43
1/41 Superconducting Magnets for Fusion Application Luisa Chiesa ([email protected]) October 8, 2009 Accelerator Physics and Technology Seminars, FNAL

Superconducting Magnets for Fusion Application - …beamdocs.fnal.gov/AD/DocDB/0034/003471/001/10-8-0… ·  · 2009-10-13Superconducting Magnets for Fusion Application Luisa Chiesa

  • Upload
    vumien

  • View
    226

  • Download
    5

Embed Size (px)

Citation preview

1/41

Super

conduct

ing M

agnet

s fo

r Fusion

Applica

tion

Lu

isa

Ch

iesa

(Luis

a.C

hie

sa@

tuft

s.ed

u)

Oct

ob

er 8

, 20

09

Acc

eler

ator

Physi

cs a

nd T

echn

olo

gy S

emin

ars,

FN

AL

2/41

Outline

In

troduct

ion

S

uper

conduct

ivit

y a

nd i

ts a

ppli

cati

ons

H

igh e

ner

gy p

hysi

cs

F

usi

on

M

echan

ical

beh

avio

r of

cable

in c

onduit

conduct

ors

C

oncl

usi

ons

3/41

What is superconductivity?

A m

ater

ial

is s

aid

to

be

sup

erco

nd

uct

ive

if i

t h

as t

he

abil

ity o

f co

nd

uct

ing

ele

ctri

city

WIT

HO

UT

the

loss

of

ener

gy…

bas

ical

ly y

ou

car

ry c

urr

ent

for

FR

EE

!

In 1

908

H. K

amer

lin

gh

Onn

es

succ

essf

ull

y l

iqu

ifie

d

hel

ium

.

In 1

911

he

studie

d

the

low

tem

per

ature

resi

stiv

ity o

f m

ercu

ry

and…

He

go

t th

e N

ob

el

pri

ce i

n 1

91

3 f

or

it.

In 1

957

th

e B

CS

th

eory

was

dev

elop

ed a

nd

expla

ined

su

per

con

duct

ivit

y t

hro

ug

h a

mac

rosc

op

ic

coll

ecti

ve

qu

antu

m m

ech

anic

eff

ect.

Her

e’s

a

SIM

PL

IFIE

D

expla

nat

ion…

Req

uir

emen

t is

to

hav

e

LOW TEMPERATURES

4/41

What does BCS theory get you?

No

bel

pri

ce i

n p

hy

sics

19

72

Bar

dee

nC

oo

per

Sch

rief

fer

In 1

98

6 B

edn

orz

an

d M

ull

er d

isco

ver

ed superconductivity at high temperatures

in

layer

ed m

ater

ials

co

mp

risi

ng

co

pp

er o

xid

e p

lan

es a

nd

…th

ey g

ot

the

No

bel

pri

ce f

or

it i

n 1

98

7.

No

bel

pri

ce i

n p

hy

sics

19

87

Bed

no

rzM

ull

er

5/41

Type of superconductors

Th

ere

are

two

typ

es o

f su

per

con

du

ctin

g m

ater

ials

:

Type II

(co

mp

osi

te m

ater

ials

):

mix

ed s

tate

an

d a

llo

w p

arti

al p

enet

rati

on

Type I

(pu

re m

etal

s):

per

fect

dia

mag

net

ism

Perfect Diamagnetism

Diamagnetism

6/41

Critical Field

field

Bc2

Bc1

Tc

temperature

NO

RM

AL

ST

AT

E

MIX

ED

ST

AT

E

ME

ISS

NE

R (

type

I)(T

yp

e I)

Type I

sup

erco

nd

uct

or

wit

hst

and

ver

y

low

mag

net

ic f

ield

(<

0.1

T).

An

ele

ctri

c cu

rren

t in

a w

ire

crea

tes

mag

net

ic f

ield

. S

up

erco

nd

uct

ors

are

wel

l su

ited

fo

r m

akin

g s

tro

ng

el

ectr

om

agn

ets

(no

lo

ss a

nd

hig

h c

urr

ents

).B

UT

if

an “

exte

rnal

”fi

eld

ap

pli

ed t

o a

sin

gle

str

and

is

too

hig

h, it

wil

l ca

use

th

etr

ansi

tio

n f

rom

su

per

con

du

ctin

g t

o r

esis

tiv

e st

ate.

Pra

ctic

al m

ater

ials

fo

r el

ectr

om

agn

ets

are

on

ly Type II

sup

erco

nd

uct

ors

(cr

itic

al f

ield

up

to

30

T).

Examples:

Pb

V Ta

Hg

Sn

In Ti

Zn

Examples:

NbT

iM

gB

2

Nb

3S

nH

TS

(Y

BC

O, B

SS

CO

)

Nb

3A

l

V3G

a

Nb

3G

a

Ga

Nb

Zn

7/41

J, B, T

A s

up

erco

nd

uct

or

is c

har

acte

rize

d b

y a

cri

tica

l

curr

ent

I c(o

r cu

rren

t d

ensi

ty J

c),

a c

riti

cal

fiel

d

Bc,

a c

riti

cal

tem

per

atu

re T

c.

