62
Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano [email protected]

Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano [email protected]

Embed Size (px)

Citation preview

Page 1: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Nuclear Magnetic Resonance (NMR)

Yuji Furukawa

A121 Zaffarano

[email protected]

Page 2: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Principle of NMR ・・・・・ a little bit complicated (quantum mechanics) NMR experiments ・・・・・ a little bit complicated (Low T, RF, magnetic field, Pressure….) Data analysis of NMR results

・・・・・・ a little bit complicated

But, NMR measurements give us very important information which cannot be obtained by other experimental techniques

Plan Basics of NMR (this week) Its application (if I have time ……) low dimensional spin system superconductors and so on

Page 3: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

H i s t o r y

1936 Prof. Gorter, first attempt to detect nuclear magnetic spin (But he did not succeed, 1H in K[Al(SO4)2]12H2O and 19F in LiF) 1938 Prof. Rabi, First detection of nuclear magnetic spin (1944 Nobel prize) 1942 Prof. Gorter, First use of terminology of “NMR” (Gorter, 1967, Fritz London Prize) 1946 Prof. Purcell, Torrey, Pound, detected signals in Paraffin. Prof Bloch, Hansen, Packard, detected signals in water (Purcell, Bloch, 1952 Nobel Prize) 1950 Prof. Haln, Discovery of spin echo. -> Spin echo NMR spectroscopy Remarkable development of electronics, technology and so on -> Striking progress of NMR technique!!

Page 4: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Nuclear property

IIμn ng NN

Nuclear magnetic moment c.f. Proton (three quarks)

I=1/2

γN/2π=42.577 MHz/T

gN:g-factor (dimension less)

γN:nuclear gyromagnetic ratio (rad/sec/gauss)

(erg/gauss)

c.f. electron spin moment

μe=-gμBS

241005.5

2

cm

e

p

N

201092.02

cm

e

e

B

(erg/gauss) |μB/μN|~1800

Page 5: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Explanation of “magic number” (1949 Mayer and Jensen independently,

by introducing an idea of a strong inverted nuclear spin-orbit interaction)

spuds if pug dish of pig

spdsfpgdshfpig

The energy level structure originates from potential energy of nucleus due to nuclear force

(eat) potatoes if the pork is bad

Nuclear shell model

178O (Z = 8 and N=9) is doubly magic except for an

extra neutrons in the 1d5/2 subshell, so it should

have i = 5/2, as observed.

15N (Z = 7 and N=8) is doubly magic except for a

proton hole in the 1p1/2 subshell, so it should

have i = 1/2, as observed.

example

Page 6: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Nuclear magnetism

IIμn ng NN

Nuclear magnetic moment

zzN HIgHU

xBNgI

Tk

U

Tk

UIg

M NI

II B

I

II B

zN

Z

z

exp

exp

Tk

IINg

H

M

B

NN

3

122

Much less than χe (electron spin)

Magnetism of material is mainly dominated by χe!!

Nuclear magnetism

Curie law

Page 7: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

(h:Planck’s constant、ν:frequency、γN:nuclear gyromagnetic ratio、H:magnetic field)

NMR (Nuclear Magnetic Resonance)

Nucleus has magnetic moment (nuclear spin) nucleus is very small magnet

HI・NZeemanH

Zeeman interaction

H N

Magnetic resonance can be induced by application of radio wave whose energy is equal to the energy between nuclear

levels

Page 8: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Application of NMR

NMR is utilized widely not only Physics and/or chemistry but also medical diagnostics (MRI) and so on.

・ Physics Condensed matter physics、Magnet, Superconductor、and so on ・Chemistry Analysis and/or identification of material ・Biophysics Analysis of Protein structure, and so on ・Medical MRI (Magnetic Resonance Image)

Brain tomograph

For example;

Page 9: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR in condensed matter physics

])))((3

()(3

8[(

353 r

I

r

rSrI

r

SIrgH BNnel

・・・・・ SI

Fermi contact dipole interaction orbital

interaction

NMR measurements

investigation of static and dynamical properties of hyperfine field (electron spins)

One of the important experimental methods for the study on magnetic and electronic properties of materials from the microscopic point of view. (nucleus as a probe)

