27
Daniel Mihalcea High Gradient Wakefield Acceleration in Dielectric-Loaded Structures May 5, 2011 Fermilab Northern Illinois University Department of Physics

Northern Illinois University Department of Physics - …beamdocs.fnal.gov/AD/DocDB/0038/003862/001/DWA_050511.pdf · High Gradient Wakefield Acceleration in Dielectric-Loaded Structures

Embed Size (px)

Citation preview

Da

nie

l M

iha

lcea

Hig

h G

rad

ien

t W

ak

efie

ld A

ccel

erati

on

in

Die

lect

ric-

Load

ed

Str

uct

ure

s

May

5, 2

011

F

erm

ilab

No

rth

ern I

llin

ois

Un

iver

sity

Dep

artm

ent

of

Ph

ysi

cs

•In

tro

du

ctio

n

•W

ak

efie

ld a

ccel

era

tio

n

1. P

lasm

a W

ak

efie

ld A

ccel

era

tors

2. L

ase

r-d

riv

en D

iele

ctri

c S

tru

ctu

res

3. E

lect

ron

bea

m d

riv

en D

iele

ctri

c S

tru

ctu

res

Ou

tlin

e:

3. E

lect

ron

bea

m d

riv

en D

iele

ctri

c S

tru

ctu

res

•D

iele

ctri

c W

ak

efie

ld A

ccel

era

tio

n

1. A

dv

an

tag

es, ea

rly

tim

es

2. H

igh

tra

nsf

orm

er r

ati

o

3. R

ecta

ng

ula

r sl

ab

s (t

heo

ry)

4. V

orp

al

sim

ula

tio

ns

•C

on

clu

sio

ns

Intr

od

uct

ion

Goal:

10 T

eV

Ele

ctr

on

Accele

rato

r

•C

ircu

lar

mac

hin

e. S

ynch

rotr

on r

adia

tion ∝

E4

•L

inea

r ac

cele

rato

r w

ith c

urr

ent

gra

die

nts

of ≈

0.0

5 G

V/m

=>

L >

200 k

m !

Searc

h f

or:

•A

lot

hig

her

fie

ld-g

radie

nts

.

•H

igh b

eam

qual

ity.

•L

ow

cost

.

New

acc

eler

atio

n t

echniq

ues

Intr

od

uct

ion

(2)

Cro

ss s

ecti

on

fo

r e+

e-∝

1/E

2 =

> T

o k

eep

σth

e sa

me

as f

or

E =

1 T

eV

Lu

min

osi

ty m

ust

in

crea

se a

t le

ast

10

0 x

!

yx

fN

πσ4

2

=

Ele

ctro

n b

un

ch e

ner

gy n

ot

eno

ug

h. B

eam

qu

alit

y a

lso

cru

cial

.

Sea

rch

fo

r:

•G

ener

ate

low

em

itta

nce

(<

1 µ

m)

hig

h c

har

ge

bea

ms

(>1

nC

).

•C

on

tro

l “c

oll

ecti

ve

effe

cts”

to

mai

nta

in b

eam

qu

alit

y.

•In

crea

se r

epet

itio

n r

ate

(>1

00

Hz)

.

•M

any o

ther

th

ing

s (t

ran

spo

rt l

ine,

bea

m d

iag

no

stic

s, m

ater

ials

, el

ectr

on

ics,

etc

.).

Intr

od

uct

ion

(3)

Ult

ra-h

igh

fie

lds

are

lim

ited

by

th

e E

M p

rop

erti

es

of

the a

ccele

rati

ng s

tru

ctu

re.

Str

uct

ure

M

ax

. F

ield

(M

V/m

)

Su

per

condu

ctin

g5

0

Met

alli

c2

00

Met

alli

c2

00

Die

lect

ric

> 1

03

(~

10

4)

Pla

sma

~ 1

05

Fuse

d s

ilic

a tu

bes

(100 µ

m I

D)

bre

akdow

n o

nse

t at

≈14 G

V/m

!