Dep

end

ing

on

th

e cr

itic

al t

emp

erat

ure

sup

erco

nd

uct

ors

are

def

ined

as

Lo

w T

emp

erat

ure

Su

per

con

du

cto

r (L

TS

)

Hig

h T

emp

erat

ure

Su

per

con

du

cto

r (H

TS

)

10

100

1000

10000

05

10

15

20

25

30

35

40

45

Applied Field (T)

JE(A/mm²)

YBCO Insert Tape (B|| Tape Plane)

YBCO Insert Tape (B

⊥ ⊥⊥⊥Tape Plane)

MgB219Fil 24% Fill (HyperTech)

2212 OI-ST 28%

Ceram

ic Filaments

NbTi LHC Production 38%

SC (4.2K)

Nb3Sn RRP Internal Sn (OI-ST)

Nb3Sn High Sn Bronze Cu:Non-Cu 0.3

YBCO B|| Tape Plane

YBCO B

YBCO B

⊥ ⊥⊥⊥⊥ ⊥⊥⊥Tape Plane

Tape Plane

2212

RRP Nb

RRP Nb33Sn

Sn

Bronze

Bronze

Nb

Nb33Sn

Sn

MgB2Nb

Nb-- TiTi

SuperPower tape

SuperPower tape

used in record

used in record

breaking NHMFL

breaking NHMFL

insert coil 2007

insert coil 2007

18+1 MgB

18+1 MgB22/Nb/Cu/Monel

/Nb/Cu/Monel

Courtesy M. Tomsic, 2007

Courtesy M. Tomsic, 2007

427 filam

ent st

rand w

ith

Ag a

lloy

oute

r sh

eath

test

ed a

t N

HM

FL

Maximal J Efor

entire LHC Nb-Ti

strand production

(–)CERN-

T.Boutboul '07,

and (--)<5T data

from Boutboul et al.

MT-19, IEEE-

TASC’06)

Complied from

Complied from

ASC'02 and

ASC'02 and

ICMC'03 papers

ICMC'03 papers

(J. Parrell OI

(J. Parrell OI --ST)

ST)

4543 filament High Sn

4543 filament High Sn

Bronze

Bronze-- 16wt.%Sn

16wt.%Sn--

0.3wt%Ti (M

iyazaki

0.3wt%Ti (M

iyazaki --

MT18

MT18-- IEEE

IEEE’’ 04)

04)

10

100

1000

10000

05

10

15

20

25

30

35

40

45

Applied Field (T)

JE(A/mm²)

YBCO Insert Tape (B|| Tape Plane)

YBCO Insert Tape (B

⊥ ⊥⊥⊥Tape Plane)

MgB219Fil 24% Fill (HyperTech)

2212 OI-ST 28%

Ceram

ic Filaments

NbTi LHC Production 38%

SC (4.2K)

Nb3Sn RRP Internal Sn (OI-ST)

Nb3Sn High Sn Bronze Cu:Non-Cu 0.3

YBCO B|| Tape Plane

YBCO B

YBCO B

⊥ ⊥⊥⊥⊥ ⊥⊥⊥Tape Plane

Tape Plane

2212

RRP Nb

RRP Nb33Sn

Sn

Bronze

Bronze

Nb

Nb33Sn

Sn

MgB2Nb

Nb-- TiTi

SuperPower tape

SuperPower tape

used in record

used in record

breaking NHMFL

breaking NHMFL

insert coil 2007

insert coil 2007

18+1 MgB

18+1 MgB22/Nb/Cu/Monel

/Nb/Cu/Monel

Courtesy M. Tomsic, 2007

Courtesy M. Tomsic, 2007

427 filam

ent st

rand w

ith

Ag a

lloy

oute

r sh

eath

test

ed a

t N

HM

FL

Maximal J Efor

entire LHC Nb-Ti

strand production

(–)CERN-

T.Boutboul '07,

and (--)<5T data

from Boutboul et al.

MT-19, IEEE-

TASC’06)

Complied from

Complied from

ASC'02 and

ASC'02 and

ICMC'03 papers

ICMC'03 papers

(J. Parrell OI

(J. Parrell OI --ST)

ST)

4543 filament High Sn

4543 filament High Sn

Bronze

Bronze-- 16wt.%Sn

16wt.%Sn--

0.3wt%Ti (M

iyazaki

0.3wt%Ti (M

iyazaki --

MT18

MT18-- IEEE

IEEE’’ 04)

04)

8/41

Materials suitable for magnets

Man

y m

ater

ials

are

su

per

con

du

ctiv

e b

ut

on

ly f

ew o

f th

em a

re r

ead

y t

o b

e u

sed

in

su

per

con

du

ctin

g

mag

net

s.

Nb

3S

n(a

fter

hea

t tr

eatm

ent

bec

om

es B

RIT

TL

E a

nd

sen

siti

ve

to s

trai

n)

crit

ical

tem

per

atu

re

18

.2 K

crit

ical

fie

ld2

4.5

T (

@ 4

.2 K

)

Nb

Ti

crit

ical

tem

per

atu

re

9.1

K

crit

ical

fie

ld1

0.5

T (

@ 4

.2 K

)

9/41

High Tem

perature Superconductors

Hig

h T

emp

erat

ure

Su

per

con

du

cto

rs a

re m

ater

ials

of

inte

rest

bec

ause

th

ey c

an o

per

ate

at

hig

her

tem

per

atu

re (

liq

uid

nit

rog

en v

s. l

iqu

id h

eliu

m).

