42
North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006 GCAGS MEETING

North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Embed Size (px)

Citation preview

Page 1: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

North GOM Petroleum Systems: Modeling the Burial and Thermal History,

Organic Maturation, and Hydrocarbon Generation and Expulsion

Roger J. Barnaby2006 GCAGS MEETING

Page 2: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

• Evaluate source rock hydrocarbon potential and maturity– Smackover geochemistry (TOC, kerogen)– Model burial history – Model thermal history

• Model hydrocarbon maturation, generation and expulsion – Key controls– Timing and burial depths– Volumes of oil and gas

• Assess secondary hydrocarbon migration

Previous studies of northern GOM crude oils: composition, 13C,document Type II algal kerogen in Smackover major source

Objectives

Page 3: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

SA

BIN

E U

PLI

FT

N. LASALT BASIN

MONROEUPLIFT

Primary control for basin modeling 140 key wells (red) 44 sample wells (blue) 30 additional wells being analyzed

50 mi

CRETACEOUS SHELF MARGIN

Page 4: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Burial History: Depositional and Erosion Events

Geological time scale: Berggren et al. 1995Formation ages: Salvador 1991 Galloway et al. 2000 Mancini and Puckett 2002; 2003 Mancini et al 2004

Page 5: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Smackover

Cotton Valley

Hosston

Sligo

MooringsportGlen Rose

Paluxy

Austin

Wilcox

Miocene

Oligocene

TuscaloosaWash/Fred

Midway

Jackson

Page 6: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006
Page 7: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Burial History

• Reconstructed from present-day sediment thickness after correcting for compaction

• Compaction due to sediment loading• Maximum paleo water depths < few 100 meters,

no correction for water loading– Paleobathymetry– Sea level through time

Page 8: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Porosity-Depth Relationships

0

5000

10000

15000

20000

0.00 0.10 0.20 0.30 0.40 0.50 0.60

porosityd

epth

(ft

)

Limestone

Sandstone

Shale

= 0 exp (-Kz)

Where: = porosity0 = Initial porosityK = compaction factorz = depth

Exponential Compaction

Page 9: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

0

5000

10000

15000

20000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

porosity

dep

th (

ft)

Burial History: Decompaction

3

2

1

12

1

3

2

1y1

y2

y’1

y’2

t1Remove 2 & 3Decompact 1

t2 Add 2

Partially compact 1

t3Add 3

Compact 2 and 1

Present-daydepths

Page 10: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

0

5000

10000

15000

20000

050100150200

Time (Ma)

Dep

th (

ft)

Compacted

Non-compacted

Burial History: Compacted vs Non-compacted

Page 11: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Lithology (Wilcox)

CALCULATE DECOMPACTION-lithology from digital logsEnd member lithologies-SS, SH, LS, ANHLog-derived lithology -mixture of end membersCompaction parameters formixed lithology – weighted arithmetic average

Page 12: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Lithology (Upper Glen Rose)

Page 13: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Smackover

Cotton Valley

Hosston

Sligo

MooringsportGlen Rose

Paluxy

Austin

Wilcox

Miocene

Oligocene

TuscaloosaWash/Fred

Midway

Jackson

Page 14: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Burial History

Page 15: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Smackover

Cotton Valley

Hosston

Sligo

Mooringsport Wash/FredGlen RoseTuscaloosa

Austin

Midway

Wilcox

Miocene

Oligocene

Jackson

2

Page 16: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Burial History

Page 17: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

• Modeling formation temperature– Heat flow approach: temperature function of

basement heat flow, thermal conductivity overlying sediment

• Present-day heat flow– Well BHTs– Surface temp = 20oC– Thermal conductivity

• Porosity and lithology are major variables controlling thermal conductivity

• In-situ thermal conductivity computed by BasinMod

Thermal History

Page 18: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

meter (103 . deg K)

T2, y2

T1, y1

= T2-T1 (103 . deg K)y2-y1 (meters)

W

meters2

Heat Flow

xW

TemperatureGradient

ThermalConductivity

Heat Flow Calculation

Page 19: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

CalculatedHeat Flow = 50 mW/m2

BHTs

Calculated vs Measured BHTs

Page 20: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Thermal History: Paleoheat Flow• Constant vs. rift model