M.C

. T

hom

son,

et a

l, P

RL

(2008)

Pla

sma W

ak

efie

ld A

ccel

erati

on

Pla

sma w

ak

es

(lin

ear):

•L

ongit

udin

al e

lect

ric

fiel

d

• •W

akes

can

be

exci

ted b

y:

1. E

lect

ron d

rive

bea

m

nEz∝

2. P

hoto

ns

•T

yp

ical

wav

elen

gth

: 50 µ

m

•L

BN

L (

L’O

asis

: 1 G

eV o

ver

3.3

cm

)

Pla

sma

length

= 1

0 c

m

M. J.

Hogan

, et

al,

PR

L (

2005)

Dir

ect

Lase

r A

ccel

erati

on

•C

ross

ed l

aser

bea

ms

(32 m

rad)

to o

bta

in a

lon

git

ud

inal

com

ponen

t.

•E

lect

ric

fiel

d a

mp

litu

de:

1G

V/m

•In

tera

ctio

n r

egio

n:

1.5

mm

•T

he

two l

aser

bea

ms

are

in o

pp

osi

te

phas

e.p

has

e.

lase

r λ

< σ

zN

eed

pre

bu

nch

ing

an

d

com

pre

ssio

n!

LE

AP

Coll

abora

tion

Pro

ble

ms:

•li

mit

ed b

reak

do

wn

th

resh

old

s fo

r la

ser

op

tics

•lo

w i

nte

ract

ion

eff

icie

ncy

Die

lect

ric

Wak

efie

ld A

ccel

erati

on

(D

WA

)

Driv

e b

eam

Test

beam

Die

lectr

ic

c/n

Tra

nsv

erse

sec

tio

n

Vd

riv

e

c/n

Wave-f

ron

t

Ass

um

e:

Vd

rive ≈ ≈≈≈

c (

ult

ra-r

ela

tivis

tic)

In v

acu

um

:

•v

ph

ase

= ω

/kz

= v

dri

ve≈ ≈≈≈

c

•k =

kz

•st

atic

E:

only

rad

ial

com

ponen

t (E

z∝

1/γ

2)

•w

akef

ield

L C

her

enkov r

adia

tion

DW

A (

2)

Sy

nch

ron

ism

con

dit

ion

: O

K f

or

parti

all

y f

ille

d w

avegu

ides

!

Regu

lar

wavegu

ides:

TE

an

d T

M n

orm

al

mod

es

Parti

all

y f

ille

d w

avegu

ides:

Lon

git

ud

inal

Secti

on

Magn

eti

c (

LS

M)

(H f

ield

|| w

ith

die

lectr

ic s

urfa

ce;

Hy

= 0

)

Lon

git

ud

inal

Secti

on

Ele

ctr

ic (

LS

E)

(E f

ield

|| w

ith

die

lectr

ic s

urfa

ce;

Ey

= 0

)

Cau

sali

ty c

on

dit

ion

: w

ak

efi

eld

is

0 i

n f

ron

t of

the c

harge d

istr

ibu

tion

!

zd

zz

Wz

Wnz

nz

z′

′−

⋅′

=∑∫∞

)(

)(

ρ(z

)

zz′

z

0,=

nz

W0

,≠

nz

W

DW

A (

3)

x

y

ε εεε ε εεε

Tra

nsvers

e p

rofile

of

the c

urr

ent density (j)

),

()

,(

yx

yx

−=ρ

ρ

()(

)0

,,

,2

,2

=−

==

=

−a

xa

xy

Ly

Lx

ρρ

ρa

b

xy

zx

mk

EL

xπ ⋅

+=

⇒=

⇒±=

)12(

0,

)co

s()

(x

kx

x

k

k

x

x⋅

=∑λ

ρ

Lx

Dri

ve

ch

arg

e s

ym

me

try s

ets

th

e s

ym

me

try o

f th

e f

ield

s:

“monopoles”

(Ez(y

)=E

z(-

y))

: )si

nh(

)co

s(

)co

sh(

)si

n(

)co

sh(

)co

s(

yk

xk

E

yk

xk

E

yk

xk

E

xx

y

xx

x

xx

z

∝∝∝

“dipoles”

cosh(s

inh)

repla

ced b

y s

inh(c

osh)

x

xy

zL

mk

Ex

⋅+

=⇒

=⇒

±=

)12(

02

,

Vacu

um

regio

nD

iele

ctr

ic r

egio

n []

[]

[] )

(si

n)

cos(

)(

sin

)si

n(

)(

cos

)co

s(

yb

kx

kE

yb

kx

kE

yb

kx

kE

yx

y

yx

x

yx

z

−∝

−∝

−∝

22

2

⊥≡

+k

kk

yx

DW

A (

4)

Lim

it case:

)(o

r

0∞

→→

xx

Lk

[]

0

)(

sin

)(

4

0

2

0

−−

⋅+

LSE

y

LSM

E

ab

k

ab

a

Eελ

A. T

rem

ain

e a

nd

J.