4.1

mm

0.2

2 m

m

First Generation (1G) HTS wire

Multi-Filamentary Composite

(Co

mm

erci

ally

avai

lab

le)

Super

Pow

er

Second Generation (2G) HTS wire

Coated Conductor Composite

(Co

mm

erci

ally

avai

lab

le A

MS

C, S

up

erp

ow

er)

Su

bst

rate

50

µm

Cop

per

Sta

bil

izer

20

µm

Sil

ver

Over

layer

2 µ

m

(RE

)BC

O H

TS

1 µ

m

Bu

ffer

sta

ck ~

0.2

µm

10/41

Energy Applications

Su

per

con

du

ctin

g M

agn

etic

En

erg

y S

tora

ge

(SM

ES

)F

usi

on

En

erg

y

Su

per

con

du

ctin

g P

ow

er T

ran

smis

sio

n C

able

s“S

up

er-c

able

”H

yd

rog

en-E

lect

rici

ty t

ran

spo

rt

Copper

str

and 1

0A

/mm

2

Super

condu

ctor

600

-120

0A

/mm

2

11/41

Other Applications

Mag

net

ic R

eso

nan

ce I

mag

ing

(M

RI)

Hig

h E

ner

gy

Ph

ysi

cs

Mag

net

ic L

evit

atio

n

12/41

High Energy Physics-LHC

Th

e L

arg

e H

adro

nC

oll

ider

(L

HC

) is

a 2

7-k

ilo

met

er c

ircu

lar

coll

ider

in

wh

ich

hig

h-e

ner

gy p

roto

ns

in tw

o co

un

ter-

rota

tin

g b

eam

s w

ill

be

smas

hed

to

get

her

in

se

arch

o

f H

igg

s b

oso

ns

and n

ew

par

ticl

es p

red

icte

d b

y s

up

er-s

ym

met

ry.

Th

e b

eam

s ar

e ac

cele

rate

d a

nd

kep

t ci

rcu

lati

ng

usi

ng

sup

erco

nd

uct

ing

mag

net

s.

Wh

y s

up

erco

nd

uct

ing

?

Usi

ng

co

pp

er m

agn

ets

we

wo

uld

nee

d >1000 M

W

Wit

h s

up

erco

nd

uct

ing

mag

net

s “o

nly

”120 M

W

(cry

og

enic

27

.5 M

W,

exp

erim

ents

22

MW

)

13/41

How strong is strong?

1.9

K s

up

erco

nd

uct

ing

dip

ole

s p

rod

uci

ng

a f

ield

of

8.3

T -

curr

ent

11

85

0 A

.

Th

e m

ach

ine

has

ro

ug

hly

~5

00

0 m

agn

ets

Mai

n m

agn

et c

om

po

nen

ts a

re b

end

ing

mag

net

s (D

IPO

LE

S, 1

23

2 t

ota

l,1

4.3

m l

on

g, 3

5 t

on

in

wei

gh

t)

Qu

adru

po

les

are

use

d t

o f

ocu

s th

e b

eam

in

th

e in

tera

ctio

n r

egio

ns

Sto

red

mag

net

ic e

ner

gy i

s ~

1.3

GJ

per

sec

tor

(8 s

ecto

rs, to

tal

ener

gy s

tore

d 1

1 G

J).

“The

com

bin

ed s

tran

ds

of

the

super

conduct

ing c

able

s fo

r th

e m

achin

e w

ould

go a

round t

he

equ

ator

6.8

tim

es.

If y

ou a

dd a

ll t

he

fila

men

ts o

f th

e st

rands

toget

her

th

ey w

ould

str

etch

to t

he

sun a

nd b

ack 5

tim

es w

ith e

nough l

eft

over

for

a fe

w t

rips

to t

he

moon.”

Ruth

erfo

rd c

able

Nb

Ti

Sup

erco

nd

uct

ing s

tran

dS

up

erco

nd

uct

ing f

ilam

ents

Win

dR

eact

Ep

ox

y i

mp

reg

nat

ion a

nd

in

stru

men

tati

on

14/41

Cooling of magnets

0.6 m

6 cm

0.6 m

6 cm

LH

C d

ipo

le c

ross

sec

tio

n

LH

C m

agn

ets

are

Nb

Ti

and

co

ole

d w

ith

su

per

flu

idh

eliu

m a

t 1

.9 K

(b

elo

w 2

.17

K p

art

of

the

flu

id h

as

“zer

o”

vis

cosi

ty).

Th

e ca

ble

s ar

e em

bed

ded

in

ep

ox

y e

lim

inat

ing

lo

cal

coo

lan

t (a

dia

bat

ic w

ind

ing

)

Win

din

g i

s a

sin

gle

mo

no

lith

ic e

nti

ty (

imp

rov

e m

echan

ical

sta

bil

ity

).

Th

e w

ind

ing

is

glo

bal

ly c

oo

led

by f

orc

ed-f

low

cry

og

en (

vs.

fu

sio

n m

agn

ets)

.

Cry

og

en f

orc

ed t

hro

ug

h p

ipe

15/41

Main M

agnets

Mag

net

s ar

e d

esig

ned

to

rea

ch a

n i

dea

l si

ng

le m

ult

ipo

le(d

ipo

le, q

uad

rup

ole

and

so

on

)

to a

vo

id s

pre

adin

g o

f b

eam

.

In r

eal

life

we

hav

e to

dea

l w

ith

har

mo

nic

s an

d w

e w

ant

them

to

be

smal

l (0

.01

% d

evia

tio

n

fro

m i

dea

l fi

eld

) o

r co

rrec

t th

em w

ith

geo

met

ry c

han

ges

.

Dip

ole

to

ben

d t

he

bea

mQ

uad

rup

ole

to f

ocu

s th

e b

eam

at

the

inte

ract

ion

reg

ion

16/41

CMS detector

Cab

les

use

d i

n C

MS

so

len

oid

(cr

yo

stab

le)

CM

S d

etec

tor

Co

ndu

cto

r n

eed

s to

ab

sorb

a l

ot

of

hea

t an

d p

rod

uce

s lo

wer

fie

ld

(~4

-5T

) so

les

s su

per

con

du

ctin

g

stra

nd

s ar

e u

sed

in

alu

min

um

stab

iliz

er (

loca

l co

ola

nt)

.

