8
NorthEast Center for Chemical Energy Storage (NECCES) M. Stanley Whittingham (Binghamton University) EFRC mission statement Develop an understanding of how key electrode reactions occur, and how they can be controlled to improve electrochemical performance, from the atomistic level to the macroscopic level throughout the life-time of the operating battery. (Focus is on intercalation electrodes and on lithium) http://necces.binghamton.edu

NorthEast Center for Chemical Energy Storage (NECCES) M. … · 2017-08-14 · NorthEast Center for Chemical Energy Storage (NECCES) M. Stanley Whittingham (Binghamton University)

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NorthEast Center for Chemical Energy Storage (NECCES) M. … · 2017-08-14 · NorthEast Center for Chemical Energy Storage (NECCES) M. Stanley Whittingham (Binghamton University)

NorthEast CenterforChemicalEnergyStorage(NECCES)M.StanleyWhittingham(BinghamtonUniversity)

EFRCmissionstatement

Developanunderstandingofhowkeyelectrodereactionsoccur,andhowtheycanbecontrolledtoimproveelectrochemicalperformance,fromtheatomisticleveltothemacroscopiclevelthroughoutthelife-timeoftheoperatingbattery.

(Focusisonintercalationelectrodesandonlithium)

http://necces.binghamton.edu

Page 2: NorthEast Center for Chemical Energy Storage (NECCES) M. … · 2017-08-14 · NorthEast Center for Chemical Energy Storage (NECCES) M. Stanley Whittingham (Binghamton University)

TheNECCESTeambringstogetherthenecessarymultidisciplinaryskills(experiment,theory,characterization)toachieveourmission

2

AssociateMembers TechnicalandAdminSupportStaff

Page 3: NorthEast Center for Chemical Energy Storage (NECCES) M. … · 2017-08-14 · NorthEast Center for Chemical Energy Storage (NECCES) M. Stanley Whittingham (Binghamton University)

NorthEast Center for Chemical Energy Storage h"p://necces.binghamton.edu

DirectorM.StanleyWhi:ngham

Thrust1Intercala2on:M.StanleyWhi:ngham

Understandingtheintercala=onmaterialitself

(bulkmaterial)

FIT1.1BeyondOlivines:Coordinator:M.S.Whi:ngham

Goal1:A"ainreversiblemul=-

electrontransferinacathode

materialusinglithium

Thrust3Cross-Cu?ngDiagnos2cs:KarenaChapman

Developtheessen=alcharacteriza=ontoolsto

supportThrusts1and2

AssociateDirectorGlennAmatucci

Thrust2ElectrodeTransport:GlennAmatucci

Understandperformancelimi=ngtransportat

theelectrodelevel

InternalScienceAdvisoryBoard:

ClareGrey&GerbrandCeder

FIT1.2Oxides:Coordinator:Y.ShirleyMeng

Goal2:Closethegapbetweenthetheore=calandprac=calenergy

densityforintercala=oncompounds

FIT2-1:LocalLevelEvolu2onofIonicandElectronicTransport:Coordinator:GlennAmatucci

FIT2-2:Transport;mesoscalethroughmacro:

Coordinator:Yet-MingChiang

ExternalScienceAdvisoryBoard(SAB):

BillBushong/Rayovac,GeorgeCrabtree/ANL,Claude

Delmas/Inst.ofSolidStateChemistry,LindaNazar/U.of

Waterloo,DanielScherson/CaseWesternReserveU.&

VenkatSrinivisan/LBNL

EFRCmissionstatementDevelopanunderstandingofhowkeyelectrode

reac2onsoccur,andhowtheycanbecontrolledtoimproveelectrochemicalperformance,fromthe

atomis2cleveltothemacroscopiclevelthroughoutthelife-2meoftheopera2ngbaRery.(Focusison

intercala2onelectrodesandonlithium)

Goal3:Understandperformancelimi=ngtransportinposi=veelectrode

structuresfromthelocalthroughthemesotothemacroscale.

Informalongoingadvice

Formalannualreviewofscien4fic

progress

Focusonin-situandoperando,Na4onalUserFacili4esplayanessen4alrole

Atomiclevel Par4clelevel Electrodelevel

Grey,CambridgeMRI

Chupas,ArgonneX-raytomography

Meng,UCSD&Cabana,UICStrainandchemicalmapping

withCXDI&X-raymicroscopies

Zhou,Binghamton&Batson,RutgersSurfaceandchemicallysensi=veTEM

X-raytools NMRChapman,Chupas,ArgonneXRD,PDF,XAS:

AMPIXcell

Grey,CambridgeNMR:auto-tuning

probe

Ong,UCSDtheory

Whi?ngham,ChernovaBinghamton

synthesis,TEM,electrochemistry

Piper,Binghamtonspectroscopy(XPS,XAS)