Ro

se

nzw

eig

, P

R E

, 56

, 7

20

5, (1

99

7)

Driv

e b

eam

= f

lat

beam

!L

x>

> L

y

[]

)(

)(

cos

0,

zvt

vtz

kE

En

LSM

nz

−Θ⋅

−⋅

=1−

nyk

k

Tran

sform

er

rati

o:

−+

=m

in

max

WWk

→+ max

W

→− min

W

max

imum

acc

eler

atin

g v

olt

age

|max

imum

dec

eler

atin

g v

olt

age|

Th

eore

m:

2≤k

•dri

ve

char

ge

is s

ym

met

ric:

•dri

ve

char

ge

and t

est

char

ge

are

coll

inea

r

)(

)(

00

zz

zz

−=

−ρ

ρ

W0

dri

ve

bunch

ener

gy

kW

0te

st b

unch

ener

gy

when

dri

ve

bunch

is

bro

ught

to r

est

DW

A (

5)

Un

der

qu

ite g

en

eral

ass

um

pti

on

s:

⊥Area

QWz

σ<<

z

Ult

ra-h

igh

Wz

(>1 G

Vm

)

Str

uct

ure

s w

ith s

mal

l tr

ansv

erse

are

a(<

100µ

m x

100µ

m)

•hig

h q

ual

ity

bea

m

•hig

h e

ner

gy

T

o i

ncr

ease

focu

sab

ilit

y•

hig

h e

ner

gy

•m

ust

be

able

to d

eal

wit

h t

he

ver

y h

igh f

requen

cy r

egim

e (T

Hz)

•m

ater

ials

(b

reak

dow

n)

•b

eam

sta

bil

ity

Use

hig

h b

un

ch

ch

arge (

~ 1

00 n

C)

Argon

ne W

ak

efi

eld

Accele

rato

r (A

WA

)

Few

mm

’s s

truct

ure

s; f

ew 1

0’s

of

GH

z

Com

pari

son

wit

h V

OR

PA

L s

imu

lati

on

s

Theoretical model im

plementation:

•C

ha

rge

is d

ep

osite

d o

n g

rid

to

ma

ke

it

co

mp

atib

le w

ith

PIC

sim

ula

tio

ns

(Im

pa

ct-

T).

•y-c

ha

rge

dis

trib

utio

n is s

ym

me

tric

. N

o

dip

ole

co

ntr

ibu

tio

ns.

htt

p:/

/ww

w.t

xco

rp.c

om

•x-c

ha

rge

dis

trib

utio

n s

imu

late

d b

y t

he

su

pe

rpo

sitio

n o

f 2

0 F

ou

rie

r te

rms.

•z-c

ha

rge

dis

trib

utio

n is g

au

ssia

n w

ith

z0

(ce

nte

r o

f d

rive

ch

arg

e)

= 2

7.5

mm

an

d σ

z=

1.0

mm

.

•L

x=

10

.0 m

m

•a

= 2

.5 m

m a

nd

b =

5.0

mm

Lx

= L

yB

oth

LS

M a

nd

LS

E

Com

pari

son

wit

h V

OR

PA

L s

imu

lati

on

s (2

)

•d

rive

ch

arg

e p

ositio

n:

z =

27

.5 m

m

•fie

lds a

re e

stim

ate

d a

t x =

3.0

mm

an

d y

= 2

.0 m

m

•T

he

ore

tica

l m

od

el ig

no

res d

eca

yin

g m

od

es a

nd

sta

tic f

ield

s.

Com

pari

son

wit

h V

OR

PA

L s

imu

lati

on

s (3

)

•fie

lds a

re e

stim

ate

d a

t z =

18

.6 m

m (≈

8.9

mm

be

hin

d th

e d

rive

ch

arg

e).