Alu

min

um

all

oy r

einfo

rcem

ent

Alu

min

um

sta

bil

izer

17/41

Pla

sma

self

-hea

tin

g

Tri

tiu

m

rep

len

ish

men

t

Li

Electricity,

Hydrogen

What about fusion?

Fu

sio

n a

nd

pla

sma

ph

ysi

cs a

re a

t th

e co

re o

f n

atu

re’s

mo

st i

ntr

igu

ing

sel

f d

riv

en s

yst

ems.

Ex

amp

les?

Th

e su

n c

on

fin

es h

ot

pla

sma

(gra

vit

atio

nal

an

d m

agn

etic

co

nfi

nem

ents

).

Pro

du

cin

g p

ow

er u

sin

g f

usi

on

rea

ctio

ns

has

bee

n t

he

gre

at p

rom

ise

of

the

last

50 years…

How m

any m

ore do we have to wait?

18/41

Like charges rep

el each

other

Pro

ble

m 1

: P

arti

cles

mu

st h

ave

eno

ug

h e

ner

gy

to

ov

erco

me

the

cou

lom

b b

arri

er.

Th

eref

ore

: v

ery

ho

t (1

00

Million

Deg

rees

) P

lasm

a

Pro

ble

m 2

: In

ph

ysi

cs t

erm

s: σCoul>> σfusion

Th

erm

al d

istr

ibu

tio

n

Problem: Coulomb Barrier

Fo

r fu

sio

n w

e n

eed

to

get

a. e

no

ug

h particles

at a

b. h

igh

en

ou

gh

temperature

c. f

or

a lo

ng

en

ou

gh

tim

eto

fu

se.

Fu

sio

n r

equ

ires

T = 15 keV

(10

0 M

illi

on

deg

rees

).

Fu

sio

n r

equ

ires

n = 1020m

-3(1

Mil

lio

n t

imes

les

s d

ense

th

an a

ir).

Th

is m

ean

s w

e n

eed

τ τττ= 1 –10 sec

pτ τττ>8 atm-sec

Confinement

19/41

Ho

t p

lasm

as l

ike

to s

pre

ad o

ut.

H

ow

can

th

ey b

e co

nfi

ned

? W

e ca

n’t

pu

t it

in

a c

on

tain

er b

ut…

•G

rav

itat

ion

al C

on

fin

emen

t:

Sta

rs d

o i

t th

is w

ay s

o w

e n

eed

sta

r-si

ze p

lasm

a.

•In

erti

al c

on

fin

emen

t:

Get

en

ou

gh

fu

sio

n f

uel

ho

t en

ou

gh

an

d c

lose

en

ou

gh

to

get

her

th

at

the

reac

tio

n i

s d

on

e b

efo

re i

t h

as t

ime

to s

pre

ad o

ut.

•M

agn

etic

Co

nfi

nem

ent:

Th

e le

adin

g s

chem

e fo

r en

erg

y p

rod

uct

ion

. T

ake

adv

anta

ge

of

char

ged

par

ticl

es t

end

ency

to

cli

ng

to

mag

net

ic f

ield

lin

es.

How do we confine very hot particles

20/41

Rec

all cyclotron orbits

a. G

oo

d c

on

fin

emen

t p

erp

end

icu

lar

to B c

ircu

lar

orb

its

per

pen

dic

ula

r to

th

e fi

eld

wit

h

gyro

-rad

ius

r l=

v⊥/Ω

, w

her

e Ω

=q

B/m

c

b. N

o c

on

fin

emen

t p

aral

lel

to B

Un

ifo

rm F

ield

Incomplete confinem

ent!

Magnetic confinem

ent

The Answ

er:

"D

onuts. Is

ther

e anyt

hin

g they

can't d

o?"

-Hom

er Sim

pso

n

Tokamak:

Th

e m

ost

su

cces

sfu

l co

nfi

gu

rati

on

to

dat

e.

Spherical Torus:

So

me

adv

anta

ges

ov

er t

ok

amak

bu

t

less

dev

elo

ped

.

Stellarator:

Mo

re s

tab

le, b

ut

has

no

t d

emo

nst

rate

d

con

fin

emen

t o

f a

tok

amak

.

Dipole:

Pro

mis

ing

bu

t tr

ick

y

21/41

We

nee

d t

o c

on

tain

a h

igh

tem

per

atu

re,

T,

hig

h d

ensi

ty,

n, p

lasm

a fo

r a

lon

g e

no

ugh

tim

e, τ

,to

ach

iev

e ig

nit

ion

(P

ow

erout>

> P

ow

erin

)W

hy

is

it s

o d

iffi

cult

to

ach

iev

e in

th

e la

b?

It w

ork

s la

rge

scal

e…

We

on

ly n

eed

τ ∼

1-1

0 s

bu

t τ

incr

ease

s w

ith

th

e si

ze o

f th

e m

ach

ine

($$

$)

and

“C

onfinin

g p

lasm

a is like

hold

ing jello

with rubber

bands”

Fu

sio

n p

ow

er d

ensi

ty i

n s

un

~ 3

00

W/m

3,

In a

bu

rnin

g p

lasm

a ex

per

imen

t ~

10

MW

/m3

Ph

ysi

cs(e

qu

ilib

riu

m,

stab

ilit

y,

tran

spo

rt)

and

en

gin

eeri

ng c

hal

len

ges

What do we need to m

ake fusion power?