Hyperfine interaction between nuclear spin and electron spins

NMR spectrum

⇒ static properties of spins

NMR relaxation time (T1, T2) ⇒dynamical properties

Page 10: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR spectrum

NMR spectrum measurements (static properties of hyperfine field)

① magnetic system

spin structure, spin moments and so on

② metal local density of state at Fermi level

H H0

=ω/γ

⊿H

NMR shift: K=ΔH/H

ΔH:contribution from electron

H0

ΔH

H=H0+ΔH

Page 11: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Nuclear spin-lattice relaxation time(T1)

Nuclear spin-lattice relaxation time

Dynamical properties of hyperfine field tHI hfN

-H

y x

y x iH H H iI I I

t H I t H I

hf hf hf

hf hf N

,

) ( ) ( 2

-

± ±

± ±

Iz=1/2

-1/2

iii SAHdttitSSA

dttitHHT

hfN

2

N

2

Nhfhf

2

N

1

exp,2

exp,2

1

Ex. Metal ⇒ T1T=const. (Korringa relation)

Superconductor ⇒ T-dependence of T1 provides information of

symmetry of SC gap

full gap ⇒ 1/T1~exp(-Δ/kbT)

anisotropic gap ⇒ 1/T1~Tα

Page 12: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Characteristics of NMR

1) Local properties information at each nuclear site (e.g., local density of states, spin state for each site…) microscopic measurements (NMR, μSR,ESR, Mossbauer ND, ) macroscopic measurements (Magnetization, specific heat, resistively…) 2) Low energy excitation information of low energy spin (electron) excitation (energy scale in different experiments NMR, μSR : MHz, Mossbauer:γ-ray, ND: ~meV) 3) Laboratory size NMR spectrometer can be set up in lab space. (you can modify the spectrometer as you like!) μSR measurements -> need to go facility (in principle, you can NOT modify the equipment)

For example f = 100 MHz ⇒ 5 mK

Page 13: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR spectroscopy in condensed matter physics

NMR spectroscopy Continuous wave (CW) NMR Pulse NMR (FT (Fourier transform) –NMR) ←mainstream

・Spectrometer frequency range 5~400MHz ・Magnetic field up to 2T ; electric magnet up to 9T ; superconducting magnet (NbTi) up to 23T ; superconducting magnet (Nb3Sn) up to 35T ; Hybrid magnet more than 40 T ; pulse magnet Temperature down to 77K ; liquid N2 (less than $1/liter)

down to 1.5K ; liquid He (boiling T ~4.3K) ( ~$7/liter )

down to 0.3K ; 3He cryostat ($100K) down to 0.01K ; 3He-4He dilution refrigerator ($300K)

My NMR lab at ISU

f = 3.5-500MHz, H = 0-9T, T = 0.05-300 K, P = 2.0 GPa

Page 14: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR spectroscopy in condensed matter physics

NMR spectroscopy Continuous wave (CW) NMR Pulse NMR (FT (Fourier transform) –NMR) ←mainstream

・Spectrometer frequency range 5~400MHz ・Magnetic field up to 2T ; electron magnet up to 9T ; superconducting magnet (NbTi) up to 23T ; superconducting magnet (Nb3Sn) up to 35T ; Hybrid magnet more than 40 T ; pulse magnet Temperature down to 77K ; liquid N2 (less than $1/liter)

down to 1.5K ; liquid He (boiling T ~4.3K) ( ~$7/liter )

down to 0.3K ; 3He cryostat ($100K) down to 0.01K ; 3He-4He dilution refrigerator ($300K)

My NMR lab at ISU

f = 3.5-500MHz, H = 0-9T, T = 0.05-300 K, P = 2.3 GPa

Page 15: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR spectrum

NMR spectrum measurements (static properties of hyperfine field)

H H0

=ω/γ

⊿H

NMR shift: K=ΔH/H

ΔH:contribution from electron

H=H0+ΔH

How do we measure NMR spectrum ?

Page 16: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Magnetic resonance

H0 = 0 H0 ≠ 0

m = -1/2

m = +1/2

HI・NZeemanH In the case of I=1/2 and H=(0, 0, H0),

Eigen energies for two quantum levels are

given

02/1

2

1HE N 02/1

2

1HE N

0HE nH

To make a resonance, one needs time dependent perturbation and non-zero matrix element

)cos()(' 1 tIHtH NxN 2

II

I x

0)('1 mtHm

Magnetic transition

H0

alternating current

⇒ alternating field

Using a coil perpendicular to H0, you can apply an

alternating field which induces magnetic transition.

