe NMR signal?In some case, the answer is No!

    In magnetically ordered state, you have spontaneous magnetization (M) without applying external magnetic field.

    =A~A≠0

    hfIHH nhγ−=Therefore, Hamiltonian for nuclear is not zero without external field

    (1) For example, AF insulator spinel Co3O4 :TN=33K)

    ┃Hint ┃ = 5.5Tesla

    59Co-NMR under H=0

    If you know Ahf, You can estimate orderedmagnetic moment =Hint/Ahf

    Internal field

    T. Fukai, Y.F., et al., JPSJ 65 (1996) 4067.

    f=γNHint

  • 49

    (1) NMR study of low dimensional spin systemnanoscale molecular magnet

    (2) NMR studies of itinerant system

    (3) NMR study of superconductor

  • 50

    Distance between the clusters is over 10Å

    M12 cluster a

    b

    c

    β

    αγ

    molecular formula

    structure of molecule

    Crystal structure

    Mn3+ (S=2)

    Mn4+ (S=3/2)O 2-

    Mn3+ (S=2)

    Mn12 ([Mn12O12(CH3COO)16(H2O)4])

    How can one see spin structure in the each Molecule?

    Use NMR !

  • 51

    55Mn-NMR spectrum in Mn12

    240 280 320 360 400

    H=0

    Mn4+

    Mn3+ Mn3+P3P2

    P1

    T=1.5K

    Spi

    n ec

    ho in

    tens

    ity

    frequency (MHz)

    μS

    Hint

    Core- polarization

    Mn4+(3μB) : Hint ~ 22.0T

    Mn3+(4μB) : Hint ~ 26.4T

    Mn3+(4μB) : Hint ~ 34.7T

    The direction of Hint is opposite to the that of spin moments

    Observation of 55Mn-NMR signalUnder zero magnetic field

    (super-paramagnetic state)(Spin freezing at low temperature)

  • 52

    Internal spin structure of Mn12 (parallel field)

    0 2 4 6 8 10 12 14 16100

    150

    200

    250

    300

    350

    400

    γN=10.5MHz/T

    P1 (Mn4+)

    P2 (Mn3+)

    P3 (Mn3+)

    peak

    freq

    uenc

    ies

    (MH

    z)

    parallel field (T)

    Hext

    Y. Furukawa et al., PRB 64 (2001) 104401

    |Heff | = | Hint+Hext |

    For Mn4+ (S=3/2) ionsHint is parallel to Hext

    (spin direction is antiparallel)

    For Mn3+ (S=2) ionsHint is antiparallel to Hext

    (spin direction is parallel)

    ωres= γN Heff

    To determine the spin direction, one can apply external field

    NMR can determinespin structure!

  • 53

    NMR example

    31P-NMR Study of Low-Energy Spin Excitations in Spin Ladder (VO)2P2O7 and Spin Dimer VO(HPO4)0.5H2O Systems

    Spin ladder spin dimer

    H = -JS・SNeel state ┃↑ ↓>

    E=-J/4

    Singlet state (┃↑ ↓>ー┃↓↑>)√2E=3J/4

    J

  • 54

    NMR example

    Both systems have a energy gap in spin excitation

    T-dependence of K (NMR shift)

    K~χ~(1/T)exp(-⊿/kT) for spin dimerK~χ~(1/T0.5)exp(-⊿/kT) for spin ladder

    ⊿ can be estimated

  • 55

    NMR example

    1/T1~exp(-⊿/T)

    ⊿ can be estimated fromT-dependence of T1

    ΔT1=75 K (for dimer)ΔT1 =60 K (for ladder)

    ΔK=74 K (for dimer)ΔK =30 K (for ladder)

  • 56

    NMR example

    K ~χ(q=0、ω=0)

    Comparison of K and T1 gives information about q-dependence of ⊿(q)

    χ(q)

    Δ(q)

    1/T1TK = exp(-⊿T1/kT)/exp(-⊿K/kT) for dimerif ⊿K=⊿T1, 1/T1TK should be constant

    1/T1TK = exp(-⊿T1/kT)/exp(-⊿K/kT)/T0.5 for ladderif ⊿K=⊿T1, 1/T1TK should increase at low T

    Observation of decrease -> this is due to ΔT1>ΔK

  • 57

    NMR example (itinerant AF magnet)