22/41

•W

ater

-co

ole

d c

op

per

to

kam

ak

•W

orl

d’s

lar

ges

t fu

sio

n d

evic

e

Existing experim

ents: Joint European Torus

23/41

JET, PPPL, MIT

MIT

-Alc

ato

r

PP

PL

-TF

TR

24/41

KS

TA

R T

okam

ak

•T

oro

idal

Fie

ld C

oil

s -

Nb

3S

n C

ICC

wit

h I

nco

loy A

llo

y 9

08

Jac

ket

35

.2 k

A

7.2

T (

max

fie

ld)

•C

entr

al S

ole

no

id -

Nb

3S

n C

ICC

wit

h

Inco

loy

All

oy 9

08

Jac

ket

25

kA

•P

olo

idal

Fie

ld C

oil

s -

Nb

Ti

CIC

C w

ith

mo

dif

ied

31

6L

N J

ack

et

•2

0 t

on

s o

f N

b3S

n i

s la

rges

t p

rod

uct

ion

run

sin

ce I

TE

R E

DA

Mo

del

Co

ils

Why not superconducting then?

EA

ST

Tokam

ak

•M

agn

ets

are

Nb

Ti

CIC

C w

ith

SS

Jac

ket

•O

per

atin

g t

emp

erat

ure

is

3.8

K

•T

F 1

4.3

kA

at

5.8

T (

max

fie

ld)

•C

S p

lasm

a in

itia

tio

n c

ycl

e 1

4.5

kA

4

.3 T

(max

fie

ld)

•F

ast

dis

char

ge

at 6

.8 T

/s

25/41

In a

ste

llar

ato

rw

e u

se a

sin

gle

co

il s

yst

em w

ith

no

lo

ng

itu

din

al n

et-c

urr

ent

in t

he

pla

sma

and

hen

ce

wit

ho

ut

a tr

ansf

orm

er (

con

tin

uo

us

op

erat

ion

an

d i

nh

eren

t st

abil

ity

).

Alternative design Stellarator

26/41

The future promise…IT

ER

Div

erto

r

54

cas

sett

es

Cen

tral

Sole

noid

Nb

3S

n, 6

mo

dule

s

To

roid

al F

ield

Co

il

Nb

3S

n, 18

, w

edg

ed

Polo

idal

Fie

ld C

oil

Nb

-Ti,

6

Bla

nk

et M

odule

440

m

od

ule

s

Vac

uu

m V

esse

l

9 s

ecto

rs

Cry

ost

at

24

m h

igh

x 2

8 m

dia

.

Port

Plu

g (

IC H

eati

ng)

6 h

eati

ng

3 t

est

bla

nk

ets

To

rus

Cry

opu

mp

8 u

nit

s

Fu

sio

n P

ow

er:

500

MW

Pla

sma

Vo

lum

e: 8

40

m3

Q ≥

10

Pla

sma

Indu

ctiv

e B

urn

Tim

e ≥

400

s

No

min

al P

lasm

a C

urr

ent:

15

MA

To

roid

alfi

eld

5.3

T

Typ

ical

Tem

per

ature

: 2

0 k

eV

Typ

ical

Den

sity

: 10

20

m-3

Ind

ia

27/41

ITER coil assem

bly

Nu

mb

er o

f T

F c

oil

s 1

8

Mag

net

ic e

ner

gy i

n T

F c

oil

(G

J)4

1

Op

erat

ing

cu

rren

t (k

A)

68

Max

imu

m f

ield

(T

)1

1.8

Cen

teri

ng

fo

rce

per

TF

co

il (

MN

)4

03

Ver

tica

l fo

rce

per

hal

f T

F c

oil

(M

N)

20

5

ITE

R t

echnic

al b

asis

Nu

mb

er o

f C

S m

od

ule

s 6

Mag

net

ic e

ner

gy i

n C

S c

oil

(G

J)2

1

Op

erat

ing

cu

rren

t (k

A)

41

.8/4

6

Max

imu

m f

ield

(T

)1

3.5

/12

.8

28/41

Cable-In-C

onduit-C

onductor

Fu

sio

n m

agn

ets

are cryostable

mag

net

s ch

arac

teri

zed

by t

he

pre

sen

ce o

f lo

cal

or

“nea

r-lo

cal”

coo

lin

g

(vs.

HE

P m

agn

ets)

. C

able

d s

tran

ds

of

sup

erco

nd

uct

or

enca

sed

in

aco

nd

uit

(C

ICC

), w

hic

h p

rov

ides

mec

han

ical

str

eng

th(R×J×

B)

larg

e an

d t

hro

ug

h w

hic

h s

ing

le-p

has

e cr

yo

gen

(g

ener

ally

hel

ium

) is

forc

ed t

o p

rov

ide

coo

lin

g t

o t

he

sup

erco

nd

uct

or.

Th

e ca

ble

s ar

e w

ou

nd

in

sta

ges

(fo

r ex

amp

le 3

x3

x4

x5

x6

).

Per

form

ance

of

Nb3

Sn

cab

le i

s cr

uci

al t

o r

each

des

ired

plasm

a current

and

tim

e o

f plasm

a burn.

Cri

tica

l ef

fect

s th

at c

ou

ld r

edu

ce p

erfo

rman

ce:

AC

lo

sses

an

d m

echanical effects

.

45

mm

Co

oli

ng

ch

ann

el a

nd

vo

id f

ract

ion

~3

0%

Fo

rced

sin

gle

-ph

ase

cryo

gen

Co

nd

uit

29/41

Mechanical Effects

d

Nb

3S

n s

up

erco

nd

uct

or

per

form

ance

is very sensitive

to s

trai

ns

(vs.

Nb

Ti

use

d i

n H

EP

).

Var

iou

s st

rain

s ap

pea

r in

a m

agn

et:

-A

xia

l T

her

mal

mis

mat

ch a

nd

ho

op

fo

rce

-B

end

ing

Th

erm

al m

ism

atch

an

d L

ore

ntz

fo

rce

-T

ran

sver

seL

ore

ntz

fo

rce

B

I

F

N.