= 2.0

= 1.75

= 1.5

= 1.25

= 1.0

N. LA Beta1.25 ≤ ≤ 2.0

Nunn et al 1984 Dunbar & Sawyer 1987

170130026300

Moho Crust

Subcrustallithosphere

Aesthenosphere

= 230 km

120 km

Page 21: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

= 1.25

= 1.5

= 1.75

= 2.0Dunbar and Sawyer 1987

Thermal History: Lithospheric Stretching

Page 22: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

SA

BIN

E U

PLI

FT

MONROE UPLIFT

50 mi

17067006100

170612011700

170152087800

170152065500

170692007200

171190136200

170692023300

0

2000

4000

6000

8000

10000

12000

14000

0.10 1.00 10.00

%Ro (measured)

Dep

th (f

t)

Surface %Ro (expected)

17067006100

170612011700

Trend A

Trend B

Thermal HistoryLate K Igneous Event

Page 23: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Moody (1949)

Page 24: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Optimum match between BHTs and %Ro and modeled valuesusing rift model with Late Cretaceous thermal event

170670006100 (J-2)

Late K thermal event

Heat Flow History and Thermal Maturity, Monroe Uplift

6000 ft

Page 25: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Heat Flow: 170 Ma

Page 26: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Heat Flow: 119 Ma

Page 27: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Heat Flow: 95 Ma

Page 28: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Heat Flow: 17 Ma

Page 29: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

• Thermal maturity (%Ro) calculated using kinetic model from LLNL• Standard type II kerogen • 1D steady-state heat flow at model base, heat transfer from conduction

Maturity Modeling

170692023300

Page 30: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Thermal History: Paleoheat Flow• Thermal maturity constrained by %Ro

170692023300

48 mW/m2, rift model, modeled maturity reasonably matches TAI and %Ro

Page 31: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

171190164100

170152087800170812037000

170812042100

170692008800170692007200

Page 32: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Calculated %Ro vs. Measured

Page 33: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Present-day95 Ma

Smackover Maturity

Present-day

Page 34: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Hydrocarbon Generation & Expulsion

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0

TOC (%)

N

Smackover: oil-prone Type II kerogen

TOC data updip wells onlyExtrapolated downdip

Ran models with range TOC

Page 35: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Pepper (1991)

OIL-WATER SYSTEMWATER-WET LITHOLOGIES

TY

PIC

AL

RE

SE

RV

OIR

S

OIL SOURCEROCKS

PHASESEQUALLYMOBILE

OILINCREASINGLY

MOBILE

WATERINCREASINGLY

MOBILE

0.7 0.4 0.0

RE

LA

TIV

E P

ER

ME

AB

ILIT

Y:

OIL

/WA

TE

R

OIL SATURATION

0.01

0.1

1

10

100

KSwirr

Ex: saturation threshold = 0.20

Page 36: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Oil Expulsion Volumetrics

109 bbls oil

Page 37: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Expulsed Oil Volumetrics

peak expulsion (108 to 103 my)(late Early Cretaceous)

TOC = 2 x RKZSaturation Threshold = 0.15

Constant heat flow (present-day)

Rift heat flowmodel

Page 38: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Primary gas

Secondary gas

Average GOR, North Louisiana = 12,500, up to 500,000 or more

Gas Generation and Expulsion

Page 39: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

TOC = 2%, saturation threshold = 0.2, rift heat flow w/ K event

Expelled Gas (Primary + Secondary)

Page 40: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Timing of gas expulsion

Saturation threshold = 0.2TOC = 1%Heat flow model with rifting and late K event

0.00

0.20

0.40

0.60

0.80

1.00

020406080100120140

M.a.

Cu

mu

lati

ve

Ex

pu

lse

d G

as

Fra

cti

on

Page 41: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

N. LA Petroleum System

E M L E L

Source Rock

Reservoir Rocks

Overburden Rocks

Generation-Expulsion

Salt

Uplift

Jurassic Cretaceous Tertiary

200 150 100 50

TimeScale Petroleum

Systems Events

Critical Moments

Secondary Migration

Trap

oilgas

Page 42: North GOM Petroleum Systems: Modeling the Burial and Thermal History, Organic Maturation, and Hydrocarbon Generation and Expulsion Roger J. Barnaby 2006

Conclusions

• Geochemical data and basin modeling indicate that Smackover mature for oil and gas

• Peak oil expulsion late Early Cretaceous, persisted into Late Cretaceous

• Most gas is secondary• Peak gas expulsion early to middle Tertiary• Cumulative production accounts for less than

1.0% of total expulsed volumes of oil and gas– Estimates in published literature 1-3%