•firs

t ro

w:

E-f

ield

s a

s f

un

ctio

ns o

f x a

t fixe

d y

= 0

.04

3 m

m (

ha

lf o

f b

in)

•se

co

nd

ro

w:

E-f

ield

s a

s f

un

ctio

ns o

f y a

t fixe

d x

= 0

.04

3 m

m

Arg

on

ne

Wak

efie

ld A

ccel

erato

r (A

WA

)

Sin

gle

bu

nch

op

erati

on

:

•Q

= 1

-100 n

C (

reac

hed

150 n

C)

•15 M

eV; σ

z=

2.0

mm

; e

x,n

< 2

00 µ

m (

at 1

00 n

C)

•P

eak c

urr

ent:

~10 k

A

Bu

nch

train

op

erati

on

:

•4 b

unch

es x

25 n

C o

r 16 b

unch

es x

5 n

C

•16-6

4 b

unch

es x

50-1

00 (

futu

re)

J. P

ow

er, IC

TA

Work

shop

(2006)

AW

A:

earl

y r

esu

lts

AW

A:

120 k

eV (

1988)

W. G

ai, et

al.

, P

RL

61, (2

756)

1988.

Measu

red

en

ergy

grad

ien

t: >

100 M

eV

/m (

2008)

M. E

. C

onde,

AA

C08

AW

A:

hig

h t

ran

sform

er r

ati

o e

xp

erim

ents

(Coll

ab

ora

tion

: Y

ale

, AN

L,

NIU

)

Non

-coll

inear

bu

nch

es

Incre

ase

tran

sform

er

rati

o

•tr

an

sform

er

rati

o:

~ 1

0

•m

ult

i-b

unch

dri

ve

trai

n

•dri

ve

bunch

sta

bil

ity

•lo

w c

ost

J. L. H

irshfield

S. V

. S

chelk

unov

M. A

. LaP

oin

te

Crit

ical

tilt

an

gle

: ~

70 m

rad

S. S

chel

kuno

v, et al,

PA

C1

1

AW

A:

hig

h t

ran

sform

er r

ati

o e

xp

erim

ents

(2)

Drive:

(R =

5.0

mm

)

Witness:

Rin

g s

ecto

r (r

1 =

4m

m; r2

= 5

mm

; l =

2 m

m)

Transmission:

-drive: 82%

-witness: 38%

Energy gain ≈ ≈≈≈500 keV

Q =

50 n

C

AW

A:

hig

h t

ran

sform

er r

ati

o e

xp

erim

ents

(3)

Tes

t b

eam

Dri

ve

bea

m

Exp

erim

en

tal

ch

all

en

ges:

•S

epar

ate

the

dri

ve

and t

est

bea

ms

in

tran

sver

se p

lane

(las

er, so

lenoid

s, g

un p

has

e).

•S

epar

ate

the

two b

eam

s lo

ngit

udin

ally

(las

er).

•C

ontr

ol

the

tilt

angle

=>

Ali

gnm

ent

is

crit

ical

!

•M

easu

re t

he

ener

gy

shif

t.

AW

A:

hig

h t

ran

sform

er r

ati

o e

xp

erim

ents

(4)

•E

ner

gy

shif

t an

d h

ori

zonta

l kic

k w

ere

mea

sure

d f

or

3 p

has

e del

ays

bet

wee

n d

rive

and w

itnes

s b

eam

s.

•L

arges

t av

erag

e en

ergy

shif

t w

as: ≈

200 k

eV

•E

ner

gy

shif

t an

d h

ori

zonta

l kic

k (

FX)

exce

llen

t

agre

emen

t w

ith t

heo

ry.

•Q

(dri

ve

bea

m)

too l

ow

to d

irec

tly

mea

sure

TR

. S

. S

chel

kunov,

et al,

PA

C11

A b

ett

er

ch

oic

e f

or

the d

riv

e b

eam

: rin

g s

hap

eN

o o

ff-a

xis

beam

AW

A:

rin

g b

eam

s

•tr

an

sform

er

rati

o:

~ 1

0

•m

ult

i-b

unch

dri

ve

trai

n

•d

riv

e b

un

ch

sta

bil

ity

•lo

w c

ost

J. H

irsh

fiel

d, et al,

PR

ST

-AB

(2

00

9)

AW

A:

tria

ngu

lar

shap

ed b

eam

s

Dest

roy

driv

e b

un

ch

sy

mm

etr

y

Incre

ase

tran

sform

er

rati

o k

K i

s m

axim

um

wh

en

th

e d

ecele

rati

ng v

olt

age

is c

on

stan

t acro

ss t

he d

riv

e b

un

ch

.is

con

stan

t acro

ss t

he d

riv

e b

un

ch

.