Mit

chel

l, F

usi

on E

ng.

and

Des

ign,

Vo

l. 6

6–6

8, p

. 97

1–9

93,

200

3.

30/41

TFMC-C

SMC and Bending M

odel

d

N.

Mit

chel

l, F

usi

on E

ng.

and

Des

ign,

Vo

l. 6

6–6

8, p

. 97

1–9

93,

200

3.

ITE

R m

od

el c

oil

tes

t re

sult

s sh

ow

ed unexpected degradation

in 2

00

0-2

00

3:

50

% T

FM

C

35

% C

SI,

TF

I

25

% C

SM

C

A bending

mo

del

to

ex

pla

in t

he

deg

rad

atio

n h

as b

een

pro

po

sed

by N

. M

itch

ell:

N.

Mar

tovet

sky,

Ph

ysi

caC

40

1 (

20

04

) 2

2–

27.

Ben

din

g i

s w

her

e m

ost

of

the

exp

erim

enta

l w

ork

fo

cuse

d i

n t

he

pas

t fe

w y

ears

.

Transverse load

effe

ct i

s co

nsi

der

ed s

eco

nd

ary.

31/41

Single Strand Experiments

D.

Ugli

etti

et a

l.,I

EE

ET

ransa

ctio

ns

on

Ap

pli

ed S

up

erco

nd

uct

ivit

y,

v.1

3,

n2

,

June

20

03

, p

35

44

-35

47

.

EMPIR

ICAL

scal

ing

law

s ex

ist

to

esti

mat

e th

e d

egra

dat

ion

cau

sed

by t

he

axia

l st

rain

.

Un

cert

ain

ty e

xis

ts i

n t

he

real

ax

ial

stra

in c

on

dit

ion

of

a st

ran

d i

n a

cab

le

and

th

is e

ffec

t al

on

e d

oes

no

t ex

pla

in

the

beh

avio

r o

f a

full

siz

e ca

ble

.(I

TE

R d

esig

n v

alues

-0.7

% f

or

stee

l ja

cket

, -0

.3%

for

Inco

loy

All

oy 9

08

®.)

Un

i-ax

ial

stra

in d

epen

den

ce.

A.

Nij

huis

et a

l.,

Sup

erco

nd

. S

ci.

Tec

hno

l. 1

8,

20

05

, p.

S27

3-S

28

3.

Bea

ms

(sam

ple

ho

lder

)

Sup

erco

nd

uct

ing w

ires

Ro

tati

on a

xes

Ro

tati

on a

rms

Fix

ed e

nd

s

Cu j

oin

ts

D.

L.

Har

ris,

M.S

. in

Mec

han

ical

En

gin

eeri

ng,

Mas

sach

use

tts

Inst

itute

of

Tec

hno

log

y,

U.S

.A.

20

05.

A.

All

egri

tti,

Univ

ersi

ty o

f B

olo

gna,

Dep

artm

ent

of

Mec

han

ical

En

gin

eeri

ng,

Ital

y,

20

06

.

Ben

din

g e

ffec

t.T

ran

sver

se l

oad

eff

ect.

A.

Nij

huis

et a

l.,

Sup

erco

nd

.

Sci

. T

echno

l. 1

9,

20

06

,

p.

108

9–1

096

.

B.

See

ber

et a

l.,

Sup

erco

nd

. S

ci.

Tec

hno

l.

20

, 20

07,

p. S

184

–S

18

8.

32/41

Transverse load of sub-cable samples

Use

sp

lit

sup

erco

nd

uct

ing

mag

net

fac

ilit

y a

t N

HM

FL

:

30

x70

mm

rad

ial

acce

ss p

ort

15

0 m

m a

xia

l b

ore

(u

nif

orm

hig

h f

ield

reg

ion

)

Hai

rpin

typ

e o

f ca

ble

-I

+ I

xB

To

sim

ula

te s

ame

load

ing

con

dit

ion

s as

IT

ER

cab

le w

e n

eed

to a

pp

ly e

xte

rnal

mec

han

ical

lo

ad

(ap

pli

ed w

ith

a m

ov

ing

wed

ge)

.

To

in

sure

pre

ssu

re u

nif

orm

ity i

t is

nec

essa

ry t

o u

se a

“te

eth

”-li

ke

wed

ge.

Sam

e st

ruct

ure

can

be

use

d f

or

single strand, triplet and

45-strand samples.

Var

iou

s ca

ble

tes

ts w

ith

min

or

sam

ple

ho

lder

mo

dif

icat

ion

s.

33/41

Hairpin Sample

S

amp

le i

nse

rted

wit

h

its

ho

lder

and

wed

ge

insi

de

the

single

pie

ce c

ase

Co

pp

er c

han

nel

of

the

curr

ent

lead

s w

her

e th

e

sam

ple

is

sold

ered

Res

tin

g p

osi

tio

nF

Ex

ten

som

eter

Mo

vin

g

pie

ce

Ap

ply

ing

lo

ad

34/41

Typical Measurements

Cri

tica

l cu

rren

t m

easu

rem

ents

are

per

form

ed a

t4.2 K

and

fixed

field

.

Sta

nd

ard

cri

tica

l cu

rren

t cr

iter

ia o

fE

c1=

10

µV

/m,

Ec2

=1

00

µV

/m h

ave

bee

n

use

d t

o e

val

uat

e cr

itic

al c

urr

ent.