Chapman,ArgonneXRD,PDF

VanderVenUCSBtheory

ZhouBinghamton/BNL

EnvironmentalTEM

Meng,UCSDelectrochemistry,

XRD,ND,CXDI

GreyCambridge

NMR

Cabana,UICX-ray

microscopy

ChapmanArgonneXRD

Amatucci,Pereira,Rutgerssamplefabrica=on,XRD,

electrochemistry,microcalorimetry

Ceder,UCBtheory

Piper,Binghamtonsurface

characteriza=on

Batson,CosandeyRutgersHRTEM-EELS

Chiang,MITelectronicandionic

transportmeasurements

Thornton,Michiganmodelingacross

mul=plelengthscales

Modelcompoundε-LixVOPO4 ModelcompoundLiNi0.8Co0.15Al0.05O2(NCA)

ThismaterialisbaseduponworksupportedaspartofNECCES,anEnergyFron?erResearchCenterfundedbytheU.S.

DepartmentofEnergy,OfficeofScience,OfficeofBasicEnergySciencesunderAwardNumberDE-SC0012583.

Cross-cu:ng

characteriza=on

atalllengthscales

Howdosurfacereac2onsinducetransportissues?•  Surfaceoxygenloss− Newphasesincreaseimpedance

•  Theorydefiningsurfacestates•  Electrolyteiskeyplayer

ModelcompoundsfromThrust1:currentlyLiNi0.8Co0.15Al0.05O2(NCA)andvariantsWheredoesimpedancegrowthoriginate?• Interfacialreac=onislimi=ngathighSOC

• Exchangecurrentvariesby10xathighSOC• Meso/microscalesimula=onsconcur

• Newsinglepar=clemeasurementcapability

• ε-LiVOPO4reversiblyintercalatesLi

• Itisa1Ddiffuser• Synthesiscri=cal• VOPO4reactsslowly

• IsLi2VOPO4unstable?

•  1-2%NionLisite.•  PO2affectsphasechanges•  Two-phaseinNCAevolving•  Highdefectdensityatsinglepar=cle

a

b

c

shell(V3+)shell(V4+)core(V5+)

Atomistic Phases 2Theta

Defects P"="400"mTorr"

RT,"vacuum"

RT,"oxygen"150"°C"

200"°C"

250"°C"300"°C"

350"°C"

400"°C"

RT,"vacuum"

RT,"oxygen"150"°C"

200"°C"

300"°C"

P"="0.2"mTorr"

250"°C"

350"°C"400"°C"

O Activity

NCAparticle

Tungsten Pt

3

Page 4: NorthEast Center for Chemical Energy Storage (NECCES) M. … · 2017-08-14 · NorthEast Center for Chemical Energy Storage (NECCES) M. Stanley Whittingham (Binghamton University)

NorthEast CenterforChemicalEnergyStorage(NECCES)Four-YearResearchGoalsFocusonIntercalationCathodes

Today’sbatteriesAttainonlyaround25%oftheirtheoreticalcapacity.

EFRCresearchgoals

1. Attainreversiblemulti-electron transferinacathodematerialusinglithium,focusedonthemodelcompound,LixVOPO4.

2. “Closethegap” betweenthetheoreticalandpracticalenergydensityforintercalationcompounds,focusedonthemodelcompound,LiNi0.8Co0.15Al0.05O2.

3. Understandperformancelimitingtransportinpositiveelectrodestructuresfromthelocalthroughthemeso tothemacroscale.

Page 5: NorthEast Center for Chemical Energy Storage (NECCES) M. … · 2017-08-14 · NorthEast Center for Chemical Energy Storage (NECCES) M. Stanley Whittingham (Binghamton University)

KineticsvsThermodynamicsBeyondLiFePO4:LixVOPO4 a2electronsystem

TheOlivineLiFePO4• Behavesasasinglephasesystem,LixFePO4

• WhenreactionrateisgreaterthantimeforLiionstoorder• Theoreticalmodel,designedexperimentsandoperandostudies

Goal:Attainreversiblemulti-electron transferinacathodematerial• Focusonaphosphatematerialand2Liintercalation?

• Modelcompound,LixVOPO4.• SevenphasesofVOPO4 known• Thermodynamics,kineticsofreaction,phasesnowunderstood

• Kineticsarecomplexandcontrolphasesformed• Goalattained

• Synergistictheory,experimentandoperandocriticaltosuccess• Stillmuchtounderstandandcontrol

H-VOPO4

C/25

a

b

c

Page 6: NorthEast Center for Chemical Energy Storage (NECCES) M. … · 2017-08-14 · NorthEast Center for Chemical Energy Storage (NECCES) M. Stanley Whittingham (Binghamton University)

Characterizationandcontrolofmatterawayfromequilibrium?Goal:“ClosingtheGap”onthelayeredoxides.LiMO2

Modelcompound:NCA- LiNi0.85Co0.1Al0.05O2• RoleofAluminumandpseudophasetransitionsidentified

• HeterogeneityatNCAmateriallevelisthetruereasonforthepseudophasetransitionatlowvoltage

• AldistributionisuniforminthebulkanditsroleathighvoltageiscomplexGoal:Attainoptimum0.9MLi(>250mAh/g) inthelayeredoxidecathodematerials

• Focusonthebulkstructuralfactorsandsurface/interfacialphenomenaKineticlimitationofLitransportcanlimittheutilizationoffullenergydensity.