But how can you detect the signal (magnetic transition)

Need to think about motion of nuclear magnetic moment

Page 17: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Motion of magnetic moment

Classical treatment

HNdt

Id

H

dt

dN

μ

H

Larmor precession ω=γNH

(Time variation of angular momentum is equal to torque)

If H=(0,0,H0),

then μx=Asin(ωt+a), μy=Acos(ωt+a), μz=const.

Page 18: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Clarification (classical dipole in a field):

there’s a force to align m & B

Consider a simple dipole (ex. bar magnet) in a field

However!

What do we expect if our magnet is

spinning ?

Due to the angular momentum, it will

not simply line up with the field

Since ,

U l B

– just like the precession of a spinning top

(which is due to the torque created by the

gravitational force)

Bl

Rotation axis is

direction of

Rotation axis is NOW

vector sum of and L

1: dt

pd

dt

vdmamF

dt

Ld

:law sNewton' of analog

2: dt

LdL

g Bl

BB

precession

Page 19: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Motion of magnetic moment

Classical treatment

HNdt

Id

H

dt

dN

μ

H

Larmor precession ω=γNH

(Time variation of angular momentum is equal to torque)

Rotating coordinate system (Ω)

Ω

)( Ht

effH

(With a simple assumption H=H0k)

If Ω=ーγH0 then Heff=0 ->δμ/δt = 0

No change in time ! (since we are looking at spin moment on

rotating frame with the same frequency of γH0)

If H=(0,0,H0),

then μx=Asin(ωt+a), μy=Acos(ωt+a), μz=const.

Page 20: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Effects of alternating field

Hx=Hx0 cosωt i

x

y

Hx

Hx=HR+HL

HR=H1(i cosωt + j sinωt )

HL=H1(i cosωt - j sinωt )

H1=H0/2

)( 10 HHdt

d

iHkH

t10 )(

Laboratory frame Coordinate system rotating about z-axis

When ω=-γH0, you have resonance and have only H1 magnetic field along to x-axis

This means spin rotates about x-axis with frequency γH1

x

y

z

spin

H0

without H1

x

y

z

with H1 (rotating frame)

H1

You can control the direction

of spins!

Manipulation of spin

Page 21: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Motion of magnetic moment

Page 22: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Motion of magnetic moment

Larmor precession

Page 23: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Motion of magnetic moment

Page 24: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Motion of magnetic moment

Page 25: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Motion of magnetic moment

Page 26: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Effects of alternating field

Hx=Hx0 cosωt i

x

y

Hx

Hx=HR+HL

HR=H1(i cosωt + j sinωt )

HL=H1(i cosωt - j sinωt )

H1=H0/2

)( 10 HHdt

d

iHkH

t10 )(

Laboratory frame Coordinate system rotating about z-axis

When ω=-γH0, you have resonance and have only H1 magnetic field along to x-axis

This means spin rotates about x-axis with frequency γH1

x

y

z

spin

H0

without H1

x

y

z

with H1 (rotating frame)

H1

You can control the direction

of spins!

Manipulation of spin

Page 27: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Effects of alternating field

x

y

z

H1

x

y

z Spin rotes in xy-plane in laboratory frame (spin rotates in the coil) ⇒ this induces “voltage”

You can detect the voltage -> observation of signal from nuclear spin! Typically the induced voltage is ~10-6 V We need to amplify the voltage to observe easily (with amplifiers)

x

y

z

H1

x

y

z

H1

t=0 t=π/2γH1 (π/2 pulse) t=π/γH1 (π pulse)

If you stop to give H1 just after t (π/2 pulse)

Page 28: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

FID signal

Page 29: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Spin echo method

a b c

e d

π/2 pulse π

pulse Spin echo signal

Two pulse sequence

ω+⊿ω

ω-⊿ω

Page 30: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR spectrum

Page 31: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

H0 = 0 H0 ≠ 0

Iz= -1/2

Iz = 1/2

Nuclear spin lattice relaxation T1

Boltzmann

distribution

thermal

equilibrium

state

Resonance

(absorption)

nonequilibrium

state

H

Relaxation

(energy

emission

to lattice

(electron system)