Vol

tage

Tap

Sig

nal

@ 1

5 T

-5.0

E-0

6

0.0

E+

00

5.0

E-0

6

1.0

E-0

5

1.5

E-0

5

2.0

E-0

5

2.5

E-0

5

3.0

E-0

5

3.5

E-0

5

050

01

00

01

500

200

0

Cur

ren

t (A

)

Voltage (V)

10

0 µ

V/m

10

µV

/m

35/41

Some Results

0.0

0

0.2

0

0.4

0

0.6

0

0.8

0

1.0

0

1.2

0

02

04

06

08

010

01

20

Nominal Pressure (MPa)

I/Ic-zeroload

10 microV/m

45

str

and

s

3 s

tran

ds

Sin

gle

str

and

•S

ing

le s

tran

d a

nd

3-s

tran

d c

able

rea

ched

th

e ex

pec

ted

cri

tica

l cu

rren

t.

•T

he

45

-str

and

sam

ple

sh

ow

ed a

23

% i

nit

ial

deg

rad

atio

n.

•A

ll s

amp

les

sho

wed

a s

ign

ific

ant

chan

ge

in c

riti

cal

curr

ent

as a

fun

ctio

n o

f th

e n

om

inal

pre

ssu

re.

•D

egra

dat

ion

dat

a o

f si

ng

le s

tran

d a

nd

3-s

tran

d s

amp

les

can

no

t b

e ex

pla

ined

wit

h e

xis

tin

g b

end

ing

mo

del

s b

ecau

se t

hey

do

no

t h

ave

sig

nif

ican

t b

end

ing

, in

dic

atin

g L

ore

ntz

lo

ad c

an e

ffec

t th

e b

ehav

ior

of

sup

erco

nd

uct

ors

.

36/41

Contact M

echanics and M

odel

Wit

h t

ho

se d

ata

con

tact

mec

han

ics

was

use

d t

o e

val

uat

e th

e ef

fect

of

loca

l p

ress

ure

bet

wee

n

stra

nd

s an

d i

t w

as p

oss

ible

to

rep

rod

uce

th

e re

sult

s o

f th

e 4

5-s

tran

d c

able

usi

ng

th

e 3

-str

and

dat

a.

A n

ew m

od

elw

as p

rop

ose

d t

o e

val

uat

e th

e d

egra

dat

ion

cau

sed

by

th

e tr

ansv

erse

Lo

ren

tz l

oad

effe

ct o

n f

ull

siz

e ca

ble

san

d s

ug

ges

tio

ns

on

th

e ca

ble

des

ign

wer

e m

ade.

Her

e’s

a si

mp

lifi

ed e

xp

lan

atio

n o

f th

e m

od

el…

Ap

pli

ed

Forc

e F

c

2a

E1 E2

Ap

pli

ed

Forc

e F

c

2a

E1 E2

In o

ur

exp

erim

ent

we

app

lied

a k

no

wn

to

tal

mec

han

ical

load

so

in

ord

er t

o e

stim

ate

Fc

we

nee

d t

he

nu

mb

er o

f co

nta

ct p

oin

ts i

n a

cab

le

-1.5-1

-0.50

0.51

1.5

050

100

150

200

250

300

350

400

450

500

Tra

nsv

erse

lo

ad

Tw

ist

pit

ch

A

B

C

A

B

C

C

C

C

C

C

B

B

B

B

B

A

A

A

A

A

54

53

54

25

43

15

43

2N

Nk

Nk

kN

kk

kN

kk

kk

NT

+⋅

+⋅

⋅+

⋅⋅

⋅+

⋅⋅

⋅⋅

=

Th

e total contact points

per

un

it l

eng

th f

or

a ca

ble

wit

h n

um

ber

of

stra

nd

Ns=k 1·k2·k3·k4·k5

(kin

um

ber

of

bun

dle

s, N

in

um

ber

of

conta

cts

in a

sta

ge)

37/41

Model results

0.0

0.2

0.4

0.6

0.8

1.0

1.2

015

030

045

060

0750

900

Effective C

ontact Pressure (M

Pa)

3-st

rand

Fitt

ing

Normalized Critical Current3-strand data

0

0.2

0.4

0.6

0.81

1.2

020

04

00

600

80

0

Force (kN/m

)

Normalized Critical Current

45-s

tran

d e

xperi

men

tal

un

twis

ted

twis

ted

“can we predict the behavior of a cable from its smallest stage

behavior (3-strand sample)?”

Mec

han

ical

Forc

eA

ccu

mu

lati

ng

Ele

ctro

mag

net

ic

(Lore

ntz

) F

orc

e

Hig

hes

t

pre

ssure

are

as

i

B

Fi

Acc

um

ula

ting

forc

e

dis

trib

uti

on

Un

iform

forc

e

dis

trib

uti

on

38/41

Model Results

Current Distribution in Cable

0

20

40

60

80

100

120

140

-20

-10

010

20

y (mm)

Current (A)

Un

twis

ted

Tw

iste

d

Contact Pressure Distribution

in C

able

0

200

400

600

800

1000

-20

-10

010

20

y (mm)

Contact Pressure

(MPa)

Untw

iste

d

Tw

iste

d

Fu

ll s

ize

cab

le 3x4x4x4x6

(11

52

str

and

s).

Th

e m

od

el r

esu

lts

sho

w t

hat

fo

r a

full

siz

e ca

ble

wit

h t

he

ori

gin

al c

able

pat

tern

pro

po

sed

fo

r th

e

TF

co

il i

n I

TE

R (

cab

lin

g p

atte

rn 3x

4x4x4x6

an

d

twis

t p

itch

es

65

, 9

0,

15

0,

27

0,

43

0

mm

),

the

Lo

ren

tz

load

co

uld

af

fect

fo

r u

p

to

20

%

of

deg

rad

atio

n a

t o

per

atio

n c

urr

ent

of

68

kA

.