    Itinerant antiferromagnet V3S4

    Y. Kitaoka et al. JSPJ 48 (1980)1460

  • 58

    NMR example

    Spin fluctuation localized at q=Q

    SCR theoryV3S4

    VS1.1

  • 59

    Superconductivity

    T (K)

    R (Ω

    ) Tc

    Zero resistivity

    SC

    manget

    Meissner effects(perfect diamagnetism)

  • 60

    NMR study of superconductor

    Symmetry of cooper pair

    s-wave (l=0, s=0)

    p-wave (l=1, s=1)

    d-wave (l=2, s=0)

    Isotropic gap

    Anisotropic gap

    Anisotropic gap

    S-wave

    d-wave

  • 61

    NMR study of superconductor

    Symmetry of cooper pair

    s-wave (l=0, s=0)

    p-wave (l=1, s=1)

    d-wave (l=2, s=0)

    Isotropic gap

    Anisotropic gap

    Anisotropic gap

    )/exp(/1 1 kTT Δ−∝

    Knight shift 1/T1

    αTT ∝1/1

    αTT ∝1/1

    Just below TcHebel-Slichter peak

  • 62

    NMR example (Superconductor)

    Al metalKnight shift

    Enhancement of transition probabilityDivergence behavior of DOS

    Hebel-Slichter peak

    Above Tc1/T1~T

    Below Tc1/T1 ~exp(-⊿/kT)

    S-wave SC !

    Decrease of spin susceptibilityT-dependence of 1/T1

  • 63

    NMR example (Superconductor)

    Ru(Cu)

    Sr

    O

    RuO2面

    c

    ab

    Ru4+(4d4)

    Crystal structure Sr2RuO4

    Sr2RuO4 Tc~1.5K

    No change! 1/T1~T3

    suggesting P-wave SC!!

    K. Ishida et al, Nature 396 (1998)658Ru4+ (4d4)

  • 64

    NMR example (Superconductor)

    Kanoda, Miyagawa, Kawamoto et al., d-wave SC

    Pairing symmetry of Cooper pair can be determined by NMR measurement

    Important information oforigin for the SC appearance

  • 65

    NMR studies in High Tc Cuprates)

    AF

    SC

    La1-xSrxCuO4

    CuO2 plane

  • 66

    NMR example

    (1) Antiferromagnet (for example, AF insulator La2CuO4 :TN~300K)

    Very precise measurement of sub-lattice magnetization!

    Evidence of AF magnetic ordering !!

  • 67

    NMR studies in High Tc Cuprates)

    1/T1T shows CW behavior

    1/T1T~1/(T+a)1/T1 ~T3

    q

    χq

    Q

    Evidence of AF spin correlationsK is almost T-independent

  • 68

    NMR studies in High Tc Cuprates)

    SC: d-wave symmetry

    Spin gap (SG) behavior at L-regionStrong AF spin fluctuations in metallic region

    At the begging stage, NMR data indicates d-wave SC Other experiments suggests S-wave

    Now most of people believes d-wave-SC!!

    SG

    Anomalous Metallic state

  • 69

    NMR in vortex state

    NMR can investigate electronic state at different spatial region of Vortex core lattice

    Local field distribution associated with the vortex lattice

    Hlocξ

    λ( )H H e e

    Gi

    G

    rG

    G r=

    +∑− ⋅

    0

    2

    2 2

    2 2

    1

    ξ

    λ0 .999 1.000 1.001 1 .002

    C

    B

    A

    ( ) ( )( )f h h H rS

    = −∫ δ r d2

    H /H 0

    ABC

    CoreSaddleCenter

    Redfield patternλ:penetration depthξ: coherence length ξ<λ type II SC

  • 70

    NMR example (Superconductor)

    1 10 100

    1

    10

    100

    00

    500

    1000

    1500

    T C

    T*

    ((a)

    1 / (

    T 1T)

    ( K

    -1s-1

    )

    T ( K )

    1 / T

    1 (s

    -1)

    1/T1 is enhanced near the vortex core1/T1 shows a peak

    Magnetic order in vortex core!!