• Bulkintergranular crackingatsecondaryparticlelevelobserved• LocalenvironmentofdopedAlundergoescomplexchangesathighvoltagerange

Goalattained• SynergybetweenFIT1.2(Bulk)andFIT2.1(Interface)criticaltosuccess• ApplywhatwelearnttoNMCclassofcathodes- controlphase

transitionsandinterfacialstability

Page 7: NorthEast Center for Chemical Energy Storage (NECCES) M. … · 2017-08-14 · NorthEast Center for Chemical Energy Storage (NECCES) M. Stanley Whittingham (Binghamton University)

Pushingthefrontiersofoperandocharacterization.KeyroleofNationalLabstounderstandourmodelcompounds

SynchrotronX-raycapabilities:Visualizereactionheterogeneity• Expandedoperandocapabilities(AMPIX)tomultiplemonthstoidentify

changesintheatomic-scale reactionmechanismlinkedtocapacityfade• Operandospectromicroscopic imagingrevealsthepropagationofreactions

withinsecondarycathodeparticles.• Depthprofilestudiesofreactionprogress

demonstrateshowheterogeneitydevelopsinthickelectrodes

NMR• Combined17ONMRandfirstprinciplescalculationsforthefirsttimeto

probeOenvironmentsinparamagneticlayeredcathodessuchasNCA.• DevelopedanautomatictuningNMRprobethattunestheresonantcircuit

duringoperandomeasurements,improvingsignaltonoiseandfacilitatesoperandostudiesofbroadresonances(7Liand31PinLiVOPO4)

Goalattained• Synergistictheoryandoperandoexperimentcriticaltosuccess• Understandingandcontrollingheterogeneityatmultiplescalesis

criticaltoperformance

Page 8: NorthEast Center for Chemical Energy Storage (NECCES) M. … · 2017-08-14 · NorthEast Center for Chemical Energy Storage (NECCES) M. Stanley Whittingham (Binghamton University)

NECCESPresentationsthisweekdemonstratesynergisticinteractionbetweenexperiment,theoryandcharacterization

TALKS• INTEGRATED EXPERIMENTAL-COMPUTATIONAL INVESTIGATION OF TRANSPORT KINETICS IN

POLYCRYSTALLINE BATTERY-ELECTRODE PARTICLES - YET-MING CHIANG – M-D-2:30PM• THE MATERIALS PHYSICS OF LITHIUM (DE)INTERCALATION IN LAYERED OXIDE CATHODES – MAX

RADIN – T-D-2:30PM• ADVANCES IN NMRMETHODOLOGY OF PARAMAGNETIC LI-ION BATTERY CATHODE MATERIALS –

IEUAN SEYMOUR – T-D-9:50AM• THERMODYNAMIC STABILITY,VOLTAGE AND DIFFUSION KINETICS OF LIXVOPO4 (X=0,1,2)VANADYL

PHOSPHATE POLYMORPHS:JOINT FIRST-PRINCIPLES AND EXPERIMENTAL – YUH-CHIEH LIN,MARCHIDALGO AND SHAWN SALLIS (STUDENT-POSTDOC COMPETITION) – T-D-8:30AM

POSTERS• IDENTIFYING THE CHEMICAL AND STRUCTURAL IRREVERSIBILITY IN LINI0.8CO0.15AL0.05O2 - A MODEL

SYSTEM FOR CLASSICAL LAYERED INTERCALATION – SHIRLEY MENG – M-D-5:00PM• ELECTROCHEMICALLY INITIATED SURFACE CHEMISTRIES INHIBITING THE REALIZATION OF

THEORETICAL CAPACITY OF LINI0.8CO0.15AL0.05O2 – GLENN AMATUCCI – M-D-5:00PM• NEXT GENERATION OF VANADIUM-BASED MULTI-ELECTRON CATHODE MATERIALS – NATASHA

CHERNOVA – M-D-5:00PM• INSIGHT INTO REALIZING THE FULL 2LI+ CAPACITY OF MULTI-ELECTRON LIXVOPO4 – LOUIS PIPER• ADVANCING OPERANDO TOOLS TO PROBE MULTISCALE COMPLEXITY IN CHEMICAL ENERGY

STORAGE – KARENA CHAPMAN – T-D-3:30PM