Ax

ial

and

b

end

ing

st

rain

s ca

use

d

by

ther

mal

con

trac

tio

n

and

L

ore

ntz

lo

ad

are

add

itio

nal

sou

rces

of

deg

rad

atio

n.

Full Size Cable (3x4x4x4x6, no Cu strand)

05

10

15

20

25

30

020

40

60

80

100

Nominal Current (kA)

Computed %

difference from

nominal current

0x

y

39/41

Parametric Studies

Th

e ca

bli

ng

pat

tern

aff

ects

th

e p

erfo

rman

ce

of

a ca

ble

.

A ca

bli

ng

p

atte

rn 3x3x3x3x6

sho

ws

a 1

0%

larg

er

deg

rad

atio

n

than

a

cab

lin

g

pat

tern

3x5x5x6

(fir

st

pat

tern

le

ss

nu

mb

er

of

con

tact

s).

If t

he 6 petals

of

the

last

sta

ge

are

independen

tly supported

the

tota

l L

ore

ntz

is

red

uce

d.

Th

e d

egra

dat

ion

in

th

is c

on

fig

ura

tio

n w

ou

ld

be

6%

at

11

.3 k

A i

nst

ead

of

the

20

% a

t 6

8 k

A

for

the

stan

dar

d d

esig

n.

0

10

20

30

40

50

60

020

40

60

80

100

120

140

Nominal Current (kA)

Computed % difference from

nominal currentN

s 4

86 3

x3x3

x3x6

Ns 4

50 3

x5x5

x6

0.0

5.0

10.0

15.0

20.0

25.0

30.0

020

40

60

80

10

0Nominal Current (kA)

% difference from

nominal current

Ns

1152

Ns

216

40/41

Research needs

Des

pit

e th

e am

ou

nt

of

wo

rk d

on

e in

th

e p

ast

few

yea

rs t

he

mec

han

ical

beh

avio

r o

f

CIC

C i

s not

wel

l u

nd

erst

oo

d.

Mo

re d

etai

led

mea

sure

men

ts o

f th

e mechanical properties

of

sup

erco

nd

uct

ing

str

and

s an

d

cab

les

are

nec

essa

ry t

o i

mp

lem

ent

fin

ite

elem

ent

sim

ula

tio

ns

and

to u

nd

erst

and

th

e d

etai

led

str

ain

mec

han

ism

s u

nd

er l

oad

ing

co

nd

itio

ns.

A b

ette

r u

nd

erst

and

ing

of superconducting m

agnets limitations

to p

red

ict

thei

r b

ehav

iors

, an

d

mo

re e

ffo

rts

in i

mp

rov

ing

th

eir

des

ign

s ar

e o

f v

ital

im

po

rtan

ce t

o t

he

end

go

al o

f o

per

atin

g f

usi

on

mac

hin

e re

liab

ly.

HE

P i

s al

so t

hin

kin

g a

bo

ut

the

LH

C u

pg

rad

e an

d N

b3S

n c

on

du

cto

r w

ill

be

use

d t

o o

bta

in h

igh

er

fiel

ds.

Un

der

stan

din

g t

he

mec

han

ical

pro

per

ties

of

this

mat

eria

lh

as b

eco

me

of

vit

al i

mp

ort

ance

for

this

co

mm

un

ity t

oo

.

41/41

TH

AN

K Y

OU

42/41

Fusion is an Attractive Energy Source

A

bundan

t fu

el, av

aila

ble

to a

ll n

atio

ns

—D

eute

riu

m a

nd

lit

hiu

m e

asil

y a

vai

lab

le f

or

tho

usa

nds

of

yea

rs

E

nvir

onm

enta

l ad

van

tages

—N

o c

arb

on

em

issi

on

s, s

ho

rt-l

ived

rad

ioac

tiv

ity

C

an’t

explo

de,

res

ista

nt

to t

erro

rist

att

ack

—S

mal

l q

uan

tity

of

fuel

in

th

e ch

amb

er, ch

amb

er b

reac

h s

top

s re

acti

on

L

ow

ris

k o

f nucl

ear

mat

eria

ls p

roli

fera

tion

—N

o f

issi

le o

r fe

rtil

e n

ucl

ear

mat

eria

ls r

equ

ired

C

om

pac

t pow

er s

ourc

e re

lati

ve

to s

ola

r, w

ind a

nd b

iom

ass

—M

od

est

lan

d u

sag

e

N

ot

subje

ct t

o d

aily

, se

asonal

or

regio

nal

wea

ther

var

iati

on

—N

o l

arg

e-sc

ale

ener

gy s

tora

ge

or

lon

g d

ista

nce

tra

nsm

issi

on

C

an p

roduce

electricity or hydrogen

—O

ther

po

ten

tial

use

s:

d

esal

inat

ion

of

wat

er

d

eact

ivat

ion

of

reac

tor

was

te

43/41

Comparison of Fission and Fusion

Radioactivity After Shutdown

1 10

-2

10

-4

10

-6

10

-8

10

-10

Fis

sion

:L

ight

Wat

erR

eact

or

10

,00

0

Yea

r A

fter

Sh

utd

ow

n

Fu

sio

n:

Sil

icon

Car

bid

eC

om

po

site

Fu

sio

n:

Van

adiu

mA

llo

ys

Fu

sio

n:

Red

uce

d A

ctiv

atio

nF

erri

tic

Ste

el

1,0

00

100

10

1

Coal

Ash

Bel

ow

Reg

ula

tory

Co

nce

rn

Curies/Watt (Thermal Power)