Sam

e d

ecele

rati

on

Nn

nqn

,,1

12

L=

+=

Acc

elD

ecel

.

q1

q1

-q1/2

q2

q3

–q

2+

q1

q1

–q

2/2

q3

q2

-q

1

q2

–q

1–

q3/2

q4

q4

–q

3+

q2

–q

1q

3–

q2

+ q

1–

q4/2

L

2N

K=

2λ=

d

Exp

erim

en

tal

ch

all

en

ge:

contr

ol

char

ge

rati

os

J. P

ow

er, et al,

PA

C01

Tri

an

gu

lar

shap

ed b

eam

s (2

)

Ram

ped

bea

m o

f 4 b

unch

es

Hig

h t

ransf

orm

er r

atio

(≈

10)

but

low

er

fiel

d g

radie

nt

(≈60 M

V/m

)

1-b

unch

bea

m

Hig

h f

ield

gra

die

nt

(≈200 M

V/m

) b

ut

low

er

tran

sform

er r

atio

(≈

2)

Low

er c

ontr

ibuti

on f

rom

hig

her

ord

er m

odes

Use

of

Fla

tbea

ms

Ferm

ilab

A0 P

hoto

inje

cto

r

ε x/ε

y≈

100 P

iot,

Sun, K

im, P

RS

T-A

B (

2006)

�ε x

= 4

0 µ

m;

ε y=

0.4

µm

�σ

x=

2 m

m; σ

y ≈

10

0 µ

m

�Q

= 0

.5 n

C

Bri

nkm

ann,

Der

ben

ev,

Flo

tman

n,

PR

ST

-AB

(2001)

Pro

of

of

pri

nci

ple

: D

. E

dw

ards,

et al,

PA

C01 (

2001)

•T

he

bea

m m

ainta

ins

its

tran

sver

se s

hap

e over

a

larg

e dis

tance

=>

Hig

her

ener

gy

gai

n f

or

the

wit

nes

s b

eam

.

•C

an o

bta

in l

arge

fiel

d g

radie

nts

.

•In

the

lim

it σ

z<

< λ

=>

Fy

= q

(Ey

+ v

Bx) ≈

0 =

>

no b

eam

bre

ak

-up

.

•M

atch

wel

l w

ith s

lab

-sy

mm

etri

c st

ruct

ure

s.

Ad

va

nta

ges

:

Q =

0.5

nC

∆z

= 6

.7 c

m

NM

L/A

0 (

?):

fla

tbea

ms

Des

ired

bea

m p

ara

met

ers:

•σ

y=

50

µm

; σ

x≈

20σ

yy

M. C

hurc

h, et al,

PA

C07

P. P

iot,

et al,

AA

C8

•ε y≤

1 µ

m;

ε x≈

10

0ε y

•σ

z=

50

µm

•Q

= 3

.0 n

C

Ez≈ ≈≈≈

0.3

GV

/m

Str

uct

ure

pa

ram

eter

s:

�a

= 1

00

µm

�b

= 3

00

µm

�ε

= 4

.0

z

Con

clu

sion

s:

�D

iele

ctr

ic l

oad

ed

wavegu

ides

can

su

stain

ult

ra-h

igh

fie

ld g

rad

ien

ts (

> 1

GV

/m).

�L

ow

ch

arge d

riv

e b

eam

s (~

1n

C)

can

pro

du

ce u

ltra-h

igh

fie

ld g

rad

ien

ts i

f fo

cu

sed

to

the l

evel

of

10’s

of

mic

ron

s.

�F

ield

grad

ien

ts o

f ab

ou

t 100 M

V/m

were

alr

ead

y o

bta

ined

at

AW

A.

�R

ecta

ngu

lar

stru

ctu

res

all

ow

:�

Recta

ngu

lar

stru

ctu

res

all

ow

:

�B

eam

tail

orin

g i

s th

e k

ey

or

hig

h f

ield

grad

ien

ts a

nd

hig

h t

ran

sform

er

rati

o.

•b

eam

focu

sing i

n o

ne

dir

ecti

on

•use

of

flat

bea

ms

•hig

her

ener

gy

gai

n (

longer

str

uct

ure

s)

•li

mit

ed b

eam

bea

k-u

p

•lo

w c

ost