    K. Kakuyanagi, K. Kumagai, et al PRL90(2003)197003

    205Tl NMR in Tl2Ba2CuO6+d

  • 71

    NMR example (magnetic superconductor)

    CuO2 plane ⇒

    CuO2 plane ⇒

    RuO2 plane ⇒

    RuO2 plane ⇒

    Ru

    O

    Cu

    c

    RE

    a

    b

    RuSr2YCu2O8 (layered Perovskite structure)

    0 50 100 150 200 250 3000

    200

    400

    600

    800

    1000

    1200

    TM~148K

    H=5000(Oe)

    RuSr2YCu2O8

    M (

    emu/

    mol

    )

    T ( K )

    35K

    0 100 2000

    0.1

    0.2

    0.3

    T ( K )

    ρ(Ω

    ・cm

    ) TC(onset)=65K

    TC(R=0)=17KMagnetic order at T~148KSC transition at T~35K

    ・Coexistence of SC and magnetic order?・which ions are responsible to magnetic order?

  • 72

    NMR example (Superconductor)

    40 60 80 100 120 140 160

    99Ru

    101Ru

    T=4.2K

    Spi

    n ec

    ho in

    tens

    ity (

    arb

    . uni

    t )

    Frequency ( MHz )

    Observation of 101/99Ru NMR signal under zero magnetic field

    101Ru (I=5/2) γ/2π=2.193MHz/T

    Q=0.44×10-24 (cm2)

    99Ru (I=5/2) γ/2π =1.954MHz/T

    Q=0.07×10-24 (cm2)

    Observation of Ru-NMR signal (below TC)→ magnetic ordering of Ru spins

    Hzeeman>>HQuad

    Hint=584kOe , νQ=15MHz

    K. Kumagai, Y. Furukawa et al., PRB 63 (2001)180509

  • 73

    NMR example (Superconductor)

    1 10 100

    10

    100

    1000

    10000

    TC(onset)

    1/T 1

    ( s

    ec-1 )

    T ( K )12 13 14 15 16

    65Cu

    63Cu

    f=158.66MHz

    63/65Cu-NMR

    250K

    220K

    180K

    130K

    85K

    50K

    25K

    T=4.2K

    Spin

    ech

    o in

    tens

    ity (

    arb

    . uni

    ts )

    H ( T )

    0 100 200 3000

    2

    4

    6

    63Cu-NMR in RuSr2YCu2O8

    Magnetic broadening below TM

    1/T1 decrease below Tc

    Powder pattern (distribution of angle between H and principal axis of EFG)

    Coexistence of SC and Mag. SC -> CuO2 plane

    (because of small internal field)Mag. -> RuO2 plaen

    Y. Furukawa et al., J. Phys. Chem. Solid 63 (2002) 2315

  • 74

    Novel superconductors

    ・ newly discovered LaOFeAsCo(K)-doped BaFe2As2 system

    Prof. Canfield’s grouphas succeeded to make very good quality samples

  • 75

    NMR study of FeAs-system

    139La-NMR in LaFeAs(O,F)

    Y. Nakai et al., JPSJ 77(2008) 073701

    X=0 ->AF order at T=142

    139La: I=7/2

  • 76

    NMR study of FeAs-system

    75As-NMR in LaFeAs(O,F)

    Suggesting d-wave SC

    Other experimental data indicates not d-wave but S-wave SCY. Nakai et al., JPSJ 77(2008) 073701

    1/T1T increases with decreasing T⇒ evidence for AF spin fluctuations

    75As:I=3/2

  • 77

    Introduction of Electron Spin Resonance (ESR)

    Yuji FurukawaA121 Zaffarano

    [email protected]

    Principle is same as NMR, but now electron spin!

  • 78

    E S R

    1944 Prof. E.K. Zavoyskydiscovery of EPRat Kazan State University in Russia (Soviet union)

    ESR: electron spin resonance EPR : electron paramagnetic resonance

    AFMR : Antiferromagnetic resonanceFMR : Ferromagnetic resonance

    100th anniversary of E.K. Zavoysky(2007: Kazan University)

  • 79

    E S R

    S-S hee g γμ =−= Bμmagnetic moment of electron

    gN:g-factor (2.0023)

    201092.02

    −×==cm

    e

    eB

    H0 = 0 H0 ≠ 0

    Sz= 1/2

    Sz = -1/2

    (erg/G)