-> thermal

equilibrium

state

T1 is a time constant (from nonequilibrium to equilibrium states)

Page 32: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Absorption energy and spin lattice relaxation T1

Page 33: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Nuclear spin lattice relaxation T1

Page 34: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Nuclear spin lattice relaxation T1

Relaxation is induced by fluctuations of hyperfine field with NMR frequency

Page 35: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

How to measure nuclear spin lattice relaxation T1

x

y

z

H1

0.0

0.2

0.4

0.6

0.8

1.0

Sp

in e

ch

o in

ten

sa

ity

time

t-dependence of signal intensity

I(t)=I0(1-exp(-t/T1))

T1 can be estimated

x

y

z

H1

Saturation

2/π

π

No mag. in xy-plane

I(0)=0

When t~0

t= ∞

x

y

z

2/π

π I(t)=I0

Signal intensity is proportional to xy-component of nuclear magnetization

Page 36: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

How to measure nuclear spin lattice relaxation T1

Page 37: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

block diagram (NMR spectrometer)

QPSK (heterodyne)

(Quadrature Phase Shift Keying)

Page 38: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

block diagram (NMR spectrometer)

Receiver

Amp

Phased shifter

PSD

LPF

t

t

tt

)(cos2

1

)(cos2

1

)sin()sin(

21

21

21

PSD Multiplication of Input frequencies

-> out put

frequency difference and sum

cross diode (back to back)

・parallel => only low voltage signal can be put into preamp.

・series => low voltage noise can be cut.

two out put signals

=> cosine and sine components

Page 39: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

block diagram (NMR spectrometer)

Parallel connection

Series connection

Page 40: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

FFT and complex detection

Page 41: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

FFT and complex detection

Page 42: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR spectrum

QH

22

2222

2

2

22222

)(2

1)3(

)12(4

zV

yVxV

z

Vq

IIIIII

qQez

       

Zeeman interaction

(interaction between magnetic moment and magnetic field)

Electric quadrupole interaction (I>1/2) ( interaction between electric field gradient and nuclear quadrupole moment)

+ + + +

Nuclear is NOT spherical but ellipsoidal body (I>1/2)

)12(4

)1(3

2

2

II

qQeA

IImAEm   

ZnZeeman IHHH 0-

For η=0

η: assymmetry parameter

Page 43: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR spectrum

0

A120

A60

0

A60

A120

m=±5/2

m=±1/2

m=±3/2

12A

6A eq=0

eq≠0

)I(I

qQeA)I(ImAEm

12413

22

  

1. Hquadrupole≠0, H=0

2. Hzeeman >> Hquadrupole

ω 6A 12A

Hq=0 I=5/2

NQR (nuclear quadrupole resonance)

ω

5/2

3/2

1/2

-1/2

-3/2

-5/2

Page 44: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR spectrum in powder sample

-3/2

3/2

-1/2

1/2

ℏω3/2→1/2

ℏω-1/2→-3/2

ℏω1/2→-1/2

128

31312

22

n1

II

qQecosm

powder pattern (I=3/2)

ωn ωn-2A1 ωn-A1 ωn+A1 ωn+2A1

A1=1/4e2qQ/ℏ

ωn-16A2/9ℏ ωn+A2/ℏ ωn

2nd oeder splitting of central transition for powder pattern spectruim

0

22

22

222

01/21/2

124

32

64

9

cos-19cos-1

qQe

II

IA

A

θ=0

θ=90

Hz>>HQ (I=3/2)

Center line is affected

in 2nd order perturbation

Page 45: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR spectrum in powder sample

60 65 70 75 80

Sp

in e

ch

o in

ten

sity

H ( T )

93Nb-NMR

in NbO

93Nb-NMR in NbO (field sweep spectrum)

Textbook like typical powder pattern spectrum

I=9/2

ωn-16A2/9ℏ ωn+A2/ℏ ωn

Central transition line

Opposite?!