    In the magnetic field of H

    HSgE zBe μμ =⋅−= H

    Bohr magneton

    Hgh Bμ=ω

    γe/2π=28.02 GHz/Tc.f., Proton γN/2π=42.577MHz/T

    ν(GHz) ~ 28 H (Tesla)

    S band ~3.2GHz ~9 cmX-band ~9.5 ~3 K-band ~24 ~1.2J (Q)-band ~34 ~ 0.9W-ban ~90 ~0.3

  • 80

    ESR

    Advantage of high frequency (magnetic filed) ・increase of resolution・increase of sensitivity・simplification of the spectra and of their assignment

    ・Magnetic field up to 2T ; electron magnetup to 9T ; superconducting magnet (Nb3Ti) up to 23T ; superconducting magnet (Nb3Sn)up to 35T ; Hybrid magnet more than 40 T ; pulse magnetic field

    ESR measurements using a pulsed magnet is much popular in comparison with NMR case.

    (due to short T1 of electron spins)

    On the other hand, pulse ESR is NOT popular

    (due to short T1 (T2) of electron spins)

    (CW method) |μB/μN|~1800

  • 81

    ESR

    ESR with a pulsed magnet

    H0 = 0 H0 ≠ 0

    Sz= 1/2

    Sz = -1/2

    H0 ≠ 0

    Sz= 1/2

    Sz = -1/2

    t>T1

    Signal can be observed

    Short T1 is important !!

    ~50T

    t

    c.f., in the case of NMR, usually T1 is not short enough

  • 82

    ESR

    pulsed ESR

    nano-second controlled system is required!

    Short T1 -> short T2 (spin echo T2)

    π/2 pulse πpulse Spin echo signal

    τ

    If T2 is less than 1μSτ should be less than 1 μS

    JEOL (Japan)

  • 83

    ESR

    What can one get information from ESR・investigation of electronic state ・energy level scheme of system

    and so on・・・・

    Since electrons are always in material,Can we observe ESR signal anytime?

    ⇒ NO!

    To observe the signal, unpaired electron is needed!!・ 3d / 4f electrons of transition metal ions ・conduction electrons in metal ・radicals (molecule with odd-numbered electron)・trapped electron at defects (for example, F-center) and so on

  • 84

    ESR

  • 85

    4

    ESR

  • 86

    ESR

  • 87

    ESR

  • 88

    ESR

  • 89

    ESR

  • 90

    [(C6H15N3)6Fe8O2(OH)12]Br8・9H2O

    Eight Fe3+ (S=5/2) ions are almost coplanar

    Strong AF interaction between Fe3+ spins→a total spin S=10 ground state

    (S=5/2×6-5/2×2=10)

    HS ⋅+−+=Η Byxz SSEDS μg)(222

    Spin Hamiltonian for the S=10 ground state

    medium

    hard axis

  • 91

    E

    H = 0

    Δ E

    m = 0

    m = 1 0m = - 1 0

    Energy levels for 21 sublevels in S=10 ground state

    ~27K

    mHDmE Bm μg~2 +

    Superparamagnetic stateQuantum tunneling of magnetization

    (QTM)

    W. Wernsdorfer et al. J. Appl. Phys. 87,5481 (2000)

    ⊿H~0.22T

  • 92

    0 2 4 6 8 10

    -150

    -100

    -50

    0

    50

    100

    m=+9m=+10

    m=-9m=-10

    c//H

    E m (K

    )

    H (T)

    Magnetic MoleculeFe8 -> ground state is S=10

    Need to know the parameters (D, B) to Determine the structure of energy levels

    S. Hill et al., Phys. Rev. B 65, 224410 (2002)

    One can determine the parameters

    ESR

    HS ⋅+−+=Η Byxz SSEDS μg)(222

    D= ~ ‐0.27K E= 0.046K

  • 93

    ESR

    ESR study of 1dimensional quantum spin system

    1 dimensional AF spin system -> gapless ground state

    However, if S=integer-> gapped ground state

    (Haldane conjecture ‘83)

    NENP(Ni(C2H8N2)2NO2(ClO4)(NTENP))

    Ni2+ (3d8;S=1) S=1 spin chain

  • 94

    ESR

    W. Lu et et al., PRB 67 (1991) 3716

  • 95

    ESR

    A direct observation of Haldane gap

  • 96

    Summary

    Magnetic resonance is one of the powerful tools to study magnetic and electronic properties of Materials