Page 46: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR spectrum

ω

signal (A)

H

signal (B)

(1) ω-sweep ( H=constant;H0)

NMRspectrum Magnetic field sweep and frequency sweep

H0

ω ωB ωA

(2) H-sweep (ω=constant; ω0) ω

signal (A)

H

signal (B)

ωA

ωB

ω0

HA HB

H HA HB

Opposite!! Be careful !

Page 47: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Hyperfine field at nuclear site

These give additional field (Hhf) at nuclear site

-> shift in spectrum (NMR shift)

ω ω0 ω0+⊿ω

Fermi contact

Dipole interaction

orbital

interaction

S-electron 2

)0(3

8

se

FH

53

*3

rrH e

dip

rrss

3

* 1

rH e

orb l

Core-poratization

interaction

i

ii

e

cpH22

)0()0(3

8

s

⊿ω=γHhf

In materials, nuclear experiences additional field due to hyperfine interaction

3d system

~-100kOe/μB

μS

Hint

Page 48: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Example (T-dependence of hyperfine field)

70.0 70.2 70.4 70.6 70.8

120 K

95 K

75 K

58 K

48 K

34 K

23 K

19 K

14 K

10 K

9 K

8 K

7 K

Inte

nsity (

arb

. un

its)

(MHz)

Hllc Hllb Hlla

Re

f

6 K

220 K

Temperature dependence of spectrum

31P-NMR in Pb2VO(PO4)2

10 100

-4000

-2000

0

2000

4000

6000

P1

ll c

ll b

ll a

Kiso

HTSE fitK

(ppm

)

T (K)

J1 = -5.4 K

J2 = 9.3 K

g = 1.95 (EPR)

16K to 260K

T-dep of NMR shift

100(%)0

0

f

ffK

100(%) 0

res

res

H

HHK

f0

H

H0 Hres

Page 49: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Relation between NMR shift and magnetic susceptibility

H=Hz+Hhf

Hamiltonian

Hz=Hzeeman (H=H0)

Hhf=Hdipole+HFermi+Hcore-polarization+…..

=AI・S A: hyperfine coupling constant

)( hf0 HHIH n ASH hf

NMR shift originates from thermal average value of Hhf

<Hhf>=A<s> Since <s> is expressed by <M> (thermal average value of electron magnetization), <Hhf>=A<s>~A<M> (=AχH0) Knight shift is given by K = Hhf/H = AχH/H ~Aχ K is proportional to χ !!

<M> increases with increasing H -> high accuracy

(hyperfine field)

Page 50: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Example

0 50 100 150 200 250 3000.0

0.1

0.2

0.3

0.4

0.5

0.6

K (%

)

T (K)

Spin dimer system VO(HPO4)0.5H2O

V4+ (3d1: s=1/2)

0 50 100 150 200 250 3000.0

2.0x10-6

4.0x10-6

6.0x10-6

8.0x10-6

1.0x10-5

1.2x10-5

1.4x10-5

1.6x10-5

1.8x10-5

ma

gn

etic s

uscep

tib

ility

(e

mu

/g)

T ( K )

AF interaction Magnetic susceptibility NMR shift (31P-NMR)

χtotal(T)=χspin(T)+χorb+・・・+χimpurity Ktotal(T)=Kspin(T)+Korb

What is ground state ?

Spin singlet ? or magnetic?

From the NMR measurements, increase of χ at low temperature is concluded to be due to magnetic impurities

NMR can see only intrinsic behavior (exclude the impurity effects!!)

Y. Furukawa et al., J. Phys. Soc. Japan 65 (1996) 2393

Page 51: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Example of K-χ plot

K-χplot K = Aχ/NμB,

0.0 5.0x10-6

1.0x10-5

1.5x10-5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

K (%

)

(emu/g)

Good linear relation K is proportional to χ

Hyperfine coupling constant can be estimated from the slope

BN

A

d

dK

Ahf =3.3 kOe/μB

This is a value at P site per one Bohr magneton of V4+ spin (Vanadium spin produces the hyperfine field at P-site)

The origin of this hyperfine field is “transferred hyperfine field”

Page 52: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR in simple metal

1) NMR shift (Knight shift) K=(A/μB)χpauli

since χpauli is expressed by (1/2)g2μB2NEf

2)Nuclear spin lattice relaxation time T1 Relaxation mechanism

scattering of free electrons from ┃k,↑> to ┃k’,↓>

nuclear spin can flop from ↓ ⇒ ↑ states

Pauli paramagnetism χpauli

No electron correlation

Simple metal (like Cu and Al and so on)

kkkk

N EEkfkfsIAT

11

,

222

1

Fk EETkf

Tkkfkf

BB1

TkNgAT

FN B

2222

1

)(1

1/T1 is proportional to T

T1T= constant

K is independent of T

2

2B F

AK g N

Page 53: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Korringa relation

22

N NB B

2

1 B e

4 41 k kS

TTK g

TkNgAT

FN B

2222

1

)(1

This does not depend on material !

Korringa Relation

However deviation from the Korringa relation

is observed in many material.

Model is so simple

importance of Interaction between electrons

(electron correlation)

2

2B F

AK g N

Page 54: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Modified Korringa relation

Sk

g

k

TKT

2

B

NB

2

B

NB

2

1

441

Korringa Relation

Modified Korringa Relation

Kα>1:AF spin correlation

Kα<1:F spin correlation

Stoner enhancement

χ= χ0/(1- α0 )

enhancement factor α0

FSq

K2

2

0

)1(

)1(

)1(

1~~

0

K

)]0,0(/),([1

),(),(

000

0

q

qq

RPA (random phase approximation)

q

χq

q

χq

0 Q

Ferro. correlations

AF correlations

2

1

)1(~1

qFNTT

α

SKTKT

1

2

1

)(1

T1 and K measurements give us

information of electron correlation!

Page 55: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR example (itinerant AF magnet)

Itinerant antiferromagnet V3Se4

Y. Kitaoka et al. JSPJ 48 (1980)1460

Page 56: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR example

Spin fluctuations at q=Q

SCR theory

V3Se4

VSe1.1

Page 57: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR in superconducting state

Symmetry of cooper pair

s-wave

(l=0, s=0)

p-wave

(l=1, s=1)

d-wave

(l=2, s=0)

Isotropic gap

Anisotropic gap

Anisotropic gap

S-wave

d-wave

Page 58: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR study of superconductor

Symmetry of cooper pair

s-wave

(l=0, s=0)

p-wave

(l=1, s=1)

d-wave

(l=2, s=0)

Isotropic gap

Anisotropic gap

Anisotropic gap

)/exp(/1 1 kTT

Knight shift 1/T1

TT 1/1

TT 1/1

Just below Tc

Hebel-Slichter peak

Page 59: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR example (Superconductor)

Al metal

Knight shift

Enhancement of transition probability

Divergence behavior of DOS

Hebel-Slichter peak

Above Tc

1/T1~T

Below Tc

1/T1 ~exp(-⊿/kT)

S-wave SC !

Decrease of spin susceptibility

T-dependence of 1/T1

Page 60: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR example (Superconductor)

Ru(Cu)

Sr

O

RuO2面

c

a

bRu4+(4d4)

Crystal structure Sr2RuO4

Sr2RuO4 Tc~1.5K

No change! 1/T1~T3

suggesting P-wave SC!!

K. Ishida et al, Nature 396 (1998)658

Ru4+ (4d4)

Page 61: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

NMR example (Superconductor)

Kanoda, Miyagawa, Kawamoto et al., d-wave SC

Pairing symmetry of Cooper pair

can be determined by NMR

measurement

Important information of

origin for the SC appearance

Page 62: Nuclear Magnetic Resonance (NMR) - Ames Laboratorycanfield.physics.iastate.edu/course/Intro_NMR_2014Fall_1.pdf · Nuclear Magnetic Resonance (NMR) Yuji Furukawa A121 Zaffarano furukawa@ameslab.gov

Spin gap (SG) behavior at L-region

Strong AF spin fluctuations in metallic region

SG

Anomalous

Metallic state

~ (0,0)K q=0 comp.

q-sum of the dynamical susceptibility

T dependence of (q,) with

respect to that of q = 0 comp.

no increase of 1/T1T

no obvious AF spin

fluctuations

22 "

02

1

21| ( ) | ( , )N B

M

qA

kA q q

TT N

NMR studies in High Tc Cuprates

NMR is sensitive to not only static properties but also “magnetic fluctuations”